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Abstract

We propose a new probabilistic model for analyzing dynamic evolutions of rela-
tional data, such as additions, deletions and split & merge, of relation clusters like
communities in social networks. Our proposed model abstracts observed time-
varying object-object relationships into relationships between object clusters. We
extend the infinite Hidden Markov model to follow dynamic and time-sensitive
changes in the structure of the relational data and to estimate a number of clusters
simultaneously. We show the usefulness of the model through experiments with
synthetic and real-world data sets.

1 Introduction

Analysis of “relational data”, such as the hyperlink structure on the Internet, friend links on social
networks, or bibliographic citations between scientific articles, is useful in many aspects. Many
statistical models for relational data have been presented [10, 1, 18]. The stochastic block model
(SBM) [11] and the infinite relational model (IRM) [8] partition objects into clusters so that the
relations between clusters abstract the relations between objects well. SBM requires specifying the
number of clusters in advance, while IRM automatically estimates the number of clusters. Similarly,
the mixed membership model [2] associates each object with multiple clusters (roles) rather than a
single cluster.

These models treat the relations as static information. However, a large amount of relational data
in the real world is time-varying. For example, hyperlinks on the Internet are not stationary since
links disappear while new ones appear every day. Human relationships in a company sometimes
drastically change by the splitting of an organization or the merging of some groups due to e.g.
Mergers and Acquisitions. One of our modeling goals is to detect these sudden changes in network
structure that occur over time.

Recently some researchers have investigated the dynamics in relational data. Tang et al.[13] pro-
posed a spectral clustering-based model for multi-mode, time-evolving relations. Yang et al.[16]
developed the time-varying SBM. They assumed a transition probability matrix like HMM, which
governs all the cluster assignments of objects for all time steps. This model has only one transition
probability matrix for the entire data. Thus, it cannot represent more complicated time variations
such as split & merge of clusters that only occur temporarily. Fu et al.[4] proposed a time-series
extension of the mixed membership model. [4] assumes a continuous world view: roles follow a
mixed membership structure; model parameters evolve continuously in time. This model is very
general for time series relational data modeling, and is good for tracking gradual and continuous
changes of the relationships. Some works in bioinformatics [17, 5] have also adopted similar strate-
gies. However, a continuous model approach does not necessarily best capture sudden transitions of
the relationships we are interested in. In addition, previous models assume the number of clusters is
fixed and known, which is difficult to determine a priori.
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In this paper we propose yet another time-varying relational data model that deals with temporal
and dynamic changes of cluster structures such as additions, deletions and split & merge of clus-
ters. Instead of the continuous world view of [4], we assume a discrete structure: distinct clusters
with discrete transitions over time, allowing for birth, death and split & merge dynamics. More
specifically, we extend IRM for time-varying relational data by using a variant of the infinite HMM
(iHMM) [15, 3]. By incorporating the idea of iHMM, our model is able to infer clusters of objects
without specifying a number of clusters in advance. Furthermore, we assume multiple transition
probabilities that are dependent on time steps and clusters. This specific form of iHMM enables the
model to represent time-sensitive dynamic properties such as split & merge of clusters. Inference is
performed efficiently with the slice sampler.

2 Infinite Relational Model

We first explain the infinite relational model (IRM) [8], which can estimate the number of hidden
clusters from a relational data. In IRM, Dirichlet process (DP) is used as a prior for clusters of an
unknown number, and is denoted as DP(γ,G0) where γ > 0 is a parameter and G0 is a base measure.
We write G ∼ DP(γ,G0) when a distribution G (θ) is sampled from DP. In this paper, we implement
DP by using a stick-breaking process [12], which is based on the fact that G is represented as an
infinite mixture of θs: G (θ) =

∑∞
k=1 βkδθk (θ), θk ∼ G0. β = (β1, β2, . . .) is a mixing ratio vector with

infinite elements whose sum equals one, constructed in a stochastic way:

βk = vk

k−1∏
l=1

(1 − vl), vk ∼ Beta (1, γ) . (1)

Here vk is drawn from a Beta distribution with a parameter γ.

