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Abstract

This supplemental material provides several details and
omitted results from the main manuscript.

Inference procedure
In this section, we present our inference procedure for the
proposed Infinite Plaid models.

Here are the overview of the inference procedure devel-
opment.

1. We focus on the easiness of derivations and implemen-
tations, than the computational efficiency and the mixing
speed of the posterior.

2. We do not try marginalization of observation function pa-
rameters θ and φ as opposed to the original Bayesian Plaid
model (Caldas and Kaski 2008).

3. For the inference of hidden variables Z = {Z1Z2}, we
took the similar approach of (Meeds et al. 2007): sim-
ple Gibbs samplers for the existing sub-matrix factors,
and Metropolis-Hastings sampler for accepting the new
sub-matrix proposal. In addition, we used split-merge MH
moves for drastic searches over sub-matrix factors, based
on (Jain and Neal 2004).

4. Given Z, we can compute the exact posteriors for the pa-
rameters θ and φ.

5. For hyperparameters, we implemented the hyper-prior
based posterior sampling following (Hoff 2005).

Sampling Z

We rely on a combination of a simple Gibbs sampler and
Metropolis-Hastings samplers for sampling new Z. We ex-
plain how to sample an instance z1,i,k from its posterior, since
the procedure is completely symmetric for other i, k and Z2.
Throughout this section, we use K as the number of cur-
rently instantiated factors (sub-matrices). The Beta variables
λ never appear in the inference implementations since we
can marginalize λ out.
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Sampling for existing sub-matrices For existing factors
k ∈ {1, 2, . . . ,K}, we can sample z1,i,k in a standard IBP man-
ner. First, the posterior of z1,i,k for our Gibbs sampler is for-
mulated as follows:

p
(
z1,i,k |Z\(i,k)

1 , Z2, X, θ, φ
)
∝ p

(
z1,i,k |Z\(i,k)

1

)
p
(
X(1,i)|z1,i,k, Z\(i,k)

1 , Z2, θ, φ
)
.

(1)

Z\(i,k)
1 is Z1 excluding z1,i,k, X(1,i) =

{
xi, j

}
, j = 1, 2, . . . ,N2.

Since z1,i,k is either 1 or 0, we want to compute the ratio of
p(z=1)
p(z=0) .

The of the first part of the r.h.s. of Eq. (1) is the prior part
which derives from IBP. Its form is well known (Griffiths
and Ghahramani 2011; Doshi-Velez et al. 2009). The ratio
between z = 0 and z = 1 is:

m1,k − z1,i,k

N1 − m1,k + z1,i,k
, (2)

where m1,k =
∑

i I
(
z1,i,k = 1

)
.

The second part of the r.h.s. of Eq. (1) is the likelihood
part. With straightforward but cumbersome computations,
we have the following equation for the ratio:∏

j
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τ0
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2, j,kθ
2
k − 2z2, j,kθkyi, j,k

}]
, (3)

where
yi, j,k = xi, j − φ −

∑
l\k

z1,i,lz2, j,lθl .

Then the probability of z1,i,k = 1 is:

Eq. (2) × Eq. (3)
1.0 + Eq. (2) × Eq. (3)

.

MH move for new sub-matrices A problem of our Two-
way IBP is that we need to align indices and the number
of instantiated sub-matrices K between two domains Z1 and
Z2. Thus we need a special treatment for sampling new fac-
tors for z1,i,k as it effects on the cardinality of Z2.

Our MH sampling scheme follows (Meeds et al. 2007).
First, we sample a number of new sub-matrices to be added
to the model following the standard IBP definition:

knew ∼ Poisson
(
α1

K

)
.



We denote the new factors by l = 1, 2, . . . , knew. Now the pro-
posal of z1,i has additional assignments on new sub-matrices:
z∗1,i,l = 1. At the same time, we draw knew times for new θ
from its prior:

θ∗l ∼ Normal
(
µθ, (τθ)−1

)
.

Different from (Meeds et al. 2007), the Two-way IBP re-
quires additional draws of z2, j,l for all j in the second do-
main. We extend Z2 by N2 × knew empty entries, and put
assignments by the following prior:

z∗2, j,l ∼ Bernoulli
(

α2

α2 + N2

)
.

