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The problem of temporal localization and directional mapping of the dynamic interdependencies between
parts of a complex system is addressed. We present a technique that weights the sampled values so as to
minimize the mutual prediction error between pairs of measured signals. The reliability of the detected inter-
mittent causal interactions is maximized by �a� smoothing the weight landscape through regularization, and �b�
using a nonlinear �polynomial� variant of the conventional embedding vector. The effectiveness of the pro-
posed technique is demonstrated by studying three numerical examples of dynamically coupled chaotic maps
and by comparing it with two other measures of causal dependency.

DOI: 10.1103/PhysRevE.77.026216 PACS number�s�: 05.45.Tp, 02.50.Sk, 89.70.�a

The identification and quantification of hidden interdepen-
dencies between the parts of a complex system promotes a
deeper understanding of the system’s dynamics. One way of
tackling this important but challenging issue is by estimating
to what extent a number of carefully selected observables
�e.g., pairs of measured signals� are mutually predictive of
each other. Causality measures based on this idea have been
proposed which quantify the strength and the direction of the
causal interaction between bivariate time series �e.g., �1–9��.
The basic assumption underlying all these methods is that the
causal relationship does not change too rapidly over time.
Signals sampled from the real world, however, are rarely
stationary and well behaved, and couplings typically appear,
disappear, and reappear over time, becoming weaker or
growing stronger �e.g., causal interactions between the stock
market exchanges of Tokyo and New York�. Here, we ad-
dress the question of how to detect and localize the direction
of such temporally intermittent couplings, that is, of how to
detect the waxing and waning of causal interactions.

A naive approach is to repeatedly estimate causal relation-
ships within a moving data window of fixed size. In this
technique, the moving window slides across the data set in
increments of the data interval, and the causal analysis is
conducted using the samples contained in the window. The
major problem of this approach is how to find an appropriate
window size. Too wide a window decreases the temporal
resolution of the analysis; too narrow a window reduces the
statistical reliability. A less naive technique recently pro-
posed �10� relies on embeddings across multiple realizations
of time-dependent dynamics of a system. This technique is
quite powerful and can resolve causal relations based on only
200 samples, its major drawback being that it requires at
least a few tens of realizations of sample sequences, indepen-
dently generated from the analyzed system.

The purpose of this paper is to motivate and derive an
alternative method for measuring changes in the couplings
between interacting systems. To this end, we introduce the
notion of a causality marker: at each time step the causal
interaction is weighted based on its strength. For nonstation-
ary data sets, such weighting is unequal and changes over
time as a result of changes in the temporal causal relation
between the data. The concept of the causality marker is
general and potentially applicable to various existing meth-
ods used to detect causal structure �1,5,7,11�. In this paper,
we focus on its formulation in the context of Granger cau-
sality �4�.

For simplicity, we consider the bivariate case. Let X
= �x1 ,x2 , . . . ,xN� and Y = �y1 ,y2 , . . . ,yN� denote two simulta-
neously measured time series each consisting of N scalar
quantities. As in most previous approaches, we start by re-
constructing the state spaces corresponding to both time se-
ries by the method of time delay embedding, in which the
state �or embedding� vectors are formed by delayed past
scalar observations of the time series �12�. The embed-
ding vector of dimension m of X is xt

m,d

= �xt ,xt−d ,xt−2d , . . . ,xt−�m−1�d�T, where d is the time delay �or
lag� between successive elements of the vector. If not other-
wise stated, in this paper d=1, and we use the expression
xt= �xt ,xt−1 ,xt−2 , . . . ,xt−m+1�T. Similarly, we define yt. For the
choice of adequate values for m and d, we refer to �13,14�.

The notion of Granger causality between two time series
is based on the idea that the prediction of one time series
through linear autoregression can be improved by incorpo-
rating information about the past values of the other time
series. To estimate the causal effect of Y ⇒X �dependency of
X on Y�, the two following autoregression equations are
used:

xt+1 = �Txt + � + �t
�x�, �1�

xt+1 = aTxt + bTyt + p + �t
��x�y�, �2�

where the terms �, �, a, b, and p are determined so as to
minimize the variance of the prediction errors �t

�x� and �t
��x�y�,
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min
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��x�y� − ���x�y��2, �4�

with � denoting the time-averaged error. After calculating
the coefficients, we can express the Granger causality as

CY⇒X = 1 −
var��t

��x�y��
var��t

�x��
= 1 −

�
t

��t
��x�y� − ���x�y��2

�
t

��t
�x� − ��x��2

.

