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ABSTRACT

We present a probabilistic speaker clustering and diarization
model. Speaker diarization determines “who spoke when” from
the recorded conversation of unknown number of people. We for-
mulate this problem as the clustering of sequential auditory fea-
tures generated by an unknown number of latent mixture compo-
nents (speakers). We employ a probabilistic model which automat-
ically estimates the number of speakers and time-varying speaker
proportions. Experiments with synthetic and real sound recordings
confirm that the proposed model can successfully infer the number
and features of speakers and obtained better speaker diarization re-
sults than conventional models.

Index Terms— Probabilistic clustering, speaker diarization,
direction of arrival, variational Bayes

1. INTRODUCTION

Speaker diarization, i.e. estimating “who spoke when”, is one of
key technologies for meeting recognition from audio recordings
(e.g. [1]). Speaker diarization is useful for, among other functions,
the auto-annotation of minutes, speech signal enhancements and
human-computer interfaces.

A speaker diarization system first estimates the number of
speakers and their classification characteristics. After that, the sys-
tem classifies the recorded signals into speaker-wise speech signal
fragments based on the estimated speaker information.

The main topic of the speaker diarization is speaker cluster-
ing: clustering of the auditory features into an unknown number of
clusters (speakers). We also note that on-line (incremental) clus-
tering is necessary for real-system application [2]. We measure
the time difference in sound signal arrival to the microphone array.
Given this TDOA (time difference of arrival) feature and the mi-
crophone array geometry, we compute DOA (direction of arrival)
features to estimate speaker location. TDOA and DOA features
have been proven to be useful in speaker clustering and diariza-
tion tasks [2, 3]. DOA-based diarization requires that the speakers
do not move during the conversation, but it is robust against voice
overlapping and this is highly desirable for speaker diarization in
meeting situations.

In this paper, we introduce a new probabilistic model called
dLDA for speaker clustering and diarization. Our proposed model
estimates the number of speakers attending the conversation by
clustering DOA features. In addition, the model formulates time-
varying speaker proportions as a simple Markov model, depend-
ing on the previous time frame. Experiments on synthetic and
real-world recording data show that the proposed model is more
effective than conventional models.

2. SYSTEM OVERVIEW AND RELATED WORKS
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Figure 1: Diarization system overview

Fig. 1 overviews a typical DOA-based speaker diarization sys-
tem. A sound recording of the conversations by an unknown num-
ber of speakers is given to the system as a sequence of time frames.
We then extract features for speaker clustering from the sequence
of frames.

In our model, we combine two feature extractors (preproces-
sors). The first one, called VAD (voice activity detector) [4], com-
putes the probability of the frame containing (any) voices. If this
probability is low, the frame is assumed to be a noise frame, i.e.
an environmental noise, and is excluded from further processes.
The second and main extractor is DOA (direction of arrival). We
utilize the DOA extractor proposed in [5]. This feature extrac-
tor estimates i) the direction (angle) of the sound source from a
microphone array and ii) the power of the sound heard from that
direction. We expect that many high-power vocal signals will be
emitted from the locations of the speakers.

Given the sequence of DOA features (power-orientation fea-
tures from frames), the clustering processor infers the number and
the locations of the speakers. In the last step, the classification pro-
cessor determines the utterance status of each speaker at each time
based on the clustering results.

As discussed earlier, the clustering is the most difficult and
challenging part. We briefly review the clustering techniques used
in the previous models and clarify their problems.

In [2], the authors proposed a real-time and on-line diarization
system based on DOA features. They employed a simple on-line
clustering technique called leader-follower clustering [6]. This al-
gorithm is simple and fast to compute, but has an apparent draw-
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back that the clustering result strongly depends on a time indepen-
dent threshold that is difficult to optimize a priori.

In [3] Bayesian Information Criteria (BIC) is used to find the
optimal number of clusters. The algorithm finds the optimal num-
ber by comparing the BIC scores before and after merging any
two clusters. It requires the computation of BIC improvements for
every possible merge, thus the computational load increases expo-
nentially.

One of the most popular clustering models is Gaussian mix-
ture model (GMM). However a simple GMM, where each Gaus-
sian with parameter θ corresponds to a speaker, cannot deal with
dynamics of time series. It assumes and estimates a time-invariant
mixture model G0(θ) =

∑K
k=1 βkδθk (θ) where βk denotes the mixing

ratio, θk a parameter of the cluster k, and δθk a delta function peaked
at θk, respectively. However, the actual distribution at each time
frame is time varying because of “turn-takings” i.e. the number of
speakers who produce speech at time t is not constant. Suppose we
have a conversation of THREE speakers, and at time t only ONE
speaker speaks. The distribution at t is apparently different from
the time-invariant distribution which generates THREE speakers’
observations.