The IRM is an application of the DP for relational data. Let us assume a binary two-place relation
on the set of objects D = {1, 2, . . . ,N} as D × D → {0, 1}. For simplicity, we only discuss a two
place relation between the identical domain (D × D). The IRM divides the set of N objects into
multiple clusters based on the observed relational data X = {xi, j ∈ {0, 1}; 1 ≤ i, j ≤ N}. The IRM
is able to infer the number of clusters at the same time because it uses DP as a prior distribution
of the cluster partition. Observation xi, j ∈ {0, 1} denotes the existence of a relation between objects
i, j ∈ {1, 2, . . . ,N}. If there is (not) a relation between i and j, then xi, j = 1 (0). We allow asymmetric
relations xi, j , x j,i throughout the paper.

The probabilistic generative model (Fig. 1(a)) of the IRM is as follows:

β|γ ∼ Stick (γ) (2)
zi|β ∼ Multinomial (β) (3)

ηk,l|ξ, ψ ∼ Beta (ξ, ψ) (4)

xi, j|Z,H ∼ Bernoulli
(
ηzi,z j

)
. (5)

Here, Z = {zi}Ni=1 and H = {ηk,l}∞k,l=1. In Eq. (2) “Stick” is the stick-breaking process (Eq. (1)). We
sample a cluster index of the object i, zi = k, k ∈ {1, 2, . . . , } using β as in Eq. (3). In Eq. (4) ηk,l is
the strength of a relation between the objects in clusters k and l. Generating the observed relational
data xi, j follows Eq. (5) conditioned by the cluster assignments Z and the strengths H.

3 Dynamic Infinite Relational Model (dIRM)

3.1 Time-varying relational data

First, we define the time-varying relational data considered in this paper. Time-varying relational
data X have three subscripts t, i, and j: X =

{
xt,i, j ∈ {0, 1}

}
, where i, j ∈ {1, 2, . . . ,N}, t ∈

{1, 2, . . . , T }. xt,i, j = 1(0) indicates that there is (not) an observed relationship between objects i
and j at time step t. T is the number of time steps, and N is the number of objects. We assume
that there is no relation between objects belonging to a different time step t and t′. The time-varying
relational data X is a set of T (static) relational data for T time steps.
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Figure 1: Graphical model of (a)IRM (Eqs.2-5), (b)“tIRM” (Eqs.7-10), and (c)dIRM (Eqs.11-15).
Circle nodes denote variables, square nodes are constants and shaded nodes indicate observations.

It is natural to assume that every object transits between different clusters along with the time evo-
lution. Observing several real world time-varying relational data, we assume there are several prop-
erties of transitions, as follows:

• P1. Cluster assignments in consecutive time steps have higher correlations.

• P2. Time evolutions of clusters are not stationary nor uniform.

• P3. The number of clusters is time-varying and unknown a priori.

P1 is a common assumption for many kinds of time series data, not limited to relational data. For
example, a member of a firm community on SNSs will belong to the same community for a long
time. A hyperlink structure in a news website may alter because of breaking news, but most of the
site does not change as rapidly every minute.

P2 tries to model occasional and drastic changes from frequent and minor modifications in rela-
tional networks. Such unstable changes are observed elsewhere. For example, human relationships
in companies will evolve every day, but a merger of departments sometimes brings about drastic
changes. On an SNS, a user community for the upcoming Olympics games may exist for a limited
time: it will not last years after the games end. This will cause an addition and deletion of a user
cluster (community). P3 is indispensable to track such changes of clusters.

3.2 Naive extensions of IRM

We attempt to modify the IRM to satisfy these properties. We first consider several straightforward
solutions based on the IRM for analyzing time-varying relational data.

The simplest way is to convert time-varying relational data X into “static” relational data X̃ = {x̃i, j}
and apply the IRM to X̃. For example, we can generate X̃ as follows:

x̃i, j =

{
1 1

T
∑T

t=1 xt,i, j > σ,

0 otherwise,
(6)

where σ denotes a threshold. This solution cannot represent the time changes of clustering because
it assume the same clustering results for all the time steps (z1,i = z2,i = · · · = zT,i).

