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Abstract

In this paper, we present a novel on-line probabilistic
generative model that simultaneously deals with both the
clustering and the tracking of an unknown number of mov-
ing objects. The proposed model assumes that i) time series
data are composed of a time-varying number of objects and
that ii) each object is governed by a mixture of an unknown
number of different patterns of dynamics. The problem of
learning patterns of dynamics is formulated as the cluster-
ing of tracked objects based on a nonparametric Bayesian
model with conjugate priors, and this clustering in turn im-
proves the tracking. We present a particle filter for pos-
terior estimation of simultaneous clustering and tracking.
Through experiments with synthetic and real movie data, we
confirmed that the proposed model successfully learned the
hidden cluster patterns and obtained better tracking results
than conventional models without clustering.

1. Introduction
Tracking multiple objects in movie images is an im-

portant task [6, 8]. Tracking algorithms compute filtered
smooth trajectories of objects from scenes, by fitting state-
space dynamics models such as Kalman filters to the obser-
vations. Tracking anonymous data such as maneuver track-
ing on radar (i.e., we cannot directly distinguish objects
from observations) [7, 11] is challenging and is mainly for-
malized in statistical and probabilistic manners and applied
to many types of time series data including movie data.

If many target objects are moving in a scene, it is nat-
ural to assume multiple different dynamics based on their
characteristics. Many existing multi-target tracking models,
however, fail to address the problem of estimating multiple
patterns of dynamics in tracking problems. They assume
that whole trajectories of different objects can be modeled
by a single general dynamics model, even though obviously
target-wise tuning of dynamics provides better prediction
and understanding of time series data.

We consider a multi-target tracking model that allows

Figure 1. Example of system input and output. Left figure shows
snapshot of a movie given to system as input. Right figure shows
output snapshot obtained from the system, where different colored
rectangles represent targets’ ID and positions and the numbers on
the rectangles denote dynamics pattern indices.

each target object to use multiple different patterns of dy-
namics. However, to construct such a model we need to
solve the following new problems: i) we do not know the
number of patterns in the time series data, and ii) we do not
know the specification of each dynamics. The first problem
can be understood as time series clustering [9, 10, 12], and
the second is the estimation of the model parameters [2, 3].
If we know these patterns of dynamics in advance, then
we can apply a conventional tracking algorithm. However,
identifying these patterns is difficult without first segregat-
ing mixed indistinguishable target objects into target-wise
trajectory data with a tracking algorithm. Unfortunately
these algorithms assume that time series data are segregated
by objects. It is a chicken-and-egg problem.

This paper proposes a probabilistic generative model that
simultaneously enables both clustering patterns of dynam-
ics and the tracking of unknown numbers of objects. We
assume that time series data are generated from the hid-
den trajectories of target objects, each of which is governed
by an unknown number of different dynamics parameters.
We incorporate the Dirichlet Process Mixture (DPM) to a
probabilistic multi-target tracking model to perform clus-
tering and estimate an unknown number of Kalman filter
parameters, and this clustering in turn improves tracking
accuracies. A Particle filter approach is employed to make
on-line (incremental) inferences of latent variables and hid-
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den states. Experiments using synthetic and real-world data
show the effectiveness of the proposed model compared
with conventional models.

2. Generative Models

Figure 2 shows the graphical models of those previously
studied in the literature and our new proposal. These graph-
ical models represent dependencies between random vari-
ables and explain how the data are generated from the pro-
cess characterized by these variables. In our model, data
to be generated include hidden state x(t), which is a real-
valued vector consisting of the actual coordinates of the
tracked object, and observation y(t), which is a sensed sig-
nal that is possibly collapsed by observation noises.

2.1. Conventional Models

First, we describe the simple multi-target tracking model
proposed by Särkkä et al. [11] in Fig. 2(a). Since we have
multiple targets, the hidden state of the ith target object is
denoted as xi(t). We represent this by depicting a “plate”
around xi(t). Analogously, this model produces multiple
observations ym(t) indexed by m. Nt and Mt are the num-
ber of objects and observations at time t, respectively.