3. PROPOSED MODEL

3.1. Preprocessing

We assume meeting situations where the speakers remained seated
around a table, i.e. do not move during the meeting. We put an
array of three microphones on the table and represent the locations
of the speakers by angles from a reference line. DOA features are
D = 360 dimensional power vector ft =

(
ft,−179, . . . , ft,180

)
. Each

ft,d denotes the estimated signal power from the direction (angle)
d[deg] at a time t.

To meet the model description, we convert this DOA feature
ft to a set of discrete samples xt = {xti ∈ R1}. From each d ∈
{−179, . . . , 180}, multiple samples xti = d are reproduced. The
number of samples ntd is proportional to ft,d. Going through this
converting step from d = −179 to d = 180, we have xt = {xti}
containing nt =

∑
d ntd samples. The distribution of xti reflects the

power-orientation distribution at time t. Because human voices
have large power (large ft,d), a sample concentration indicates a
location of a speaker. Therefore we can estimate the locations the
speakers by clustering samples.

Speaker clustering is understood as the on-line clustering of
sample set {x1, . . . , xt}. We expect xti are partitioned into clusters.
Each cluster corresponds to a speaker, and has latent parameter θ
representing the location of the speaker. Samples xti are generated
from observation function F(θ). We would like to infer the number
of speakers, and their locations, and partition the sound fragments.
This is equivalent to finding the optimal number of clusters, their
parameters θ, and the assignment of xti to the clusters.

3.2. Dynamic LDA model: idea

In this paper, we adopt a new probabilistic model called dynamic
Latent Dirichlet Allocation (dLDA). The dLDA model not only
infers the number of clusters (speakers), but also flexibly deals
with the time evolution of the parameter (sample) distributions.
The unique point of dLDA is that it has a Markov property between
the distributions of two consecutive time frames. This property is

described as follows:

Ht =

K∑
k=1

πtkδθk (1)

wt,1 | a0, b0 ∼ Beta (a0, b0) , w1 = 1 (2)

Gt = (1 − wt) Gt−1 + wtHt =

K∑
k=1

βtkδθk . (3)

Gt is a mixture which represents who actually produces speeches
at the time frame t. As in (3), Gt is constructed as a linear inter-
polation of the previous distribution Gt−1 and a newly introduced
distribution (innovation measure) Ht, which is responsible for the
change in the sample distribution between t−1 and t. It is worth
noting that wt, an interpolation factor, is a probabilistic variable
sampled from Beta distribution (2) and that by regulating wt the
dLDA model can handle an irregular distribution changes, ranging
from small to significant changes.

It is beneficial to consider two extreme cases as follows. If we
set wt = 0 for all t, then all Gt is equivalent to G0 and the dLDA
model is reduced to the simple GMM [7]. On the other hand, set-
ting wt = 1 for all t makes all the time frames independent from
each other. In this case, we recover the latent Dirichlet allocation
(LDA) model [8], which is popular in machine learning commu-
nity. The dLDA is a natural extension of GMM and LDA.

3.3. Dynamic LDA model: the generative model

The generative model of dLDA is shown below.

θk |H ∼ H k = 1, . . . ,K (4)

πt |α0 ∼ Dirichlet
(
α0

K
,
α0

K
, · · · , α0

K

)
(5)

wt,1 | a0, b0 ∼ Beta (a0, b0) , w1 = 1 (6)

vtl = wl

t∏
m=l+1

(1 − wm) (7)

dti | vt ∼ Multinomial (vt) (8)

zti | dti, πt ∼ Multinomial
(
πdti

)
(9)

xti | zti, θk ∼ F
(
θzti

)
(10)

In (4) we sample K parameters for clusters. As discussed, we
assume each cluster corresponds to a speaker, and its parameter
represents the speaker location. The dLDA puts a Dirichlet prior
on the mixing ratio of K. If we set K large enough, we will have an
appropriate number of “effective” clusters that have a large mixing
ratio, and the mixing ratios of the other clusters will become “neg-
ligibly” small. i.e. the number of “effective” clusters (speakers)
and their mixing ratios are automatically estimated.