We may separate the time-varying relational data X into a series of time step-wise relational data Xt
and apply the IRM for each Xt. In this case, we will have a different clustering result for each time
step, but the analysis ignores the dependency of the data over time.
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Another solution is to extend the object assignment variable zi to be time-dependent zt,i. The result-
ing “tIRM” model is described as follows (Fig. 1(b)):

β|γ ∼ Stick (γ) (7)
zt,i|β ∼ Multinomial (β) (8)

ηk,l|ξ, ψ ∼ Beta (ξ, ψ) (9)

xt,i, j|Zt,H ∼ Bernoulli
(
ηzt,i,zt, j

)
. (10)

Here, Zt = {zt,i}Ni=1. Since β is shared over all time steps, we may expect that the clustering results
between time steps will have higher correlations. However, this model assumes that zt,i is condi-
tionally independent from each other for all t given β. This implies that the tIRM is not suitable for
modeling time evolutions since the order of time steps are ignored in the model.

3.3 dynamic IRM

To address three conditions P1∼3 above, we propose a new probabilistic model called the dynamic
infinite relational model (dIRM). The generative model is given below:

β|γ ∼ Stick (γ) (11)

πt,k |α0, κ,β ∼ DP
(
α0 + κ,

α0β + κδk

α0 + κ

)
(12)

zt,i|zt−1,i,Πt ∼ Multinomial
(
πt,zt−1,i

)
(13)

ηk,l|ξ, ψ ∼ Beta (ξ, ψ) (14)

xt,i, j|Zt,H ∼ Bernoulli
(
ηzt,i,zt, j

)
. (15)

Here, Πt = {πt,k : k = 1, . . . ,∞}. A graphical model of the dIRM is presented in Fig. 1(c).

β in Eq. (11) represents time-average memberships (mixing ratios) to clusters. Newly introduced
πt,k = (πt,k,1, πt,k,2, . . . , πt,k,l, . . .) in Eq. (12) is a transition probability that an object remaining in the
cluster k ∈ {1, 2, . . .} at time t − 1 will move to the cluster l ∈ {1, 2, . . .} at time t. Because of the DP,
this transition probability is able to handle infinite hidden states like iHMM [14].

The DP used in Eq. (12) has an additional term κ > 0, which is introduced by Fox et al. [3]. δk is
a vector whose elements are zero except the kth element, which is one. Because the base measure
in Eq. (12) is biased by κ and δk, the kth element of πt,k prefers to take a larger value than other
elements. This implies that this DP encourages the self-transitions of objects, and we can achieve
the property P1 for time-varying relational data.

One difference from conventional iHMMs [14, 3] lies in P2, which is achieved by making the
transition probability π time-dependent. πt,k is sampled for every time step t, thus, we can model
time-varying patterns of transitions, including additions, deletions and split & merge of clusters as
extreme cases. These changes happen only temporarily, therefore, time-dependent transition prob-
abilities are indispensable for our purpose. Note that the transition probability is also dependent
on the cluster index k, as in conventional iHMMs. Also the dIRM can automatically determine the
number of clusters thanks to DP: this enables us to hold P3.

Equation (13) generates a cluster assignment for the object i at time t, based on the cluster, where
the object was previously (zt−1,i) and its transition probability π. Equation (14) generates a strength
parameter η for the pair of clusters k and l, then we obtain the observed sample xt,i, j in Eq. (15).

The difference between iHMMs and dIRM is two-fold. One is the time-dependent transition proba-
bility of the dIRM discussed above. The another is that the iHMMs have one hidden state sequence
s1:t to be inferred, while the dIRM needs to estimate multiple hidden state sequences z1:t,i given one
time sequence observation. Thus, we may interpret the dIRM as an extension of the iHMM, which
has N (= a number of objects) hidden sequences to handle relational data.
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4 Inference

We use a slice sampler [15], which enables fast and efficient sampling of the sequential hidden states.
The slice sampler introduces auxiliary variables U = {ut,i}. Given U, the number of clusters can be
reduced to a finite number during the inference, and it enables us an efficient sampling of variables.