When we have multiple target objects (hidden states) and
observations, we have to solve the correspondence between
targets and observations, since we don’t know which target
object generates which observation. This problem, which
is called data association, is essential to correctly estimate
the target-wise hidden state. This model introduces two
kinds of latent variables, c and j, to solve the data asso-
ciation problem. ci(t) represents the birth (addition) and
death (deletion) of target object i and thus explains how
many target objects appear and disappear. With ci(t) = 1,
the ith object is alive (or visible in the scene) at time t, and
ci(t) = 0 means the target object is now outside the scene.
If a new target object is generated at time t, then new in-
dex î is produced and cî(t) = 1. jm(t) is the data asso-
ciation variable that associates ym(t) with its source target
xi(t). If jm(t) = i, then ith target object xi(t) generates
mth observation ym(t). For the inference of such latent
variables and hidden states, the Rao-Blackwellized Particle
filter is employed. Note that dynamics parameters ξ and ψ
are fixed constants (depicted as squares) in this model. This
implies that the whole time series data are governed by one
fixed dynamics. As discussed in the previous section, this
assumption is not always relevant.

The model illustrated in Fig. 2(b) [2] represents the sit-
uation where one target object produces its trajectory and
emits observations while occasionally changing its dynam-
ics. In contrast to the model proposed by Särkkä et al., we
have a set of parameters {ξk}, {ψk} indexed by k. x(t)
(y(t)) is generated from the noise distribution parameter-

ized by ξk (ψk). At each time step t, zt = k is sampled as an
index of the dynamics patterns, and corresponding dynam-
ics parameters ξk and ψk are used to generate the hidden
states and the observations.

The novelty of their work lies in introducing the Dirich-
let Process Mixture (DPM) to model these two noise distri-
butions. DPM is a flexible Bayesian nonparametric model
that can be seen as an infinite mixture of distributions. By
introducing DPM, the model can infer not only the spec-
ification of dynamics parameters but also the number of
mixture components. Therefore, the system can track with-
out explicitly specifying the number of mixture components
(parameters) and their characteristics. As the inference al-
gorithm the authors present a MCMC technique for off-line
inference and a Particle filter approach for on-line inference.
One major drawback of this model is that it cannot handle
time series data that consist of multiple objects. The time
series must be segregated by the target objects in advance
because the model cannot solve the data association prob-
lem.

To summarize, these two most recent models are not ap-
plicable to a time series that consists of the trajectories of
multiple target objects that occasionally change their dy-
namics by switching between a pool of dynamics. In the
next subsection, we propose a new model that features the
advantages of both models.

2.2. Our Proposed Model

In this subsection, we first outline our proposed model
before discussing the details in a later section. Fig. 2(c) is
the graphical model of our proposed model that is designed
to represent the multi-target tracking data generated from
a mixture of dynamics parameters. Following the multi-
target tracking model (Fig. 2(a)), the hidden state of object
i is denoted as xi(t) and the mth observation is ym(t).

To generate xi(t), first the model generates ci(t), which
denotes the birth (addition) and death (deletion) of target
objects as explained earlier. We model the process of target
additions and deletions by Bernoulli trials (Eq. (7)). We
can produce a time-varying number of object trajectories by
controlling c(t). Next zi(t) is generated as an index of the
dynamics that governs the ith target at time t by following
Caron et al.’s model (Fig. 2(b)). Sampling zi(t) (Eq. (5))
is modeled by the Chinese Restaurant Process [1, 5] with
concentration parameter γ, combined with a Bernoulli trial
parametrized by π. CRP is a realization of DPM suitable
for clustering and can model multiple patterns (clusters) of
dynamics without fixing the number of dynamics patterns.