Intuitively, the larger CY⇒X the more X is causally dependent
on Y. The dependence in the opposite direction, CX⇒Y, can
be defined in a similar way.

The idea of the causality marker is based on the assump-
tion that, for improving the detection of causal relationships,
the analysis should place more emphasis �weight� on observ-
ables having a larger causal influence on other observables.
This weight, called the causality marker, should be large if a
causal dependency exists, but should take a small value oth-
erwise. In other words, causality markers indicate �“mark”�
the locations of potential causal relationships.

Given two bivariate time series X and Y consisting of
N samples, we define as causality markers the two
N-dimensional weight vectors WX⇒Y = �wt

x→y� and WY⇒X

= �wt
y→x� for which �twt

x→y =�twt
y→x=N, wt

x→y �0, and
wt

y→x�0. Using these weight vectors, we can reformulate
Eqs. �3� and �4� as

min
�,�

1

N�
t

wt
y→x��t

�x� − ��x��2, �5�

min
a,b,p

1

N�
t

wt
y→x��t

��x�y� − ���x�y��2. �6�

What one seeks are two sets of weights �wt
x→y� and �wt

y→x�
that maximize CX⇒Y and CY⇒X. These weights can be calcu-
lated by substituting the results of Eqs. �5� and �6� in the
following “weighted” Granger causality measure:

max
WY⇒X

CY⇒X = max
WY⇒X	1 −

�
t

wt
y→x��t

��x�y� − �t
��x�y��2

�
t

wt
y→x��t

�x� − �t
�x��2 
 . �7�

Analogous expressions exist for CX⇒Y and WX⇒Y.
Although this maximization problem cannot be solved

analytically, it is possible to analytically derive the partial
derivatives of C with respect to W, and numerically deter-
mine the local maximum through the method of steepest de-
scent.

Our method has several interesting properties. First, it
does not rely on parameters such as window size or the
amount of overlap between adjacent windows, as is the case
for the moving window technique. Second, the number of
processed samples is not limited to the ones contained in a

particular window centered at a specific time step. The ab-
sence of windowing enables us to avoid the dilemma be-
tween statistical reliability and granularity of analysis caused
by an inadequate window size.

One major drawback of the analysis based on causality
markers is the irregularities �roughness� originating from the
application of the steepest descent algorithm �which com-
putes a gradient�. The causality marker is calculated locally
based on the improvement of the regression at each time
step, making the estimation dependent on the quality of the
observed values. This property is not desirable if the method
is applied to data sampled from chaotic systems, which in the
general case can display rather complex dynamics, or to data
collected from real world systems, which are typically con-
taminated by noise or inconsistencies. An interesting denois-
ing technique for noisy bivariate data sets relying on Kalman
filtering was recently proposed in �15�. This technique, how-
ever, assumes that the time series are generated from a sys-
tem with stationary dynamics, and not characterized by tem-
porally intermittent couplings.

We cope with both issues by penalizing Eq. �7� with a
regularization term

max
WY⇒X	CY⇒X + �

1
N�

t

�wt
y→x − w̄�2

1
N�

t

�2�t� 
 , �8�

where

�2�t� =
1

2l + 1 �
i=−l

l �wt+i
y→x −

1

2l + 1 �
j=−l

l

wt+j
y→x�2

,

w̄ is the average of the causality markers over all time steps,
��0 controls the effectiveness of the regularizing second
term, and l is the size of the window used to calculate the
“local” variance �2�t� �in all our experiments, l=2�. To maxi-
mize Eq. �8�, it is necessary to maximize CY⇒X as well as its
second term. To achieve this, the denominator �2�t� should
be small and the numerator �“global” variance� should be
large. By satisfying these two requirements, the causality
marker is “smoothed” and the difference of coupling strength
between the weakly and strongly causally related periods is
widened, keeping the global variance large. In this paper, we
optimize � to yield the best results in our experiments. There
is no decisive approach, however, for the choice of � if no
validation information is provided.

To more effectively handle data with nonlinear dynamics,
we use a polynomial embedding vector �PEV� �11,16�. The
PEV consists of the polynomial combinations of the mono-
mial components of xt, namely, x̃t�i , j ,R�=k=i

j xt−k
Rk , where 0

� i� j	m, Rk�0, and 1��k=i
j Rk�R. By arranging all

x̃t�i , j ,R� in an array, we can define the PEV as
x̃t� �xt , . . . ,xt−m+1 ,xt

2 ,xtxt−1 , . . . ,xt−m+1
R �T. We define ỹt analo-

gously. PEV-based Granger causality �PEVGC� extends
Granger causality by replacing xt with x̃t and yt with ỹt in
Eqs. �1� and �2�. Instead of xt and yt, in Eq. �2� we can also
employ a joint-state PEV z̃t, derived from zt= �xt

Tyt
T�T. Such a

joint-state PEV has been recently applied to the analysis of
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the dynamics of climatic modes �16�. Selecting R is also not
an easy problem, but in general a small value of R �0–3� is
sufficient and preferable. There are two reasons for choosing
a smaller value of R: one is that higher-order correlations are
not effective for regression in many cases because of the
volatility, and the other is that larger R reduces computa-
tional efficiency exponentially.