4.1 Sampling parameters

First, we explain the sampling of an auxiliary variable ut,i. We assume a prior of ut,i as a uniform
distribution. Also we define the joint distribution of u, z, and x:

p
(
xt,i, j, ut,i, ut, j, zt−1:t,i, zt−1:t, j

)
= I

(
ut,i<πt,zt−1,i,zt,i

)
I
(
ut, j<πt,zt−1, j,zt, j

)
x
ηzt,i ,zt, j

t,i, j

(
1−xt,i, j

)1−ηzt,i ,zt, j . (16)

Here, I(·) is 1 if the predicate holds, otherwise zero. Using Eq. (16), we can derive the posterior of
ut,i as follows:

ut,i ∼ Uniform
(
0, πt,zt−1,i,zt,i

)
. (17)

Next, we explain the sampling of an object assignment variable zt,i. We define the following message
variable p:

pt,i,k = p
(
zt,i = k|X1:t,U1:t,Π,H,β

)
. (18)

Sampling of zt,i is similar to the forward-backward algorithm for the original HMM. First, we com-
pute the above message variables from t = 1 to t = T (forward filtering). Next, we sample zt,i from
t = T to t = 1 using the computed message variables (backward sampling).

In forward filtering we compute the following equation from t = 1 to t = T :

pt,i,k ∝ p
(
xt,i,i|zt,i=k,H

)∏
j,i

p
(
xt,i, j|zt,i=k,H

)
p
(
xt, j,i|zt,i=k,H

) ∑
l:ut,i<πt,l,k

pt−1,i,l. (19)

Note that the summation is conditioned by ut,i. The number of ls (cluster indices) that hold this
condition is limited to a certain finite number. Thus, we can evaluate the above equation.

In backward sampling, we sample zt,i from t = T to t = 1 from the equation below:

p
(
zt,i = k|zt+1,i = l

) ∝ pt,i,kπt+1,k,lI
(
ut+1,i < πt+1,k,l

)
. (20)

Because of I(u < π), values of cluster indices k are limited within a finite set. Therefore, the variety
of sampled zt,i will be limited a certain finite number K given U.

Given U and Z, we have finite K-realized clusters. Thus, computing the posteriors of πt,k and ηk,l
becomes easy and straightforward. First β is assumed as a K + 1-dimensional vector (mixing ratios
of unrepresented clusters are aggregated in βK+1 = 1 −∑K

k=1 βk ). mt,k,l denotes a number of objects
i such that zt−1,i = k and zt,i = l. Also, let us denote a number of xt,i, j such that zt,i = k and zt, j = l as
Nk,l. Similarly, nk,l denotes a number of xt,i, j such that zt,i = k, zt, j = l and xt,i, j = 1. Then we obtain
following posteriors:

πt,k ∼ Dirichlet
(
α0β + κδk + mt,k

)
. (21)

ηk,l ∼ Beta
(
ξ + nk,l, ψ + Nk,l − nk,l

)
. (22)

mt,k is a K + 1-dimensional vector whose lth element is mt,k,l (mt,k,K+1 = 0).

We omit the derivation of the posterior of β since it is almost the same with that of Fox et al. [3].

4.2 Sampling hyperparameters

Sampling hyperparameters is important to obtain the best results. This could be done normally by
putting vague prior distributions [14]. However, it is difficult to evaluate the precise posteriors for
some hyperparameters [3]. Instead, we reparameterize and sample a hyperparameter in terms of
a ∈ (0, 1) [6]. For example, if the hyperparameter γ is assumed as Gamma-distributed, we convert γ
by a = γ

1+γ . Sampling a can be achieved from a uniform grid on (0, 1). We compute (unnormalized)
posterior probability densities at several as and choose one to update the hyperparameter.
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Figure 2: Example of real-world datasets. (a)IOtables data, observations at t = 1, (b)IOtables data,
observations at t = 5, (c)Enron data, observations at t = 2, and (d)Enron data, observations at t = 10.

5 Experiments

Performance of the dIRM is compared with the original IRM [8] and its naive extension tIRM
(described in Eqs. (7-10)). To apply the IRM to time-varying relational data, we use Eq. (6) to X
with a threshold σ = 0.5. The difference between the tIRM (Eqs. (7-10)) and the dIRM is that
the tIRM does not incorporate the dependency between successive time steps while the dIRM does.
Hyperparameters were estimated simultaneously in all experiments.