For each pattern k, dynamics parameters ξk and ψk are
generated from base distribution G0 and H0, respectively.
In our model, we use a Kalman filter as the state-space
model, and ξk and ψk are their normal distribution param-
eters. We assume that G0 and H0 are both Normal Inverse



(a) (c) (b) 

y (t) 
m 

y (t-1) 
m 

i = 1, ..., Nt 

m = 1, ..., Mt 

P b 

m 
j (t-1) 

m 
j (t) 

i 
(t-1) c 

P d 

i 
x (t-1) 

i 
x (t) 

i 
(t) c 

ξ 

ψ 

y (t) y (t-1) 

k = 1, ...,  

H 0 

G 0 

γ π 

(t-1) z 

x (t-1) x (t) 

(t) z 

k 
ξ 

ψ 
k 

y (t) 
m 

y (t-1) 
m 

i = 1, ..., Nt 

m = 1, ..., Mt 

k = 1, ...,  

P b 

m 
j (t-1) 

m 
j (t) 

i 
(t-1) c 

H 0 

G 0 

P d 

γ π 

i 
(t-1) z 

i 
x (t-1) 

i 
x (t) 

i 
(t) z 

i 
(t) c 

k 
ξ 

ψ 
k 

Figure 2. Graphical models of three generative models described in this paper. Circle nodes represent random variables, and squares denote
fixed parameters. White nodes are latent variables, and shaded nodes are observables. Rectangles (“plates”) denote replication, with the
index given in rectangle’s bottom. (a): model proposed in [11], (b): model proposed in [2] and (c): proposed model.

Wishart distributions (NIW) with parameters θξ and θψ re-
spectively. Now we generate each of the latent variables
required to produce xi(t). The hidden state of ith object
xi(t) is produced if the object is in scene (ci(t) = 1), and
the generation process is governed by ξk that is designated
by zi(t) = k.

To generate observation ym(t), we first produce latent
data association variable jm(t) (Eq. (5)). As stated above
jm(t) holds the association information between xi(t) and
ym(t). If jm(t) = i then mth observation ym(t) is gen-
erated from ith target object xi(t) with target observation
parameter ψk. Iterating this process for all t, we have time
series data consisting of multiple target trajectories, each of
which is governed by multiple different dynamics.

3. Inference
In this section, we discuss the on-line clustering

and dynamics parameter learning schemes and how to
infer them. Note that we represent the whole set
of the variables from time step 1 to t by capitals:
e.g. X(t) = {x(1),x(2), . . . , x(t)} and Y (t) =
{y(1),y(2), . . . , y(t)}.

3.1. Posterior Estimation with Particle Filter

Our objective is to estimate posterior distribution
p (x(t)|Yt). We write the set of latent variables at time step

t as φ(t) = {{ci(t)}, {jm(t)}, {zi(t)}, {ξk(t)}, {ψk(t)}},
and Φ(t) = {φ(1), φ(2), . . . , φ(t)}.

Using these notations, we approximate the posterior
p (x(t)|Y (t)) with Particle filter technique as follows:

p (x(t)|Y (t))=
S∑

s=1

p
(
x(t), Φ(t)(s)|Y (t)

)
w(t)(s), (1)

where S denotes the number of particles. Let q(·) be the
proposal distribution that generates Φ(t)(s) as follows:

φ(t)(s) ∼ q (φ(t)|Φ(t−1),Y (t)) . (2)

For the choice of the proposal distribution, we may sim-
ply use p (φ(t)|Φ(t−1)) instead of q (φ(t)|Φ(t−1),Y (t)).
Each particle is weighted by w(t)(s) defined by:

w(t)(s) = w(t−1)(s)
p

(
y(t)|φ(t)(s)

)
p

(
φ(t)(s)|Φ(t−1))

)
q (φ(t)|Φ(t−1), Y (t))

.

(3)
For likelihood p

(
y(t)|φ(t)(s)

)
, we use Kalman likeli-

hood, as in [11]. Because we model p (x(t), Φ(t)|Y (t))
by Kalman filter following previous researches [7,
11], we can easily compute hidden state distribution
p (x(t), Φ(t)|Y (t)) in Eq. (1), after obtaining the latent
variable samples.

