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Abstract

A newly introduced Collapsed variational Bayes (CVB) inference is known for
better inference performance then the original VB. However, CVB has no guar-
antee of convergence unlike VB and maximum likelihood EM algorithm. We
overcome this problem by proposing a simple and easy-to-use CVB algorithm,
called Averaged CVB (ACVB). ACVB has two advantages. First, ACVB poste-
rior update assures convergence thanks to its use of a simple annealing technique.
Second, the stationary point of the CVB lower bound is equivalent to the con-
verged solution of ACVB, if the lower bound has a stationary point (which has yet
to be nailed down in the literature). ACVB is applicable for general probabilistic
models with discrete hidden variables such as LDA, and is equally valid for CVB
and CVB0. We apply ACVB for Infinite Relational Model (IRM), which is a ba-
sic probabilistic model for relational data clustering, and conduct experiments to
validate the performance of ACVB.

1 Introduction

Recently, collapsed variational Bayes (CVB) solutions have been intensively studied as a new in-
ference algorithm for probabilistic models, especially for topic models [16, 2, 14, 13]. The original
paper [16] examined a 2nd-order Taylor approximation of the variational expectation. A simpler 0th
order-approximated CVB (CVB0) has been also developed, and its property was studied in [14] by
using α-divergence. These papers report that CVB and CVB0 yield better inference results than VB
or collapsed Gibbs, in data modeling [11, 16, 2], link predictions, and neighborhood search [13].

However, CVB inference has one drawback: its lack of convergence guarantee makes it differ from
naive VB and maximum-likelihood EM algorithm. This problem, interestingly, has not been much
discussed in the literature. However, this is a tricky and problematic issue for practitioners who are
not familiar with but want to try state-of-the-art machine learning techniques. Users are required to
determine the convergence of CVB inference manually: this is not an easy task for non-expert users.
In that sense, CVB is not as favorable as naive VB and EM algorithms.

In this paper, we propose a simple and easy-to-use CVB algorithm, called Averaged CVB (ACVB),
that overcomes this problem. ACVB has two advantages. First, ACVB posterior update offers
assured convergence thanks to its simple annealing mechanism. Second, the stationary point of
the CVB lower bound is equivalent to the converged solution of ACVB, if the lower bound has a
stationary point (an issue unresolved in the literature). Our formulation is applicable to any model,
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and is equally valid for CVB and CVB0. Convergence-guaranteed ACVB is the preferred choice for
practitioners who want to apply state-of-the-art inference to their problems.

We apply ACVB to the Infinite Relational Model (IRM) [9], which is a relatively simple nonpara-
metric Bayes relational data clustering model. Experiments show that ACVB0, which is a combi-
nation of CVB0 and ACVB, is better than VB and ACVB in terms of test data log likelihood and
computation time to convergence.

2 CVB inference

Let us denote observed data as X, hidden variables as Z, and parameters as Θ. For the time being,
we assume the hidden variables are discrete: like as cluster (topic) indicators in LDA and GMM
models. CVB inference maximizes the following lower bound w.r.t. q(Z):

L (Z) =
∫

q (Z) log
p (X, Z)

q (Z)
dZ. (1)

The above lower bound collapses out the parameter Θ. This lower bound is always tighter than that
of naive VB [16], indicating CVB inference is better than VB.

To derive the variational posterior q of hidden variable zi ∈ Z, we take a partial derivative of Eq. (1)
w.r.t. q(zi) to obtain the stationary point. In general, we have the following update rule [3]:

log q (zi) = EZ\i
[
log p (X, Z)

]
+ (const.) , (2)

where Ey
[
f (x)

]
indicates the expectation of f (x) over the variational posterior q(y), and Z\i indicates

that zi is excluded from Z. Specific forms of Eq. (2) depend on the models solved. Unfortunately,
we cannot exactly evaluate the expectation over q(Z) for CVB. Thus we Taylor-approximate Eq. (1)
and derive the update rules of q. Originally, [16] employed a 2nd-order approximation (CVB). Many
papers (e.g. [2]) claim that the 0th-order approximation (CVB0) performs better in topic models.