Ht is generated from Dirichlet as in (5), and Gt is represented
as the weighted sum of Ht. From (3) it is easy to see that

Gt =

t∑
l=1

 t∏
m=l+1

(1 − wm)

wlHl ,
t∑

l=1

vtlHl. (11)

Rather than considering the temporal mixing ratio βtk directly, it is
easier to work on vt for inference. Next, we sample the interpola-
tion factor wt (6) and compute vtl (l = 1, . . . , t) as in (7).

As in (11), Gt is a mixture of Hl with the mixing ratio vt. We
pick an innovation measure index dti = l, meaning that innovation

242



2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 18-21, 2009, New Paltz, NY

measure Hl generates xti (8). Using πdti , we pick a cluster index
zti = k meaning the cluster with parameter θk is responsible for
generating xti. In other words, zti is an index of the speaker that
produces the sound heard from the direction of xti at time t (9).
This model can represent voice overlapping situations naturally
because each zti may take a different value independently.

Finally, xti is sampled from the observation distribution (func-
tion) F with picked parameter θk. We assume F is a one dimen-
sional Gaussian (14). To maintain conjugacy, we use a Normal-
Gamma distribution for the prior of parameter (15).

Please note that dLDA can be extended to dynamic Hierarchi-
cal Dirichlet Process (dHDP) [9] as the limit of K → ∞, where the
finite Dirichlet prior is replaced by an infinite stick-breaking prior.
However, it is difficult to derive VB inference algorithm for dHDP.
[10] proposes a VB inference solution for finite approximated ver-
sion of dHDP, but their model is in fact dLDA.

Another closely related model is recently proposed by Fox and
others [11]. The model formulates the infinite number of speakers
and time-dependent turn-takings in a form of extended HMM. The
main difference from our model is that their model does not allow
overlaps of speakers.

3.4. On-line VB inference

There are two major approaches to solve the probabilistic model.
One is Gibbs sampling that is accurate but slow in terms of con-
vergence, and the other is variational Bayes (VB) that is fast but
may be trapped in a locally optimal solution. We prefer the VB
inference for on-line speaker diarization system.

In this paper, we develop an on-line and incremental inference
by VB for dLDA. VB computes the variational (approximated)
posterior q (·) of the hidden variables and parameters ( (16-20) in
the appendix). VB iteratively computes i) the posterior parameters
of hidden variables (rtik and stil) and ii) sufficient statistics.

We describe how to estimate the mixing ratios and the number
of speakers. First, we compute the expected number of samples
assigned to the cluster (= a speaker) k at time t as

‖zt,k‖ =
nt∑

i=1

rtik. (12)

Second, using ‖zt,k‖ we determine the posterior estimates of tem-
poral mixing ratios β̂tk and global mixing ratio β̂k as follows:

β̂tk =
‖zt,k‖∑K

k=1 ‖zt,k‖
, β̂k =

∑
t ‖zt,k‖∑K

k=1
∑

t ‖zt,k‖
. (13)

We count the number of “effective clusters” (speakers) as those
that have mixing ratio β̂k larger than chance level 1

K . In many
cases, the mixing ratio of other minor clusters are negligibly small.

4. EXPERIMENTS

4.1. Data Sets

The simulated data has 422 frames with 64 [msec] intervals, ex-
cluding no-speech periods based on VAD. We merged five con-
secutive frames into a larger frame in order to stabilize the distri-
butions of xti within a time frame. Hereafter index t refers to the
time index after the merge, and T = 82. This data simulated the
conversation by three people with speaker overlaps.

We used four data sets of the real recordings gathered in [2].
Their specifications are shown in Table 1. Each data set is a 300

Table 1: Specification of the real recording data sets
Data # Speaker Overlap [%] # Turn taking # Utterance
CP1 4 18.6 149 185
CP2 4 13.0 183 218
DC 3 10.8 126 172
CN 3 34.8 243 278
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Figure 2: Clustering results on the CP1 real record data set (four
speakers). Vertical axis denotes the probability density, and the
horizontal axis denotes the normalized angle (location). Left: clus-
tering results by LDA. Right: clustering results by dLDA.

[sec] long recording, and was sampled at 32 [msec] intervals. We
merged 10 consecutive frames into a single frame, yielding four
sequences of T = 938.