Based on the generative model (Fig. 2(c)), we decom-



pose conditional distribution p (φ(t)|Φ(t−1)) as follows:

p (φ(t)|Φ(t−1)) , p (c(t)|C(t−1), Pb, Pd) (4)

×
∏
m

p (jm(t)|J(t−1))
∏

i

p (zi(t)|Z(t−1), γ, π) (5)

×
∏
k

p
(
ξk(t)|θξ

k(t−1)
)

p
(
ψk(t)|θψ

k (t−1)
)

(6)

3.2. “Birth and Death” Variable

The right term in Eq. (4) is the conditional prior of c(t),
which denotes the birth (addition) and death (deletion) of
target objects. With ci(t) = 1, the ith object is alive (or in
the scene) at time t, and ci(t) = 0 means the target object
is now outside the scene. In [11], the time evolution of
C is formalized as two-step Bernoulli trials: i) an existing
object with ci(t−1) = 1 disappears and ci(t) = 0 with
probability Pd, otherwise ci(t) = 1, ii) a new target object
is generated in the scene with probability Pb. We limit the
number of newly born objects at every time step to 1 (as in
[11]), giving us the following:

p (c(t)|C(t−1), Pb, Pd) = Pd
nd(1−Pd)nsPb

nb(1−Pb)1−nb ,
(7)

where ns denotes the number of surviving target objects, nd

is the number of that disappeared, and the (nb = {0, 1}) is
the number of newly born objects.

3.3. Data Association Variable

For data association variable J , p (jm(t) | J(t − 1)) in
the first term of Eq. (5) is assumed as uniform among all
existing objects. Otherwise, if search space of J is large,
we can introduce a pseudo likelihood to the proposal to re-
ject the outliers. In this experiment, we use the following
distribution for the proposal of j similar to [11]:

q (jm(t) = i|J(t−1), ym(t))
∝ p (ym(t)|x̂i(t)) p (jm(t) = i|J(t−1)) . (8)

This equation incorporates observation likelihoods given a
“representative” state vector x̂i(t), which is the average of
the predictive distribution of xi(t).

3.4. Dynamics Cluster Index Variable

We adopt the Chinese Restaurant Process (CRP) [1] prior
to generate z(t) in the second term of Eq. (5). CRP is a
realization of Dirichlet Process Mixture (DPM), which is a
family of nonparametric Bayes, and is a distribution over
partitions. We have a set of mixture components or clusters
indexed by k, and write the cluster index of ith sample as
zi. The distribution over index of ith sample conditioned on

the indices z1:i−1 is

p (zi = k|z1:i−1) ={
mk

i−1+γ if k is an existing cluster with mk > 0
γ

i−1+γ if k is a new cluster
, (9)

where mk denotes the size of the kth cluster. We write
this sampling procedure as zi ∼ CRP (γ). CPR favors a
small number of clusters that can be easily understood from
Eq. (9) and is consistent with the intuition of clustering. Es-
timating the posterior distribution of z(t) can be achieved
straightforwardly by combining the prior provided by CRP
and an appropriately selected data likelihood.

In our model, Eq. (9) is updated to obtain the best clus-
tering estimate at every time step. Using Z(t−1) as prior
information, we write the sampling of zi(t) as follows:

p (zi(t) = k|Z(t−1), γ) ={
mk(t−1)

|Z(t−1)|+γ if mk(t−1) > 0
γ

|Z(t−1)|+γ if mk(t−1) = 0
, (10)

where mk(t−1) is the total population size (the number of
i s.t. zi(t) = k) of kth cluster up to the time step t − 1, and
|Z(t−1)| denotes the sum of total population among all the
clusters up to the time step t − 1: i.e., it equals the sum of
mk(t−1) for all k.

In addition, we introduce another parameter π in order
to improve performance. We assume that the changes of
dynamics happen only occasionally and thus the target ob-
ject switches its dynamics parameters with relatively small
probability π. Now we formulate the second term of Eq. (5)
as follows:

zi(t) ∼ CRP (Z(t−1), γ) with probability π (11)
zi(t) = zi(t−1) with probability 1−π (12)