Due to this Taylor-approximation, the CVB inference update rules do not correctly maximize the
lower bound Eq. (1). So there is no guarantee that CVB updates monotonically increase the lower
bound. To the best of our knowledge, no researchers have proposed a solution for this problem

3 Proposed: Averaged CVB (ACVB)

To make the CVB inference more useful for practitioners, assured and easy convergence detection
is essential. An easy convergence detection algorithm for CVB would allow non-expert users to use
CVB inference more easily, which has been reported more precise than naive VB and comparable
with collapsed Gibbs.

The theoretical analysis of CVB convergence remains an important but difficult problem. Instead of
tackling the problem theoretically, we propose a simple and easy-to-use technique that offers assured
automatic CVB inference convergence. Our proposal, called Averaged CVB (ACVB), provides a
simple annealing technique. We would like to emphasize that ACVB supports CVB inference on
any model (for discrete hidden variables Z). Moreover, it is equally valid for CVB and CVB0. After
a certain number of iterations for “burn-in”, ACVB gradually decreases the portion of variational
posterior changes using the following equation:

q̄(s+1) =

(
1 − 1

s + 1

)
q̄(s) +

1
s + 1

q(s+1) , or q̄(S ) =
1
S

S∑
s=1

q(s), (3)

where s denotes the iterations after completion of the “burn-in” period, q̄(s) denotes the “averaged”
(or annealed) variational posterior in the sth iteration, q(s) denotes the variational posterior by CVB
inference in the sth iteration, and S is the total number of iterations. After the “burn-in” period, we
monitor the ratio of changes of q̄ and detect convergence when the ratio falls below a predefined
threshold. As the final result, we use q̄(s) instead of q(s). During the burn-in period, we may monitor
the changes of q.

ACVB has the following two merits. The first point is rather evident but makes ACVB useful for
practical CVB inference. ACVB offers assured convergence, and we can easily detect convergence
by taking the difference of q̄ in successive iterations.
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Theorem 1. The averaged variational posterior q̄(s) is convergence-assured: ∀ϵ > 0, ∃S 0, s.t. ∀S >
S 0 ⇒ 1

N
∑N

i=1

∣∣∣q̄(S )
i − q̄(S−1)

i

∣∣∣ < ϵ.
Thus, we can automatically stop ACVB inference by creating a halt rule based on the difference of
ACVB posteriors.

The next point is noteworthy and validates the use of ACVB in Bayesian inference.

Theorem 2. If the variational posterior q(s) converges to a stationary point in the CVB lower bound,
then the averaged variational posterior q̄(s) also converges to a stationary point in the CVB lower
bound.

We want to stress that it remains unknown in the literature as to whether CVB inference has a
stationary point. However, we can still safely use ACVB because it assures convergence of the
inference process and ACVB will find the ”true” solution if CVB has a stationary point. Such
solutions for the convergence of CVB have been never studied, to the best of our knowledge. Please
consult [7] for more technical details.

Hereafter, we denote the (naive) CVB solution and the CVB0 solution, both with ACVB, as the
ACVB solution and the ACVB0 solution, respectively.

4 Experiments on IRM-ACVB

In this section, we apply ACVB inference to the Infinite Relational Model (IRM) [9], which is a
Bayesian nonparametric model for relational data that realizes simultaneous clustering on the row
and column dimensions of a given pairwise relational data matrix. As an extended abstract, we skip
technical details. For readers who are interested, we refer to [7].

We generated two synthetic dense relation datasets. The size and true numbers of clusters of these
datasets were: N1 = 100,N2 = 200,K1 = 4,K2 = 5 (synth 1), and N1 = 1000,N2 = 1500,K1 =
7,K2 = 6 (synth 2).

