Supplemental material for "Multi-class Boosting for Early Classification of Sequences"

Katsuhiko Ishiguro ishiguro@cslab.kecl.ntt.co.jp Hiroshi Sawada sawada@cslab.kecl.ntt.co.jp Hitoshi Sakano keen@cslab.kecl.ntt.co.jp NTT Communication Science Laboratories NTT Corporation Kyoto, 610-0237, Japan

Abstract

In this material, we present the derivation of Earlyboost [3] and the proposed Earlyboost.MH in the standard exponential loss approach [1].

1 Notations

We follow the original notations declared in the paper, but we describe the notations at the head of each section for readers help.

2 Earlyboost

First, we derive the update equations of Earlyboost [3], which first appears in the literature for the best of our knowledge.

Let us denote that *i*-th sequence \mathbf{x}_i has a number of time frame elements $x_{i,t}$: i.e. $\mathbf{x}_i = \{x_{i,t} \in \mathbb{R}^d\}, t = 1, 2, ..., T$. The number of sequences is N: thus $i \in \{1, 2, ..., N\}$. T is a length of time sequences, and $t \in \{1, 2, ..., T\}$ is the time index. $y_i \in \{1, -1\}$ is a class label attached to \mathbf{x}_i . The training data set is denoted by $\mathcal{D} = \{\mathbf{x}_i, y_i\}$.

First let us define the strong classifier *H*:

$$H(\mathbf{x}_i) = \sum_{t=1}^{T} \alpha_t h_t(x_{i,t})$$
(1)

 $h_t : \mathbb{R} \to \{1, -1\}$ is the *t*-th weak classifier, which only accepts $\{x_{i,t}\}, i = 1, 2, ..., N$. We assume the importance weight α_t is strictly positive. Also we consider the *t*-subset of the above (final) classifier *H* as follows:

$$H^{t}(\boldsymbol{x}_{i}) = \operatorname{sign}\left(\sum_{s=1}^{t} \alpha_{s} h_{s}(x_{i,s})\right).$$
⁽²⁾

^{© 2010.} The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

Thus $H = H^T$.

Then the empirical loss of the Earlyboost is defined over H^t as follows:

$$J(H^{t}) = \sum_{i} \left(\exp\left(-y_{i}H^{t}(\boldsymbol{x}_{i})\right) \right) = \sum_{i} \exp\left(-y_{i}\sum_{s=1}^{t} \alpha_{s}h_{s}(x_{i,s})\right).$$
(3)

In the learning phase, we iteratively augment H^t from $H^0 = \emptyset$ by adding the weak classifier h_t and the importance weight α_t one by one.

Now let us assume that we have t-1 learning process iterations. Thus $H^{t-1} = \sum_{s=1}^{t-1} \alpha_s h_s$ is already given. Given H^{t-1} , we would like to obtain the optimal α_t and h_t to minimize the loss Eq. (3).

For that purpose, we write down the loss of expanded strong classifier.

$$J(H^{t-1} + \alpha_t h_t) = \sum_{i=1}^{N} \left[\exp\left(-y_i(H^{t-1}(\boldsymbol{x}_i) + \alpha_t h_t(x_{i,t}))\right) \right]$$
(4)

2.1 Deriving h_t

Performing Taylor expansion of Eq. (4), then we get the following:

$$J(H^{t-1} + \alpha_t h_t) \approx \sum_{i=1}^{N} \left[\exp\left(-y_i H^{t-1}(\boldsymbol{x}_i)\right) \left(1 - y_i \alpha_t h_t(x_{i,t}) + \frac{\alpha_t^2}{2}\right) \right].$$
(5)

Since we assumed $\alpha_t > 0$ for all *t*, we can rewrite Eq. (5) as follows:

$$\hat{h}_{t} = \arg\min_{h_{t}} J(H^{t-1} + \alpha_{t}h_{t})$$

$$= \arg\max_{h} \sum_{i=1}^{N} \left[\exp\left(-y_{i}H^{t-1}(\boldsymbol{x}_{i})\right) y_{i}\alpha_{t}h_{t}(x_{i,t}) \right]$$

$$\Leftrightarrow \arg\max_{h} \sum_{i=1}^{N} D_{t}(i) y_{i}h_{t}(x_{i,t}).$$
(6)

Please note that $D_t(i)$ is a positive constant:

$$D_t(i) = \exp\left(-y_i H^{t-1}(\boldsymbol{x}_i)\right) > 0.$$
(7)

Therefore, an optimal \hat{h}_t is available by solving Eq. (6):

$$\hat{h}_t(x_{i,t}) = \begin{cases} 1 & P(y_i = 1 | x_{i,t}) > P(y_i = -1 | x_{i,t}) \\ -1 & \text{otherwise} \end{cases}$$
(8)

Since h_t is a weak proxy for the true conditional probability $P(y|x_t)$, we can mimic an optimal \hat{h}_t effectively by the following equation.