3.5. Kalman Filter Parameters

In our model, we use linear Gaussian state-space mod-
els, namely Kalman filters, for the dynamics models. If the
hidden state of ith object xi(t) and mth observation ym(t)
are generated from the kth dynamics cluster (i.e. jm(t) = i
and zi(t) = k), we have the following state-space model
equations:

xi(t) = f (xi(t−1), ξk(t)) , ξk(t) = {q, Q} (13)
ym(t) = h (xi(t), ψk(t)) , ψk(t) = {r,R}. (14)

f and h are standard linear Gaussian models with normal
distribution noise. ξk(t) = {q, Q} is the mean and covari-
ance matrix for the system model noise and ψk(t) = {r, R}
is for observation noise. To estimate these parameters, we
introduce Normal Inverse Wishart distribution (NIW) as a



Table 1. Tested methods and their characteristics
method Eqs. (17), (18) Eqs. (10), (11), (12)
Single no no

Individual yes no
Clustered yes yes

prior distribution of the parameters (c.f. [2]). We assign
NIW for each cluster, for the system noise and the observa-
tion noise, respectively. We parameterize the system noise
NIW and the observation noise NIW by θk = {θξ

k, θψ
k }.

ξk(t) and ψk(t) are sampled from the posterior distribu-
tion given the data up to time t−1 as current estimates of the
true dynamics parameter ξk and ψk. The sampling distribu-
tions and their hyper parameters θk are also updated accord-
ing to the data: θk(t−1) = {θξ

k(t−1), θψ
k (t−1)}. Compo-

nents in Eq. (6) will be described as follows:

p
(
ξk(t)|θξ

k(t−1)
)

= NIW
(
ξk(t); θξ

k(t−1)
)

(15)

p
(
ψk(t)|θψ

k (t−1)
)

= NIW
(
ψk(t); θψ

k (t−1)
)

. (16)

Using sampled ξk(t) and ψk(t), we perform tracking.
For on-line estimation, we update hyper parameters θ to

obtain better predictions of ξ and ψ after tracking. These
updates can be analytically performed because of the con-
jugacy:

NIW
(
ξk; θξ

k(t)
)
∝ p (x(t)|ξk)NIW

(
ξk; θξ

k(t−1)
)

.

(17)
NIW

(
ψk; θψ

k (t)
)
∝ p (y(t)|ψk, x(t))NIW

(
ψk; θψ

k (t−1)
)

.

(18)
Updated hyper parameters θ(t) will be used in Eqs.(15) and
(16) in the next time step.

4. Experiments
We tested the proposed model with both artificially gen-

erated data and real movie data.

4.1. Compared Models

We compared the proposed model with the other two
more restricted models with fewer latent variables and eval-
uated their effect. In experiments we compared the three
models summarized in Table 1. The first model (labeled
as Single in Table 1) is a baseline that closely resembles
Särkkä et al.’s model [11] in Fig. 2(a). This model does
not update the dynamics hyper parameters θξ(t) and θψ(t)
in Eqs. (17) and (18), nor select and generate clusters with
CRP (Eqs. (10), (11) and (12)): all ξ(t) and ψ(t) are always
sampled from single default hyper parameters θ(0).

The second model (Individual) learns hyper parame-
ter θ(t) incrementally as described in the previous section

Figure 3. Example of synthetic movie data. Left: snapshot of ob-
servations. Each point denotes one observation. Right: ground
truth data. Colored points are target objects, and white are noise
data.

Table 2. Noise parameters used in generation of synthetic data

q Q R
I {3.0, 0.0}T diag{1.0, 1.0} diag{1.0, 3.0}
II {−3.0, 0.0}T diag{1.5, 1.5} diag{1.0, 2.0}
III {0.0, 3.0}T diag{0.5, 0.5} diag{2.0, 2.0}
IV {0.0,−10.0}T diag{1.0, 1.0} diag{0.5, 3.5}

(Eqs. (17) and (18)), but without clustering on zi(t). This
model represents more complicated time series data than
the first model by modeling each target object with its own
dynamics parameters: state trajectories of multiple objects
are governed by the multiple patterns of dynamics.

Finally, the proposed model (Clustered) is tested, which
has clustered dynamics and hyper parameter adaptations.
Compared to the second model, this model assumes a num-
ber of patterns in dynamics shared among multiple objects
and also that the dynamics of an object may change tem-
porarily.