The first real-world relational dataset is the Enron e-mail dataset [10]. This is a famous relational
dataset used in many studies [15, 5, 6, 8]. We extracted monthly e-mails transactions for 2001. The
dataset contained N = N1 = N2 = 151 company members of Enron. xi, j = 1(0) if there is (not) an
e-mail sent from member i to member j. Out of twelve months, we selected the transactions of June
(Enron Jun.), August (Enron Aug.), October (Enron Oct.), and December (Enron Dec.).

The second real-world relational dataset is the Lastfm dataset.1 This dataset contains several records
for the Last.fm music service, including lists of users’ most listened-to musicians, tag assignments
for artists, and friend relations between users. We employ the friend relations between N = N1 =
N2 = 1892 users (Lastfm UserXUser). xi, j = 1(0) if there is (not) a friend relation from a user i to
a user j. We also employ the artist-tag relations between 17632 artists and 11946 tags. The original
observations are the co-occurrence counts of (artist name, tag) pairs. We binarize the observations
by examining if the (artist name, tag) pair count is greater than 1 or not: i.e. we ignore one single
occasional co-occurrences of (artist name, tag). If the counts are greater than 1, then the observation
entries are set to 1: otherwise, set to 0. Then, all rows (artists) and columns (tags) that have no “1”
entries are removed. The resulting binary matrix consists of N1 = 6099 artists and N2 = 1088 tags
(Lastfm ArtistXTag). xi, j = 1(0) if artist i is (not) associated with the tag word j more than once.

The modeling performances of the inference solutions at K = 20 and K = 60 are presented in
Table 1. They show the averages of test data marginal log likelihood after convergence. Results of
the best hyperparameter setup are presented for each solution. In addition, we conducted t-tests to
examine the statistical significance.

These results reveal the characteristics of the solutions in a few aspects. First, ACVB inferences
are significantly better than those of VB for larger datasets: synth2, and two Lastfm datasets. In
particular, ACVB0 performed better than the others in several cases. This indicates that, as expected,
ACVB inferences are potentially superior to naive VB inferences.

1provided by HetRec2011. http://ir.ii.uam.es/hetrec2011/
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Table 1: 20-run averages of marginal test data log likelihood per test data entry (10% test data).
Larger values are better. Boldface indicates the best method, which is significantly better than the
method(s) marked with ∗ (by t-test, p = 0.05).

Dataset K = 20 K = 60
VB ACVB ACVB0 VB ACVB ACVB0

Synth1 -0.3260 -0.3337 -0.3372* -0.3281 -0.3379* -0.3452*
Synth2 -0.3737* -0.3348* -0.3261 -0.3736* -0.3261 -0.3258
Enron Jun. -0.0547 -0.0559 -0.0540 -0.0569 -0.0572 -0.0563
Enron Aug. -0.0789 -0.0766 -0.0763 -0.0772 -0.0781 -0.0754
Enron Oct. -0.1164* -0.1098 -0.1099 -0.1162 -0.1145 -0.1139
Enron Dec. -0.0693 -0.0686 -0.0685 -0.0682 -0.0686 -0.0690
Lastfm (UserXUser) -0.0287* -0.0271* -0.0267 -0.0287* -0.0272* -0.0267
Lastfm (ArtistXTag) -0.0165* -0.0161* -0.0158 -0.0167* -0.0163 -0.0163

Second, we found no advantage to ACVB inferences over VB for smaller datasets: synth1 and Enron
datasets. Specifically, VB performed significantly better than ACVB on synth1 data. However the
data is artificial, dense and small cross-domain relationships. In general, we don’t face such data
in actual data analysis applications so the results on larger and sparser data cases are much more
informative.

5 Conclusion

We proposed Averaged CVB (ACVB): a simple and easy-to-use solution for convergence guaranteed
Collapsed Variational Bayes (CVB) inference. ACVB assures inference convergence, a goal hither
to missing from CVB studies. Moreover, we proved that the converged posterior of ACVB may
be equivalent to the stationary point of the CVB lower bound. We demonstrated the usefulness of
ACVB by applying it to IRM [9].