To illustrate the performance of the proposed technique,
we analyzed the bivariate time series extracted from three
dynamical systems and compared the results with two other
approaches: �i� a combination of a moving window analysis
and naive �linear� Granger causality; �ii� a combination of a
moving window analysis and PEVGC. In what follows, we
will show that the causality-marker-based method outper-
forms the other two.

The first system of interest was composed of two bidirec-
tionally coupled identical Hénon maps

xt+1 = 1.4 − �eyxyt + �1 − eyx�xt�xt + 0.3xt−1,

yt+1 = 1.4 − �exyxt + �1 − exy�yt�yt + 0.3yt−1,

where exy and eyx denote the coupling strengths of xt on yt
and yt on xt, respectively. After discarding 104 samples as
transients, we collected N=1500 samples while the coupling
strengths were altered according to Table I. Due to the sud-
den changes of the coupling constants, the extracted bivariate
data were rendered manifestly nonstationary. The embedding
dimension m and order R of the PEV were optimized in
sample to yield the best result, and were set to m=3 and R
=2, respectively. All causality markers were initialized to 1,
and the steepest descent algorithm maximizing CX⇒Y and
CY⇒X was iterated 20 times to yield the estimated couplings
between the time series. To eliminate edge effects, we cut off
the last few causality marker values. We show the results in
Fig. 1. As shown in Figs. 1�e� and 1�f�, the regularized cau-
sality markers are sufficiently similar to the expected ones
�Figs. 1�a� and 1�b��. The smoothing effect of the regulariza-
tion term is also noteworthy.

For a comparison, we present the results of a moving
window analysis with naive and PEV Granger causality. To
estimate the amount of causal interaction, a moving window
of 300 samples was slid across the time axis one time step at
a time, and the causality measures were evaluated for every
window. The estimated couplings are shown in Fig. 2. As
evident from the figures, each method �Figs. 2�c� and 2�d�
for naive Granger causality, and Figs. 2�e� and 2�f� for PE-
VGC� fails to detect the X⇒Y couplings in the interval
t=600–900. The limited sample size makes true directional
coupling Y ⇒X difficult to estimate. We can also observe

TABLE I. Coupling strength parameters for artificial data
sets.

Time step Hénon Sine-based

eyx exy eyx exy

0–300 0.0 0.0 0.0 0.0

300–600 0.0 0.5 0.0 0.7

600–900 0.5 0.5 0.7 0.0

900–1200 0.0 0.0 0.0 0.0

1200–1500 0.0 0.25 0.35 0.7

5

FIG. 1. Expected �true� and estimated coupling directions �cau-
sality markers� for coupled Hénon maps. The horizontal axis de-
notes time; the vertical axis represents the value of the markers
WX⇒Y �left� and WY⇒X �right�. The dotted lines represent the thresh-
old values. �a�,�b� Expected �true� coupling: �a� X⇒Y and �b�
Y⇒X. �c�,�d� Estimated coupling without regularization ��=0.0�:
�c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated coupling with regulariza-
tion ��=10.0�: �e� X⇒Y and �f� Y ⇒X.

C
C

5

FIG. 2. Moving window analysis of temporal causality measures
for coupled Hénon maps. The horizontal axis denotes time; the
vertical axis represents the value of the measures CX⇒Y �left� and
CY⇒X �right�. The dotted lines represent the threshold values. �a�,�b�
Expected �true� coupling borrowed from Fig. 1: �a� X⇒Y and �b�
Y ⇒X. �c�,�d� Estimated causality measures with naive Granger
causality: �c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated causality mea-
sures with PEVGC: �e� X⇒Y and �f� Y ⇒X.
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that, by contrast with the causality-marker-based method, the
other two measures are characterized by more gentle trends.

In our second numerical experiment, we studied a sine-
based chaotic map

xt+1 = 1.7 − 0.4xt
2 + 1.1 sin�xt−1 − eyxyt−1� ,

yt+1 = 1.7 − 0.4yt
2 + 1.1 sin�yt−1 − exyxt−1� .