4.2. Synthetic Data Experiment

We consider tracking and clustering moving mass points
in a [0 : 200]× [0 : 200] virtual 2D space. The hidden states
of the target objects are the 2D real-valued vectors repre-
senting the coordinates of the objects. The observations are
also 2D real-valued vectors and the collapsed coordinates
of the mass points. The observations include outputs from
a “noise target”, which is a false target. Each target object
obeys the following random walk model:

xi(t) = xi(t−1) + v(t), v(t) ∼ N (q, Q) (19)
yi(t) = xi(t) + w(t), w(t) ∼ N (r, R) . (20)

where N (·) denotes the normal distribution. In this experi-
ment, each object alters its dynamics by changing the noise
parameters selected among four patterns, which we present
in Table 2. In all patterns, r is the zero vector.

The initial hyper parameters of NIW distribution θ(0)
are selected so that the average of ξk(t) and ψk(t) takes the
following values: q = 0, Q = diag{10.0, 10.0}, r = 0,



Table 3. Time step wise average of data log-likelihood for syn-
thetic data and real movie data

Method π synthetic real 1 real 2
Single - −115.22 −95.62 −54.54

Individual - −107.85 −84.21 −51.94

Clustered

0.1 −96.68 −79.71 −50.30
0.2 −96.37 −80.93 −50.74
0.5 −103.66 −82.96 −51.86
1.0 −110.31 −83.93 −52.13
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R = diag{5.0, 5.0}. The length of the time series data is
300 steps. The number of particles is S = 300, and the CRP
concentration parameter is set to γ = 2. At every time step,
a new object is born with the probability of Pb = 0.1. Each
existing object (ci(t−1) = 1) is deleted based on Eq. (21)
with λ = 0.1. Let tn be the last time step when at least
one observation ym exists such that jm(·) = i. Then the
probability of the object deletion Pd is defined as follows:

Pd = 1−λet−tn . (21)

Now we analyze the results. The averaged data likeli-
hood at each time step is shown in the third column of Ta-
ble 3. This value measures how likely the obtained latent
variables (namely, a model) generates the observed data.
The table shows that dynamics parameter estimation and its
clustering improve the log likelihood. This means our pro-
posed model successfully finds better models and parame-
ters through on-line tracking and clustering.

Next we present the distribution of q in Fig. 4 at the last
time step (π = 0.2). q represents the averaged bias of the
target velocities. The analyzed data has four patterns in q,
as discussed earlier. Each plot corresponds to a dynamics
cluster, and the number of “size” is the data size of each
cluster: how many times the objects selected this dynam-
ics. Four dominant clusters acquire values nearly equal to
the designed ground truth. Namely, our model successfully
clustered the dynamics patterns and estimated their param-

eters.

4.3. Real Movie Data Experiment

Next we describe two experiments using two real movie
data. The task was to perform clustering and tracking
feature points emitted from pedestrians in movie frames
recorded by a common digital camera.

Figure 5. Snapshots from the movie data used in the real movie
data experiments. (a): used for the first experiment. (b): used for
the second experiment.

The movie data of the first real data experiment was
recorded at a shopping mall corridor (Fig. 5 (a)). The cam-
era was placed almost right above the pedestrians. The size
of each frame is 320 × 240 pixels. Basically, pedestrians
move in vertical directions (upward or downward), and oc-
casionally make turnarounds to enter shops.

Target feature points were extracted as follows. First,
the background subtraction was performed on all frames.
Second, pixels were binarized with thresholds to extract the
foreground pixels. Then, we extracted the black-colored
pixels and performed mean shift clustering on them at each
frame. Finally, obtained means were used as the observed
feature points. On average, each pedestrian corresponds to
one to three feature points at each frame.

In this experiment we utilized a color model [8] for data
association prior (Eq. (5)) instead of uniform distribution.
We computed an 8-bit RGB histogram around the feature
point. Data association prior was computed based on the
Bhattacharya coefficient between the histogram around the
feature point and the object’s histogram obtained at the pre-
vious time step.