As a future work, we will further enhance its inference speed. One possible solution is to stochas-
tically approximate the sample size as in SGD. It is also important to examine the possibility of
ACVB for more complicated relational data including time-series relational data [6, 5, 4] and mixed-
membership models [1, 12]. In theoretical aspect, the convergence property of the original CVB
algorithm for general models (not limited to topic models [14]) is difficult but very important ques-
tion to ask. Finally, we assume that the hidden variables Z are discrete as many generative models
assume so. The current approach of ACVB, however, is not necessarily valid for continuous hidden
variables. For more broader use of ACVB, we need to solve this problem.
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Appendix

In this appendix, we present the proof for theorems (though this is rather evident).

Proof for Theorem 1. The averaged variational posterior q̄(s) is convergence-assured: ∀ϵ >
0, ∃S 0, s.t. ∀S > S 0 ⇒ 1

N
∑N

i=1

∣∣∣q̄(S )
i − q̄(S−1)

i

∣∣∣ < ϵ.
Proof. Since

1
S

S∑
s=1

q(s) =

(
1 − 1

S

)
1

S − 1

S−1∑
s=1

q(s) +
1
S

q(S ),

we have ∣∣∣∣∣∣∣ 1
S

S∑
s=1

q(s) − 1
S − 1

S−1∑
s=1

q(s)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣− 1

S
1

S − 1

S−1∑
s=1

q(s) +
1
S

q(S )

∣∣∣∣∣∣∣
≤ 1

S
1

S − 1

S−1∑
s=1

|q(s)| + 1
S
|q(S )|

≤ 1
S

1
S − 1

(S − 1) +
1
S
=

2
S
.

Thus,

1
N

N∑
i=1

∣∣∣∣∣∣∣ 1
S

S∑
s=1

q(s)
i −

1
S − 1

S−1∑
s=1

q(s)
i

∣∣∣∣∣∣∣ ≤ 2
S
.

If we set S 0 =
2
ϵ
, then ∀S > S 0,

1
N

N∑
i=1

∣∣∣∣∣∣∣ 1
S

S∑
s=1

q(s)
i −

1
S − 1

S−1∑
s=1

q(s)
i

∣∣∣∣∣∣∣ ≤ 2
S
<

2
S 0
= ϵ.

This means

1
N

N∑
i=1

∣∣∣q̄(S )
i − q̄(S−1)

i

∣∣∣ < ϵ.
□

Proof for Thorem 2. If the variational posterior q(s) converges to a stationary point in the CVB
lower bound, then the averaged variational posterior q̄(s) also converges to a stationary point in the
CVB lower bound.

Proof. Let q∗ be a stationary point in the CVB lower bound. From this assumption,

lim
s→∞

q(s) = q∗ ⇔ ∀ϵ > 0,∃s0 s.t. ∀s > s0 ⇒ |q(s) − q∗| < ϵ/2.

Here, we define ∣∣∣∣∣∣∣
s0∑

s=1

(q(s) − q∗)

∣∣∣∣∣∣∣ = M > 0,

and thus,

lim
s→∞

M
s
= 0⇔ ∀ϵ > 0,∃s′0 s.t. ∀s > s′0 ⇒

M
s
< ϵ/2.
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When S 0 = max{s0, s′0}, we have

∀S > S 0, |q̄(S ) − q∗| =
∣∣∣∣∣∣∣

S∑
s=1

1
S

(q(s) − q∗)

∣∣∣∣∣∣∣
<

M
S
+

S∑
s=S 0+1

∣∣∣∣∣ 1
S

(q(s) − q∗)
∣∣∣∣∣

≤ ϵ/2 +
∣∣∣∣∣S − S 0

S

∣∣∣∣∣ ϵ/2 ≤ ϵ/2 + ϵ/2 = ϵ.
Therefore,

lim
s→∞

q̄(s) = q∗.

□
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