All parameters were the same as in the previous experiment,
except for the coupling strengths �Table I� and the PEV order
�R=3�. The coupling constants �exy and eyx� were varied ac-
cording to the pattern shown in Figs. 3�a� and 3�b�. As can be
observed in Fig. 3, despite the peakiness of the curves, the
causal dependency between the two maps is well reflected
for the X⇒Y relationship �Figs. 3�c� and 3�e��. For the case
of Y ⇒X �Figs. 3�d� and 3�f��, the calculated causality mark-
ers for t=1200–1500 are relatively small. It is known that
for this map for e	0.5 the detection of the coupling is non-
trivial �11�.

As in the previous experiment, here also we present the
results of a moving window analysis with naive and PEV
Granger causality. The width of the moving window was 300
samples. The estimated coupling constants are shown in Fig.
4. As evident from the figure, the obtained causality mea-
sures are less similar to the true coupling status.

In our third experiment, we tested the proposed causality
marker with time series extracted from a genetic regulatory
network model �17�. The studied network is depicted in Fig.
5. The network has several nodes �“genes”� linked by
weighted connections. The connections are directional and

TABLE II. Coupling strength parameters for gene regulatory
network data.

Time step Y →X�Hxy� X→Y�Hyx�

0–200 −0.15 0.1

200–400 0.0 0.1

400–600 −0.15 0.0

600–800 0.0 0.0

800–1000 −0.15 0.1

FIG. 3. Expected �true� and estimated coupling directions �cau-
sality markers� for coupled sine-based chaotic maps. The horizontal
axis denotes time; the vertical axis represents the value of the mark-
ers WX⇒Y �left� and WY⇒X �right�. The dotted lines represent the
threshold values. �a�,�b� Expected �true� coupling: �a� X⇒Y and �b�
Y ⇒X. �c�,�d� Estimated coupling without regularization ��=0.0�:
�c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated coupling with regulariza-
tion ��=10.0�: �e� X⇒Y and �f� Y ⇒X.

C

(c)

C

FIG. 4. Moving window analysis of temporal causality measures
for sine-based chaotic maps. The horizontal axis denotes time; the
vertical axis represents the value of the measures CX⇒Y �left� and
CY⇒X �right�. The dotted lines represent the threshold values. �a�,�b�
Expected �true� coupling borrowed from Fig. 3: �a� X⇒Y and �b�
Y ⇒X. �c�,�d� Estimated causality measures with naive Granger
causality: �c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated causality mea-
sures with PEVGC: �e� X⇒Y and �f� Y ⇒X.

Activation

Repression

0.1-0.05

-0.2

-0.05 -0.01

X

Y

A

B C D

-0.15

Controlled

FIG. 5. Studied gene regulatory network structure. The network
consists of six nodes; the time series are extracted from nodes X and
Y. The numbers labeling the lines are the strength of excitory �
0�
or inhibitory �	0� connections.
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have weights as shown in the figure. All the connections are
inhibitory except the one between the nodes A and C, which
is excitatory. Specifically, in our experiments we controlled
two connection weights to realize temporal changes in the
causal relationships between the nodes X and Y. The connec-
tion weight between the nodes Y and X can be understood as

the strength of the Y ⇒X causal relation; whereas the one
between the nodes A and C is used as an indicator of the
X⇒Y causal relationship. The X⇒Y link between A and C
does not directly connect X and Y. We thus assume that the
causal relationship in the X⇒Y direction is more difficult to
detect.

The expression levels of all M nodes composing the net-
work are described as �17� gt+1=gt+H�gt−��+�, where gt

i is
the expression level of the ith gene, H is a connectivity
strength matrix whose elements are zero except for the des-
ignated connections in Fig. 5, � is a constant vector whose
elements are all set to 50, and � is a uniform noise drawn
from �−10,10�. A ceiling function is used to truncate the
values of gt

i at 0 for the lowest and 100 for the largest, yield-
ing signals with highly nonlinear properties. We collected
gene expression values for 1000 time steps, and estimated
the causal relationship between the nodes X and Y. The cou-
pling strengths Hxy and Hyx are presented in Table II. We
selected the embedding dimension m=2 and R=3. Experi-
mental results are presented in Fig. 6 for the causality marker

TABLE III. Misclassification rates for Hénon map data set.