4.2. Experiment on speaker clustering

In this experiment, we tested the performance of dLDA with regard
to the speaker clustering tasks, and compared it against the GMM
and the LDA models. The GMM and LDA are simulated by setting
all wt as wt ≈ 0 or wt ≈ 1, respectively. After the on-line clustering
of the record data up to the last time frame T , we examined the
resultant number of clusters and their parameters.

We present the part of clustering results in Fig. 2 and Fig. 3. As
you can see, dLDA clustering obtained better results than GMM
and LDA models. We assume that this difference comes from the
ability to model the intermittent changes of speaker (cluster) dis-
tributions. The dLDA model could not achieve perfect clustering
with the DC and CN datasets: the model produced extra clus-
ters corresponding to noise inputs. However those “noise” clus-
ters had smaller mixing ratios than the those of “speaker” clusters.
Therefore we can still improve the clustering of dLDA by carefully
studying the threshold (β̂k >

1
K ).

4.3. Experiment on speaker diarization precision

Next, we evaluated the classification performance to verify the en-
tire diarization system (Fig. 1). We employ the DER (diarization
error ratio) measure [12] for the evaluations. DER is a percentage
of the error time length in the total sound recording length.

We test a simple classification rule based on the posterior of
sample assignments zti to estimate each speaker’s diarization ac-
tivity (speaks or not).

k speaks at t if ‖zt,k‖ > τ1 & β̂tk > τ2

k does not speak at t otherwise

τ1, τ2 are predefined thresholds. This simple classification rule is
based on the one used in [2], and effectively suppress the “noise”
clusters estimated in CN and DC datasets (Fig. 4).
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Figure 3: Clustering results on the CN real record data set (three
speakers). Vertical axis denotes the probability density, and the
horizontal axis denotes the normalized angle (location). Left: clus-
tering results by GMM. Right: clustering results by dLDA.

Table 2: DER measures (%) achieved in diarization experiments
Method Simulate CP1 CP2 DC CN
[2] 7.1 21.9 25.0 29.9 34.3
dLDA(proposed) 6.7 21.6 22.3 27.0 30.9

Table 2 presents the computed DER measures; the DER val-
ues reported in [2] are shown for comparison. It is clear that the
proposed model basically outperforms the previous method. We
note that DERs of the GMM and the LDA models are much worse
than those of dLDA (results not shown).

5. CONCLUSION

In this paper, we proposed a new probabilistic model for speaker
diarization tasks. We employ dynamic LDA (dLDA) model for
speaker clustering. The dLDA model automatically infer the
number of clusters and data partitioning, and is able to handle
time varying cluster distributions. We developed an on-line infer-
ence algorithm, and experimentally confirmed the improvements
in DER performance yielded by the dLDA model.

A. MODELS AND VB POSTERIORS

The observation function F and the parameter prior H are:

xi ∼ N
(
·; m, σ2

)
, (14)

p
(
m, σ−2

)
= NormalGamma (µ0, β0, c0, d0) . (15)
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Figure 4: Diarization results on the DC real record data set (best
viewed in color). The horizontal axis denotes the actual time. Left:
ground truth. Right: diarization results after dLDA clustering.

VB posteriors are defined as follows:

q∗ (θk) = NormalGamma (µ1, β1, c1, d1) , (16)

q∗ (πt) = Dirichlet(
α0

K
+

T∑
m=t

nm∑
i=1

rmi1 smit , . . . ,

α0

K
+

T∑
m=t

nm∑
i=1

rmik smit , . . . ,
α0

K
+

T∑
m=t

nm∑
i=1

rmiK smit , ), (17)

q∗ (wt) = Beta

a0 +

nt∑
i=1

stit , b0 +

nt∑
i=1

t−1∑
m=1

stim

 , (18)

q∗ (dti) = Multinomial (sti1, . . . , stil, . . . , stit) , (19)
q∗ (zti) = Multinomial (rti1, . . . , rtik , . . . , rtiK ) . (20)

Parameters of the hidden variables’ posteriors (s, r) are computed
via EM algorithms. Required suffiient statistics are:

µ1 =
β0µ0 + Nk x̃k

β0 + Nk
, β1 = β0 + Nk,

c1 = c0 +
Nk

2
, d1 = d0 +

S̃
2
+
β0Nk

β0 + Nk

(x̃k − µ0)2

2
,

Nk =

T∑
t=1

nt∑
i=1

rtik , x̃k =
1

Nk

T∑
t=1

nt∑
i=1

rtik xti, S̃ k =

T∑
t=1

nt∑
i=1

rtik (xti − x̃k)2 .
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