$$\hat{h}_t = \arg\min_{h_t} \sum_{i: y_i \neq h_t(x_{i,t})} D_t(i)$$
(9)

2.2 Deriving α_t

Given the optimal h_t , next we optimize the importance weight α_t . From Eq. (4), we obtain the following:

$$J(H^{t-1} + \alpha_t \hat{h}_t) = \sum_i \left[\exp\left(-y_i(H^{t-1}(\boldsymbol{x}_i) + \alpha_t \hat{h}_t(x_{i,t}))\right) \right]$$
$$= \sum_i D_t(i) \exp\left(-y_i \alpha_t \hat{h}_t(x_{i,t})\right)$$
(10)

We split the sequence indices into two sets: $i^+ = \{i : y_i = \hat{h}_t(x_{i,t})\}$ and $i^- = \{i : y_i \neq \hat{h}_t(x_{i,t})\}$. Using these notations, we rewrite Eq. (10) as follows:

$$J(H^{t-1} + \alpha_t \hat{h}_t) \propto \sum_{i \in i^+} D_t(i) \exp(-\alpha_t) + \sum_{i \in i^-} D_t(i) \exp(\alpha_t)$$
(11)

Taking the derivative of Eq. (11) with respect to α_t , we obtain the solution of α_t . Please note that ϵ_t in the paper is equivalent to $\sum_{i \in i^-} D_t(i)$.

$$\frac{\partial J}{\partial \alpha_t} = -\sum_{i \in i^+} D_t(i) \exp(-\alpha_t) + \sum_{i \in i^-} D_t(i) \exp(\alpha_t) = 0$$
$$\Leftrightarrow \alpha_t = \frac{1}{2} \log\left(\frac{1 - \sum_{i \in i^-} D_t(i)}{\sum_{i \in i^-} D_t(i)}\right).$$
(12)

2.3 Deriving $D_{m,i}$

Using Eq. (4) and the definition of $D_t(i)$, we obtain the weight propagation equation naturally.

$$\exp(-y_i H^t) = \exp(-y_i (H^{t-1} + \alpha_t h_t))$$
$$= \exp(-y_i H^{t-1}) \exp(-y_i \alpha_t h_t(x_{i,t}))$$
$$\Leftrightarrow D_{t+1}(i) \propto D_t(i) \exp(-y_i \alpha_t h_t(x_{i,t}))$$
(13)

3 Earlyboost.MH

Then, we derive the update equations of the proposed Earlyboost.MH.

We have a set of training data $\mathcal{D} = \{x_i, y_i\}, i = 1, 2, ..., N$. The *i*-th sequence is denoted as x_i , which has *T* frame elements $x_{i,t} \in \mathbb{R}^d$. Because of multi-class classification, class labels range in *K* values: $y_i \in \{1, 2, ..., K\}$ which makes contrast to Adaboost and Earlyboost.

The strong classifier H is defined as follows:

$$H(\mathbf{x}_i) = \sum_{t=1}^{T} \alpha_t h_t(x_{i,t})$$
(14)

H returns *K*-dimensional response given a sequence input. $h_t : \mathbb{R}^d \to \{1, -1\}^K$ is the *t*-th weak classifier which only accepts the observation in the time frame *t*. $\alpha_t > 0$ is its importance weight.

More conveniently, we assume *H* consists of *K* binary classifiers H_k , namely $H = \{H_k\}$. We denote the *k*-th one vs. all strong classifier as H_k , and its *t*-th weak classifier as $h_{t,k}$: $\mathbb{R}^d \to \{1, -1\}$, respectively. A weak classifier $h_{t,k}(x) : \mathbb{R}^d \to \{1, -1\}$ only accepts the samples on the *t*-th time frames. $h_{t,k}(x)$ returns 1 if *x* belongs to class *k*, and returns -1 otherwise. We also define $g_k(y) : \{1, 2, ..., K\} \to \{1, -1\}$ returns 1 if y = k, and returns -1 otherwise.

The definition of H_k ans its *t*-subset H_k^t is described as follows:

$$H_k(\mathbf{x}_i) = \sum_{t=1}^T \alpha_t h_{t,k}(x_{i,t}), \tag{15}$$

$$H_k^t(\mathbf{x}_i) = \sum_{s=1}^t \alpha_s h_s(x_{i,s}).$$
(16)

Then we define the following loss function:

$$J(H^{t}) = \sum_{i=1}^{N} \sum_{k=1}^{K} \left(\exp\left(-g_{k}(y_{i})H_{k}^{t}(\boldsymbol{x}_{i})\right) \right) = \sum_{i=1}^{N} \sum_{k=1}^{K} \exp\left(-g_{k}(y_{i})\sum_{s=1}^{t} \alpha_{s}h_{s,k}(x_{i,s})\right).$$
(17)

Construction of above loss function is similar to Adaboost.MH [1, 2].

Then, we compute an optimal $h_{t,k}$ and α_t given H_k^{t-1} which consists of t-1 elements weak classifiers.

