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Abstract

In this material, we present the derivation of Earlyboost [3] and the proposed Early-
boost.MH in the standard exponential loss approach [1].

1 Notations

We follow the original notations declared in the paper, but we describe the notations at the
head of each section for readers help.

2 Earlyboost

First, we derive the update equations of Earlyboost [3], which first appears in the literature
for the best of our knowledge.

Let us denote that i-th sequence x; has a number of time frame elements x;,: i.e. x; =
{xis € R4}, t=1,2,...,T. The number of sequences is N: thus i € {1,2,...,N}. T is a length
of time sequences, and ¢ € {1,2,...,T} is the time index. y; € {1,—1} is a class label attached
to x;. The training data set is denoted by Z = {x;,y;}.

First let us define the strong classifier H:

T
H(x) = arhi(xiy) (1)

t=1

h; : R — {1,-1} is the #-th weak classifier, which only accepts {x;,},i=1,2,...,N. We assume
the importance weight a; is strictly positive. Also we consider the #-subset of the above (final)
classifier H as follows:

13
H'(x;) = sign[z ashs (xi,s)] : 2)
s=1
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Thus H = H .
Then the empirical loss of the Earlyboost is defined over H' as follows:

JH) =) (exp(-yiH'(x)) = > exp (—inaxhx(xi,s)]. 3)
s=1

1 1
In the learning phase, we iteratively augment H' from H° = () by adding the weak classifier
h; and the importance weight ; one by one.

Now let us assume that we have 7 — 1 learning process iterations. Thus H'~! = Zts_:ll ashg
is already given. Given H'~!, we would like to obtain the optimal «; and /, to minimize the
loss Eq. (3).

For that purpose, we write down the loss of expanded strong classifier.

N
JH ™ +ahy) = ) [exp(—yitH"™ (x) + aihi(xi,)] @)

i=1

2.1 Deriving A;

Performing Taylor expansion of Eq. (4), then we get the following:

N 2
J(HFl +ah) = Z [exp (_)’thl(xi))(l —yiah (xi) + %) . 5)

i=1

Since we assumed a; > 0 for all ¢, we can rewrite Eq. (5) as follows:

h = argrr;linJ(H’_l +azhy)
1

N

= argmax 21 [exp (—yi" ™ (x)) yiareh ()|
=
N
& argmax ) Dy(i)yih(xiy). ©)

i=1
Please note that D,(i) is a positive constant:
Dy(i) = exp(~yiH'™ (x)) > 0. ™

Therefore, an optimal , is available by solving Eq. (6):

ilt(xi,t) = {1 1 P(yi = 1xis) > P(yi = —1lxis) ®

otherwise

Since h, is a weak proxy for the true conditional probability P(y|x;), we can mimic an
optimal £, effectively by the following equation.

hy = argmin. > D )
iyi#hy(Xi )
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2.2 Deriving a;

Given the optimal /,, next we optimize the importance weight ;. From Eq. (4), we obtain
the following:

JH" +a,hy) = Z |exp (—yi(H™ (x0) + arhi(x:1))]

= > Di(exp(-yiashu(xiy) (10)

We split the sequence indices into two sets: i* ={i:y; = fz,(xi,,)} andi" ={i:y; # fz,(xi,t)}.
Using these notations, we rewrite Eq. (10) as follows:

JH + ik e ) Diiyexp(—a+ ) Dili)exp (@) (I

Taking the derivative of Eq. (11) with respect to a;, we obtain the solution of a;. Please
note that ¢ in the paper is equivalent to };c;- D;(i).

oJ
i Z Dy(i)exp(~a;) + Z Dy(iyexp(a) =0
_ 1 (1= Dili)
cn=3 log( St Dili) ) (12

2.3 Deriving D,, ;

Using Eq. (4) and the definition of D,(7), we obtain the weight propagation equation naturally.

exp (—yth) = exp (—yi(H’_1 + a,ht))
= exp(—yiH'™" ) exp (—yiashi(xi,))
& Dyy1(i) o< Dy(i) exp (_Yiathz(xi,t)) (13)

3 Earlyboost. MH

Then, we derive the update equations of the proposed Earlyboost. MH.