Finally we accept the proposal by the following accep-
tance rate (Meeds et al. 2007):

min

1, p
(
X|Z1, Z2, z∗1,i,l, z

∗
2, j,l, θ

∗
l , knew, θ, φ, τ0

)
p (X|Z1, Z2, θ, φ, τ0)


Split-merge MH moves of sub-matrices To speed up
mixing of Z, we also implement the split-merge MH sam-
pler for sub-matrices. Its implementation is straightforward:
we follow the idea of (Meeds et al. 2007) that rely on the
paper about MH for Dirichlet Process (Jain and Neal 2004).

Sampling θ and φ
Given the current Gibbs samples of the hidden assignment
variables Z1 and Z2, sampling of remaining parameters θ
and φ are straightforward. Posteriors of θk and φ are com-
puted as follows:

p
(
θk |X, Z, θ\k, φ

)
= Normal

(
τθµθ + Mkτ0ȳk

τθ + Mkτ0
,
(
τθ + Mkτ0

)−1
)
,

p (φ|X, Z, θ, φ) = Normal
(
τφµφ + N1N2τ0ȳφ
τφ + N1N2τ0

,
(
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)−1
)
.

In the above equations,
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Sampling hyperparameters
We can further infer the hyperparameter values of the Infi-
nite Plaid models. There are a few ways to estimate hyperpa-
rameters. One is to directly optimize hyperparameters (pos-
sibly by numerical gradients) to maximize the marginalized
log likelihoods. Another is to perform posterior samplings
by assuming ”flat” hyper priors on those hyperparameters.

In our implementations, we took the second approach. We
refer (Hoff 2005) for an efficient and easy implementations
of hyper prior-based estimations.

Experiment details
Likelihoods as a evaluation measure
We first considered the test data log likelihood as a pri-
mal quantitative measure without ground-truth information.
Given the full observation matrix, we randomly keep a small
portion (10%) of the matrix entries as test data, and com-
pute the likelihoods. However, in preliminary experiments
we found the log likelihood does not effectively present the
goodness of the extracted sub-matrices computed by NMI
(based on the ground truth). One possible reason is that
the likelihood is computed over all matrix entries including
the majority ”non-interesting” ones that are not proactively
modeled. Therefore we do not adopt the test data log likeli-
hood for evaluation.

Fig. 1 presents the test data log likelihoods on synthetic
data sets. There was not so much differences in likelihoods
between two models. We found the same impressions on
real-world data sets.

Inference
All the latent variables of the Bayesian Plaid model are in-
ferred by collapsed Gibbs samplers, similar to the proposed
Infinite Plaid model. For hyperparameters, we adopted two
strategies for the both models: (i) no updates or (ii) infer
them simultaneously by hyper-prior sampling.

Synthetic data experiments
Data The first data (synth1) has K = 3 non-overlapping sub-
matrices. All parameters for the second data (synth2) is the
same with the first one, excepting slight overlaps between
sub-matrices. All θk for synth1 and synth2 are set to the same
value. The third and fourth (synth3, synth4) datasets have
K = 4 overlapping sub-matrices. Instead of larger complexi-
ties (K), sub-matrices in the synth3 and synth4 have different
θks from each other.

Initialization. Before conducting inference, we first ini-
tialize values of Z1, Z2, θ, and φ for both models. For the
Bayesian Plaid models, we choose a specific K and initial-
ize the model parameters according to the generative model.
For the Infinite Plaid models, we may use the original gener-
ative model. However, in this paper, we want to show robust-
ness of the Infinite Plaid models under incorrect assumptions
of K. Thus, we dare to initialize the values of Z of Infinite
Plaid models with the Bayes Plaid models with fixed K. We
expect Infinite Plaid models can find a better K through in-
ference, while K-fixing Bayesian Plaid models suffer from
incorrect K. After inferences, we evaluated two models us-
ing the quantitative measures discussed earlier.

Hyperparameters. Two models have the four sets of hy-
perparameters. First one is the hyperparameter set for λ (Z)
prior: aλ1,2, b

λ
1,2 for Bayesian Plaid models, and α1,2 for In-

finite Plaid Models. Second is the hyperparameter set for
θ prior: µθ, τθ. Third is the hyperparameter set for φ prior:
µφ, τφ. And finally we have τ0 for the observation function.
To focus on the impact of the initial sub-matrix numbers,
we initialized all the hyperparameters of the models to the
true values i.e. hyperparameters used in synthesizing the
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Figure 1: Averaged test data log likelihoods on synth4 data set. All log likelihoods are averaged over Gibbs iterations to obtain
posterior averages. H.I. indicates that the hyperparameter inference is employed. Averages and standard deviations of 20 runs
are presented.