3.1 Deriving $h_{t,k}$

Following the derivation of h_t in Earlyboost, we perform Taylor-expansion of the loss of $H^{t-1} + \alpha_t h_t$.

$$J(H^{t-1} + \alpha_t h_t) = \sum_{i=1}^N \sum_{k=1}^K \left[\exp\left(-g_k(y_i)(H_k^{t-1}(\boldsymbol{x}_i) + \alpha_t h_{t,k}(x_{i,t}))\right) \right]$$
$$\approx \sum_{i=1}^N \sum_{k=1}^K \left[\exp\left(-g_k(y_i)H_k^{t-1}(\boldsymbol{x}_i)\right) \left(1 - g_k(y_i)\alpha_t h_{t,k}(x_{i,t}) + \frac{\alpha_t^2}{2}\right) \right]$$
(18)

Assuming $\alpha_t > 0$, we obtain the following equations:

$$\hat{h}_{t,k} = \arg\min_{h_{t,k}} J(H^{t-1} + \alpha_t h_t)$$

$$\Leftrightarrow \arg\max_{h_{t,k}} \sum_{i=1}^N D_t(i,k) y_{i,k} h_{t,k}(x_{i,t})$$
(19)

$$D_t(i,k) = \exp\left(-y_{i,k}H_k^{t-1}(\boldsymbol{x}_i)\right)$$
(20)

Note that this is equivalent to the equation in the paper, defined by $r_{t,k}$.

17

3.2 Deriving α_t

From the definition,

$$J(H^{t-1} + \alpha_t h_t) = \sum_i \sum_{k=1}^{K} \left[\exp\left(-g_k(y_i) H_k^{t-1}(\mathbf{x}_i) - g_k(y_i) \alpha_t \hat{h}_{t,k}(x_{i,t})\right) \right]$$

=
$$\sum_k \sum_i D_t(i,k) \exp\left(-g_k(y_i) \alpha_t \hat{h}_{t,k}(x_{i,t})\right)$$
(21)

As in the case of Earlyboost, we split the sequence indices in two sets, for each class k. Let us define $i^{k+} = \{i : g_k(y_i) = \hat{h}_{t,k}(x_{i,t})\}$ and $i^{k-} = \{i : g_k(y_i) \neq \hat{h}_{t,k}(x_{i,t})\}$. Using these notations, we rewrite Eq. (21) as follows:

$$J(H^{t-1} + \alpha_t h_t) = \sum_k \sum_{i \in i^{k+1}} D_t(i,k) \exp(-\alpha_t) + \sum_k \sum_{i \in i^{k-1}} D_t(i,k) \exp(\alpha_t)$$
(22)

Using

$$r_{t,k} = \sum_{i \in i^{k+}} D_t(i,k) - \sum_{i \in i^{k-}} D_t(i,k),$$
(23)

and

$$1 = \sum_{k} \sum_{i \in i^{k+}} D_t(i,k) + \sum_{k} \sum_{i \in i^{k-}} D_t(i,k),$$
(24)

we can derive the equation for an optimal α_t .

$$\frac{\partial J}{\partial \alpha_t} = -\sum_k \sum_{i \in i^{k+}} D_t(i,k) \exp(-\alpha_t) + \sum_k \sum_{i \in i^{k-}} D_t(i,k) \exp(\alpha_t) = 0$$

$$\Leftrightarrow \exp(2\alpha_t) = \frac{\sum_k \sum_{i \in i^{k+}} D_t(i,k)}{\sum_k \sum_{i \in i^{k-}} D_t(i,k)} = \frac{1 + \sum_k r_{t,k}}{1 - \sum_k r_{t,k}}$$

$$\alpha_t = \frac{1}{2} \log\left(\frac{1 + \sum_k r_{t,k}}{1 - \sum_k r_{t,k}}\right).$$
(25)

3.3 Deriving $D_t(i,k)$

The update equation for $D_t(i,k)$ is easy to derive:

$$\exp\left(-g_k(y_i)H_k^t(\boldsymbol{x}_i)\right) = \exp\left(-g_k(y_i)(H_k^{t-1}(\boldsymbol{x}_i) + \alpha_t h_{t,k}(x_{i,t}))\right)$$
$$= \exp\left(-g_k(y_iH_k^{t-1}(\boldsymbol{x}_i))\exp\left(-g_k(y_i)\alpha_t h_{t,k}(x_{i,t})\right)\right)$$
$$\Leftrightarrow D_{t+1}(i,k) \propto D_t(i,k)\exp\left(-g_k(y_i)\alpha_t h_{t,k}(x_{i,t})\right).$$
(26)

References

- [1] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting (with discussion). *Annals of Statistics*, 28(2):337–407, 2000.
- [2] R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. *Machine Learning*, 37(3):297–336, 1999.
- [3] S. Uchida and K. Amamoto. Early recognition of sequential patterns by classifier combination. In *Proceedings of the 19th International Conference on Pattern Recognition* (ICPR), 2008.