We have a set of training data & = {x;,y;},i = 1,2,...,N. The i-th sequence is denoted as
x;, which has T frame elements x;; € R4)}. Because of multi-class classification, class labels
range in K values: y; € {1,2,..., K} which makes contrast to Adaboost and Earlyboost.

The strong classifier H is defined as follows:

T
H(x) =) ahi(xi;) (14)
t=1

H returns K-dimensional response given a sequence input. A, : RY = {1,-1}K is the #-th weak
classifier which only accepts the observation in the time frame ¢. a; > 0 is its importance
weight.

More conveniently, we assume H consists of K binary classifiers Hy, namely H = {Hy}.
We denote the k-th one vs. all strong classifier as H, and its ¢-th weak classifier as . :
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R = {1,-1}, respectively. A weak classifier i (x) : RY > {1,-1)} only accepts the samples

on the 7-th time frames. A, x(x) returns 1 if x belongs to class k, and returns —1 otherwise.

We also define g;(y) : {1,2,...,K} — {1,—1} returns 1 if y = k, and returns —1 otherwise.
The definition of Hj, ans its t-subset H' ]’( is described as follows:

T
Hi(x) = ) arhix(xig), (15)
t=1
t
Hi(x) = ) ashy(xi). (16)
s=1

Then we define the following loss function:

N K
JHY = > (exp(-g00Hj(x)) ZZexp( gk(mZas s a] (17)

i=1 k=1 i=1 k=
Construction of above loss function is similar to Adaboost.MH [1, 2].

Then, we compute an optimal 4, and @, given HI’C_1 which consists of #— 1 elements
weak classifiers.

3.1 Deriving h

Following the derivation of 4; in Earlyboost, we perform Taylor-expansion of the loss of
Ht_l + atht.

JCH™ +a,h,) =Z

I

»

i=1

N
|exp (=g (H} (x) + @i i(xi)) )|

Mw wa

2
[e (~genH 1<x,>)(1 gkOarh(xi) + oL )] (18)

o~
I

1
Assuming a; > 0, we obtain the following equations:

by = alrgrzlinJ(H’_1 +ahy)
1.k

N
Du(i, k)yi chei(x; 19
@argn}ﬁx; iKYy (i) (19)
Dy(i,k) = exp (-yieHj ' (x1)) (20)

Note that this is equivalent to the equation in the paper, defined by ;.

3.2 Deriving a;
From the definition,

K
JHT +ah) = 3" 3" [exp (g Hy (x) = i) |

i k=1

= > > Dilikyexp(-gedari(xi,) @1
ki
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As in the case of Earlyboost, we split the sequence indices in two sets, for each class k.
Let us define #** = {i : 8ryi) = hyx(xi)} and =i 8k(yi) # hyk(x;,)}. Using these notations,
we rewrite Eq. (21) as follows:

JH +ah) =Y Dyikyexp(-a)+ Y Y DyGik)exp (@) (22)
k jeik+ k ieik-
Using
r= Y D)= Y Dk, (23)
ieik+ ieik=
and
Z 2, Diliky+ Z 2, Diik), (24)
k jeik+ k jeik-

we can derive the equation for an optimal ;.

a_a, = _Z > Dilikyexp(-a) + Z D Diiexplar) =

ieik+ ieik=

Lk Dieikr Di@k) _ 1+ Xk
T T DR~ TS

eexpRay) =

1 1+ X prk
= —log| —=——=|. 25
"2 Og(l—zkr,,k) @
3.3 Deriving D,(i,k)
The update equation for D,(i, k) is easy to derive:
exp (e Hy(xi)) = exp (g G (' () + iy (xi )
= exp(—ge(iHy ' (x) exp (~grGerthy i(xi 1)
& Dyy1(i, k) oc Dy(i, k) exp (_8k()’i)(1tht,k(xi,t))- (26)
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