The state-space model is identical with the previous syn-
thetic data experiment. The initial hyper parameters of
NIW distribution θ(0) are selected so that the average of
ξk(t) and ψk(t) takes the following values: q = 0, Q =
diag{20.0, 20.0}, r = 0 and R = diag{20.0, 20.0}. The
length of the time series data is 200 steps. 200 frames are
extracted from 1000 frames of 30 FPS-captured movie data.
The number of particles is S = 500, and CRP concentra-
tion parameter is set to γ = 0.1. The target birth probability
Pb = 0.1 and target death probability Pd is calculated by
Eq. (21) with λ = 0.1.

The second real movie data is a crowded walkway scene
(Fig. 5 (b)). The size of each frame is 640 × 480 pixels.



-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

W
id

th

Height

Clst 0 Size 508

Clst 1 Size 1196

Figure 6. Plot of mean values of system noise distribution at the
last frame of the first real movie data experiment

As in Fig. 5 (b), the viewpoint was set in lower angle of
elevation, and occlusions were observed frequently. We ob-
serve that there are roughly three patterns in the movements
of pedestrians: upward, downward and right-to-left move-
ments. Each of three patterns may be divided into subpat-
terns, reflecting different crash avoidance behaviors in the
crowded area.

Target feature points were extracted by employing HoG-
based human shape detector [4]. We processed all the cap-
tured frames with the detector program provided by the au-
thors. Obtained coordinates of the possible human locations
are input to the tracking systems.

The state-space model is identical with the previous ex-
periments. The initial hyper parameters of NIW distribu-
tion θ(0) are selected so that the average of ξk(t) and ψk(t)
takes the following values: q = 0, Q = diag{25.0, 25.0},
r = 0 and R = diag{10.0, 10.0}. The length of the time
series data is 300 steps that are extracted from 600 frames
of 15 FPS-captured movie data. The number of particles
is S = 1000, and CRP concentration parameter is set to
γ = 1.0. The target birth probability Pb = 0.1 and target
death probability Pd is calculated by Eq. (21) with λ = 0.1.

The two rightmost columns of Table 3 show the averaged
data likelihood for the real movie data experiments. As the
synthetic data experiment, our proposed model successfully
improved the data log likelihood.

Next we present the distribution of q in Fig. 6 for the
first real movie data, and Fig. 7 for the second real movie
data, respectively (π = 0.1). Since these experiments are
done on real-world data, we do not have the ground truth of
the number and the specifications of the dynamics. For the
first experiment (Fig. 6), we observe that the obtained two
dynamics clusters are well matched to the expected result.
For the second experiment (Fig. 7), the system generated
two clusters for each of three directions (upward, downward
and right-to-left). This result well matches to the expected
result: i.e. we have roughly three dynamics patterns and
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Figure 7. Plot of mean values of system noise distribution at the
last frame of the second real movie data experiment

each pattern is divided into smaller clusters so as to reflect
the complex behaviors.

Finally we present snapshots from the tracking results
in Fig. 8 for the first experiment and Fig. 9 for the second
real movie data experiment, respectively. In the figures, es-
timated object coordinates are denoted with rectangles. The
color of each rectangle denotes the target’s ID (i). Numbers
on the rectangles represent the indices of the pattern of dy-
namics (z) in Fig. 6 and Fig. 7. The results show that the
proposed model is able to identify hidden states of multiple
targets and estimate the unknown patterns of dynamics.

5. Conclusion

In this paper, we presented a novel on-line probabilis-
tic generative model that simultaneously deals with both
the clustering and the tracking of multiple moving objects.
We assume that time series data are generated from an un-
known number of hidden trajectories of target objects, each
of which is governed by an unknown number of different
dynamics parameters. Our model can infer the property of
a mixture model whose number of mixture components is
unknown through a nonparametric Bayes model with conju-
gate priors. The developed model can simultaneously learn
and infer the hidden states of each target object as well
as their patterns of dynamics and characteristics. Through
experiments with synthetic and real movie data, we con-
firmed that the proposed model successfully learned the hid-
den cluster patterns and obtained better tracking results than
conventional models without clustering.

In this paper, we modeled rather simple state-space
schemes. One possible extension of this work is to incorpo-
rate more complex models into the learning scheme, such
as object appearance or structure models.
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Figure 8. Tracking results of the first real movie experiment
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