5.1 Datasets and measurements

We prepared two synthetic datasets (Synth1 and Synth2). To synthesize datasets, we first determined
the number of time steps T , the number of clusters K, and the number of objects N. Next, we man-
ually assigned zt,i in order to obtain cluster split & merge, additions, and deletions. After obtaining
Z, we defined the connection strengths between clusters H = {ηk,l}. In this experiment, each ηk,l may
take one of two values η = 0.1 (weakly connected) or η = 0.9 (strongly connected). Observation X
was randomly generated according to Z and H. Synth1 is smaller (N = 16) and stable while Synth2
is much larger (N = 54), and objects actively transit between clusters.

Two real-world datasets were also collected. The first one is the National Input-Output Tables for
Japan (IOtables) provided by the Statistics Bureau of the Ministry of Internal Affairs and Commu-
nications of Japan. IOtables summarize the transactions of goods and services between industrial
sectors. We used an inverted coefficient matrix, which is a part of the IOtables. Each element in
the matrix ei, j represents that one unit of demand in the jth sector invokes ei, j productions in the ith
sector. We generated xi, j from ei, j by binarizaion: setting xi, j = 1 if ei, j exceeds the average, and
setting xi, j = 0 otherwise. We collected data from 1985, 1990, 1995, 2000, and 2005, in 32 sectors
resolutions. Thus we obtain a time-varying relational data of N = 32 and T = 5.

The another real-world dataset is the Enron e-mail dataset [9], used in many studies including [13, 4].
We extracted e-mails sent in 2001. The number of time steps was T = 12, so the dataset was divided
into monthly transactions. The full dataset contained N = 151 persons. xt,i, j = 1(0) if there is
(not) an e-mail sent from i to j at time (month) t. We also generated a smaller dataset (N = 68) by
excluding those who send few e-mails for convenience. Quantitative measurements were computed
with this smaller dataset.

Fig. 2 presents examples of IOtables dataset ((a),(b)) and Enron dataset ((c),(d)). IOtables dataset
characterized by its stable relationships, compared to Enron dataset. In Enron dataset, the amount
of communication rapidly increases after the media reported on the Enron scandals.

We used three evaluating measurements. One is the Rand index, which computes the similarity
between true and estimated clustering results [7]. The Rand index takes the maximum value (1)
if the two clustering results completely match. We computed the Rand index between the ground
truth Zt and the estimated Ẑt for each time step, and averaged the indices for T steps. We also
compute the error in the number of estimated clusters. Differences in the number of realized clusters
were computed between Zt and Ẑt, and we calculated the average of these errors for T steps. We
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Table 1: Computed Rand indices, numbers of erroneous clusters, and averaged test data log likeli-
hoods.

Data Rand index # of erroneous clusters Test log likelihood
IRM tIRM dIRM IRM tIRM dIRM IRM tIRM dIRM

Synth1 0.796 0.946 0.982 1.00 0.20 0.13 -0.542 -0.508 -0.505
Synth2 0.433 0.734 0.847 3.00 0.98 0.65 -0.692 -0.393 -0.318
IOtables - - - - - - -0.354 -0.358 -0.291
Enron - - - - - - -0.120 -0.135 -0.106

calculated these measurements for the synthetic datasets. The third measure is an (approximated)
test-data log likelihood. For all datasets, we generated noisy datasets whose observation values are
inverted. The number of inverted elements was kept small so that inversions would not affect the
global clustering results. The ratios of inverted elements over the entire elements are set to 5% for
two synthetic data, 1% for IOtables data and 0.5% for Enron data. We made inferences on the noisy
datasets, and computed the likelihoods that “inverted observations take the real value”. We used the
averaged log-likelihood per a observation as a measurement.

5.2 Results

First, we present the quantitative results. Table 1 lists the computed Rand index, errors in the es-
timated number of clusters, and test-data log likelihoods. We confirmed that dIRM outperformed
the other models in all datasets for the all measures. Particularly, dIRM showed good results in the
Synth2 and Enron datasets, where the changes in relationships are highly dynamic and unstable. On
the other hand, the dIRM did not achieve a remarkable improvement against tIRM for the Synth1
dataset whose temporal changes are small. Thus we can say that the dIRM is superior in modeling
time-varying relational data, especially for dynamic ones.