Method X⇒Y Y ⇒X

Moving window+naive GC 0.2127 0.2487

Moving window+PEVGC 0.2300 0.1767

Causality marker+PEVGC 0.0227 0.0647

FIG. 6. Expected �true� and estimated coupling directions �cau-
sality markers� for gene regulatory network data. The horizontal
axis denotes time; the vertical axis represents the value of the mark-
ers: WX⇒Y �left� and WY⇒X �right�. The dotted lines represent the
threshold values. �a�,�b� Expected �true� coupling: �a� X⇒Y and �b�
Y ⇒X. �c�,�d� Estimated coupling without regularization ��=0.0�:
�c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated coupling with regulariza-
tion ��=10.0�: �e� X⇒Y and �f� Y ⇒X.

C
C

FIG. 7. Moving window analysis of temporal causality measures
for gene regulatory network data. The horizontal axis denotes time;
the vertical axis represents the value of the measures CX⇒Y �left�
and CY⇒X �right�. The dotted lines represent the threshold values.
�a�,�b� Expected �true� coupling borrowed from Fig. 6: �a� X⇒Y
and �b� Y ⇒X. �c�,�d� Estimated causality measures with naive
Granger causality: �c� X⇒Y and �d� Y ⇒X. �e�,�f� Estimated cau-
sality measures with PEVGC: �e� X⇒Y and �f� Y ⇒X.

FIG. 8. Binary classified causality markers. Solid lines denote

the classification results of expected causality markers ŴX⇒Y �left�
and ŴY⇒X �right�. Dashed lines represent the classification results

of estimated causality markers W̃X⇒Y �left� and W̃Y⇒X �right�.
�a�,�b� Results of analysis on Hénon map data ��=10.0�: �a� X⇒Y
and �b� Y ⇒X. �c�,�d� Results of analysis on sine-based chaotic map
data ��=10.0�: �c� X⇒Y and �d� Y ⇒X. �e�,�f� Results of analysis
on gene regulatory network data ��=10.0�: �e� X⇒Y and �f� Y ⇒X.
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based approach and in Fig. 7 for the moving window analy-
sis with a window size of 200 samples. The detection of the
X⇒Y coupling is difficult and fails for all methods. How-
ever, the causality marker performs better in estimating the
Y ⇒X causal relationship than the moving window method.

To obtain a better estimate of the coupling direction, the
resulting causality markers �Figs. 1�e�, 1�f�, 3�e�, 3�f�, 6�e�,
and 6�f�� were partitioned into two classes by applying the
following classification rule �thresholded with the average
value of wt�:

wt ⇒ �w̃t = 1 if wt � 1 �causally related� ,

w̃t = 0 if wt 	 1 �causally unrelated� .
� �9�

By comparing the classification results W̃X⇒Y and W̃Y⇒X with
the classification results of the expected causality markers
�Figs. 1�a�, 1�b�, 3�a�, 3�b�, 6�a�, and 6�b��, we can compute
the misclassification rate with P=�t�w̃t− ŵt� /N where ŵt is
the “true” classification result, and N is the number of
samples. The classified causality markers for all data sets are
shown in Fig. 8 and the misclassification rates are repro-
duced in Tables III–V. The misclassification rates for the
moving window analysis are calculated analogously. At each
time step �window�, the computed causality measure is
thresholded by the average of causality measures of all the
windows. The comparison with the moving window analysis
reveals that the misclassificaation rates of causality markers
are quite satisfactory.

In conclusion, we addressed an important issue in the con-
text of complex dynamical systems analysis, that is, the as-
sessment of dynamic interdependencies between the con-
stituent parts of a complex system based on measured
variables. To automatically localize and map the direction of
such dependencies, we proposed the notion of causality
marker, which evaluates the strength of the causal relation-
ship at every time step rather than an average throughout all
time steps. The advantages of our approach are twofold: �a�
it is bottom up, that is, there is no need for a priori assump-
tions on the analyzed data or on the employed causality mea-
sure; �b� it can be easily applied to all nonlinear extensions
of Granger causality—at least to the ones known to the au-
thors �1,7,11,18�. Our experimental results show that our
method in combination with nonlinear extended Granger
causality and a simple classifier is able to detect changes in
the coupling between two interacting system with a high
temporal resolution. As one of the directions for further
study, we mention a formulation of the causality marker ap-
plicable to other measures of causal dependency, such as
probabilistic and information-theoretic approaches �e.g., �6��.
We point out that, in contrast to the iterative �batch� calcula-
tions of the steepest descent, an incremental variant of the
causality marker algorithm might be particularly beneficial
for very long time series data. We finally note that large-
dimensional or continuous-time problems remain an open
issue, and that our experiments serve only the purpose of
demonstrating the potential of the proposed method.
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