Table 1: The averages and the standard deviations of the in-
ferred final K by the Infinite Plaid models.

Kinit = Ktrue Kinit = 5 Kinit = 10
Synth 1 (Ktrue = 3) 2.86 ± 0.25 5.23 ± 2.65 7.45 ± 4.63
Synth 2 (Ktrue = 3) 2.87 ± 0.44 4.16 ± 2.08 7.56 ± 4.11
Synth 3 (Ktrue = 4) 4.32 ± 0.39 4.22 ± 0.42 4.53 ± 0.85
Synth 4 (Ktrue = 4) 4.00 ± 0.25 4.77 ± 1.03 4.96 ± 1.36

data (excepting α for Infinite Plaid models). These hyperpa-
rameters are either (i) fixed during inferences or (ii) inferred
simultaneously. In the manuscript, we only presented the re-
sults of (ii): all hyperparameters are inferred simultaneously.

Number of bi-clusters found. Table 1 presents the av-
erages and the standard deviations of the final K inferred by
the Infinite Plaid models on synthetic data sets. The numbers
are in good accordance with the NMI measures. In general,
the inference of K naturally becomes harder with the larger
Kinit. Kinit = 10 for Synth1, 2 seems very difficult, judging
from the averages. Larger standard deviations imply that the
inference are trapped with local solutions with a variety of
Ks.

Real-world data experiments
Pre-processing. For Enron datasets, we scaled the E-mail
count values by log(1+x) where x is the actual E-mail count,
to fit the Normal distribution. For Lastfm dataset, we remove
all artists who have been tagged at most one word, and re-
move all tags that have been attached at most to one artist
because we are interested in sub-matrices that group multi-
ple objects.

Hyperparameters. It is fundamentally difficult to deter-
mine the best hyperparameters without the ground-truth in-
formation. In this experiment, we heuristically determined
the initial values of hyperparameters. Collected real-world
datasets are very sparse, which means that most of matrix
entries are zero-valued. Thus we set the hyperparameters for
φ (µφ, τφ) so that the distribution of φ concentrates near zero.
We compute the averages and variance of non-zero entries,
and use them as the hyperparameters for θ (µθ, τθ). For τ0,
we use the inverse of variances of the whole matrix data.
These hyperparameters are either (i) fixed during inferences
or (ii) inferred simultaneously. In the manuscript, we only

presented the results of (ii): all hyperparameters are inferred
simultaneously.

Result on Enron Aug. Data. Fig. 2 presents an example
of sub-matrices from Enron Aug. data. The k = 6th sub-
matrix (purple colored) is a cluster of VIP members. Note
that the receivers consist of several Presidents, legal per-
sons and the risk management head. We may imagine that
some fatal problems are reported to these important per-
sons to settle them. Another interesting sub-matrix is the
k = 3rd (green colored) sub-matrix. This sub-matrix con-
tains only one sender (1st domain object), who is the founder
of Enron. He sends e-mails to many employees includ-
ing many VIPs of group companies. (Ishiguro et al. 2010;
Ishiguro, Ueda, and Sawada 2012) also found a similar par-
tition, concluding that this specific relations suit well to the
fact that ”the founder actually made an announcement to
calm down the public” ((Ishiguro et al. 2010)) concerning
the resign of the Enron CEO at that time.

Result on Enron Nov. Data. Fig. 3 presents an example
of sub-matrix extraction from Enron Nov. data. The k = 1st
sub-matrix (red colored) sub-matrix is a VIP + legal expert
community similar to the 8th sub-matrix at Enron Oct. data.
Interestingly, there are a more bi-directional connections be-
tween executives than other months, implying more frequent
contacts among VIPs at one month before the bankruptcy.
The k = 2nd sub-matrix (orange colored) represents a small
and tightly connected community. Unfortunately, we cannot
examine details of the membership because included objects
lacks demographic information, but we point out that the
same community (with same members) appeared in all four
datasets. One particular sub-matrix that was never found in
other dataset is the k = 8th sub-matrix (sky-blue colored).
This is a small community of traders and cash analysts.

Demonstration code sources
A Matlab implementation of the Baysian Plaid models and
the Infinite Plaid models with simpler observation models
is published in the GitHub: https://github.com/k-ishiguro/
InfinitePlaidModels
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