Next, we evaluate results of the real-world datasets qualitatively. Figure 3 shows the results from
IOtables data. The panel (a) illustrates the estimated ηk,l using the dIRM, and the panel (b) presents
the time evolution of cluster assignments, respectively. The dIRM obtained some reasonable and
stable industrial clusters, as shown in Fig. 3 (b). For example, dIRM groups the machine industries
into cluster 5, and infrastructure related industries are grouped into cluster 13. We believe that the
self-transition bias κ helps the model find these stable clusters. Also relationships between clusters
presented in Fig. 3 (a) are intuitively understandable. For example, demands for machine industries
(cluster 5) will cause large productions for “iron and steel” sector (cluster 7). The “commerce &
trade” and “enterprise services” sectors (cluster 10) connects strongly to almost all the sectors.

There are some interesting cluster transitions. First, look at the “finance, insurance” sector. At
t = 1, this sector belongs to cluster 14. However, the sector transits to cluster 1 afterwards, which
does not connect strongly with clusters 5 and 7. This may indicates the shift of money from these
matured industries. Next, the “transport” sector enlarges its roll in the market by moving to cluster
14, and it causes the deletion of cluster 8. Finally, note the transitions of “telecom, broadcast” sector.
From 1985 to 2000, this sector is in the cluster 9 which is rather independent from other clusters.
However, in 2005 the cluster separated, and telecom industry merged with cluster 1, which is a
influential cluster. This result is consistent with the rapid growth in ITC technologies and its large
impact on the world.

Finally, we discuss results on the Enron dataset. Because this e-mail dataset contains many individ-
uals’ names, we refrain from cataloging the object assignments as in the IOtables dataset. Figure
4 (a) tells us that clusters 1 ∼ 7 are relatively separated communities. For example, members in
cluster 4 belong to a restricted domain business such energy, gas, or pipeline businesses. Cluster 5
is a community of financial and monetary departments, and cluster 7 is a community of managers
such as vice presidents, and CFOs.

One interesting result from the dIRM is finding cluster 9. This cluster notably sends many messages
to other clusters, especially for management cluster 7. The number of objects belonging to this
cluster is only three throughout the time steps, but these members are the key-persons at that time.
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Figure 3: (a) Example of estimated ηk,l (strength of relationship between clusters k, l) for IOtable
data by dIRM. (d) Time-varying clustering assignments for selected clusters by dIRM.
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belonging to clusters at each time step for Enron dataset using dIRM.

First, the CEO of Enron America stayed at cluster 9 in May (t = 5). Next, the founder of Enron was
a member of the cluster in August t = 8. The CEO of Enron resigned that month, and the founder
actually made an announcement to calm down the public. Finally, the COO belongs to the cluster in
October t = 10. This is the month that newspapers reported the accounting violations.

Fig. 4 (b) presents the time evolutions of the cluster memberships; i.e. the number of objects belong-
ing to each cluster at each time step. In contrast to the IOtables dataset, this Enron e-mail dataset is
very dynamic, as you can see from Fig. 2(c), (d). For example, the volume of cluster 6 (inactive clus-
ter) decreases as time evolves. This result reflects the fact that the transactions between employees
increase as the scandal is more and more revealed. On the contrary, cluster 4 is stable in member-
ship. Thus, we can imagine that the group of energy and gas is a dense and strong community. This
is also true for cluster 5.

6 Conclusions

We proposed a new time-varying relational data model that is able to represent dynamic changes
of cluster structures. The dynamic IRM (dIRM) model incorporates a variant of the iHMM model
and represents time-sensitive dynamic properties such as split & merge of clusters. We explained a
generative model of the dIRM, and showed an inference algorithm based on a slice sampler. Exper-
iments with synthetic and real-world time series datasets showed that the proposed model improves
the precision of time-varying relational data analysis. We will apply this model to other datasets to
study the capability and the reliability of the model. We also are interested in modifying the dIRM
to deal with multi-valued observation data.
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