
Meta-learning Task-specific Regularization Weights
for Few-shot Linear Regression

Tomoharu Iwata Atsutoshi Kumagai Yasutoshi Ida
NTT Corporation

Abstract

We propose a few-shot learning method for
linear regression, which learns how to choose
regularization weights from multiple tasks
with different feature spaces, and uses the
knowledge for unseen tasks. Linear regres-
sion is ubiquitous in a wide variety of fields.
Although regularization weight tuning is cru-
cial to performance, it is difficult when only
a small amount of training data are avail-
able. In the proposed method, task-specific
regularization weights are generated using
a neural network-based model by taking a
task-specific training dataset as input, where
our model is shared across all tasks. For
each task, linear coefficients are optimized
by minimizing the squared loss with an L2
regularizer using the generated regularization
weights and the training dataset. Our model
is meta-learned by minimizing the expected
test error of linear regression with the task-
specific coefficients using various training
datasets. In our experiments using synthetic
and real-world datasets, we demonstrate the
effectiveness of the proposed method on few-
shot regression tasks compared with existing
methods.

1 INTRODUCTION

Linear regression is used in many fields (Bzovsky et al.,
2022; Jarantow et al., 2023; Yuan et al., 2020; Mu
et al., 2020) since it is interpretable, it often performs
well on small tabular data, and it is computationally
efficient. In linear regression, the coefficients directly
represent the relationship between feature and target

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

variables, and the influence of each feature on each
prediction is straightforwardly calculated. For linear
regression, regularization is important to achieve a
high generalization performance especially when the
number of features is large compared with the num-
ber of training instances. For example, ridge regres-
sion (Hoerl and Kennard, 1970) uses a linear model
with an L2 regularizer to shrink the coefficients to-
wards zero, where a regularization weight is used to
control the amount of regularization. The weight
needs to be tuned appropriately for each task. For
tuning the weight, cross-validation (Arlot and Celisse,
2010; Zhang and Yang, 2015) has been widely used.
However, it is difficult in few-shot settings, i.e., only a
small number of training instances are given. In many
applications, enough training data can be unavailable
in tasks of interest since collecting data requires high
costs and is time-consuming.

In this paper, we propose a neural network-based
method that meta-learns how to choose task-specific
regularization weights using various datasets with dif-
ferent feature spaces for improving the generalization
performance of few-shot linear regression. Since simi-
lar datasets would be likely to have similar appropriate
regularization weights, we learn knowledge on their
tuning that can be shared across datasets via meta-
learning, and use it for unseen datasets. Our model,
which is shared across all tasks, generates task-specific
regularization weights given a small number of training
data, called a support set, in each task. Then, task-
specific coefficients are optimized by minimizing the
squared error with an L2 regularizer using the gen-
erated regularization weights and support set. The
task-shared model parameters are optimized by mini-
mizing the expected test error with an episodic train-
ing framework (Snell et al., 2017; Finn et al., 2017).
Figure 1 illustrates our meta-learning framework.

Our model generates a task-specific regularization
weight for each feature, which enables us to regularize
coefficients more flexibly than a scalar regularization
weight shared for all features. To generate feature-
specific regularization weights, we design our model

Meta-learning for Few-shot Linear Regression

Figure 1: Our framework of meta-learning. In the meta-training phase, we meta-learn our model using meta-
training datasets {Dt}Tt=1. In the meta-test phase, we generate task-specific linear coefficients β̂S from support
set S with a few labeled data in an unseen task using the meta-trained model. The coefficients are used for
predicting target values. Feature spaces are different across datasets.

to have the permutation equivariant property (Zaheer
et al., 2017); when input features are permuted, output
regularization weights are also permuted accordingly.
In particular, we use attention mechanisms (Vaswani
et al., 2017; Iwata and Kumagai, 2023), where atten-
tion between instances and attention between feature
and target values are alternately iterated. By the
model, we can encode the information of the given
support set considering relationship between feature
and target values of all the instances, which is use-
ful for finding appropriate task-specific regularization
weights. Our model can handle datasets with differ-
ent feature spaces, different numbers of features, and
different numbers of instances, which enables us to
meta-learn knowledge from a wide variety of datasets
and apply it to tasks with new feature spaces that
are unseen in the meta-training phase. Our meta-
learning framework is formulated as a bilevel optimiza-
tion, where task-shared model parameters are opti-
mized by minimizing the expected test error in the
outer optimization, while coefficients are adapted to
a support set for each task in the inner optimization.
Since our inner optimization problem can be solved in
a closed form, we can perform the bilevel optimization
efficiently by backpropagating the outer loss through
the inner optimization to update the model parame-
ters by stochastic gradient methods.

Our main contributions are summarized as follows:
1) We propose a method for generating task-specific
regularization weights in linear regression by meta-
learning from various datasets for the first time. 2)
We develop a neural network-based model that gener-
ates task-specific linear coefficients given training data,
which can handle data with different feature spaces.
3) Using synthetic and real-world datasets, we demon-
strate that the proposed method achieves better gener-
alization performance than existing meta-learning and
cross-validation methods.

2 RELATED WORK

Regularization weights are usually tuned by minimiz-
ing the validation error (Franceschi et al., 2018; Ji
et al., 2021; Bischl et al., 2023; Stephenson et al.,
2021). For ridge regression, efficient algorithms
for leave-one-out cross-validation have been devel-
oped (Patil et al., 2021). Although optimizing the
cross-validation error consistently estimates the op-
timal regularization weight as the number of in-
stances grows proportionally with the number of fea-
tures (Patil et al., 2021; Hastie et al., 2022), it does
not guarantee the optimality in the overparameterized
setting, i.e., the number of features is larger than the
number of instances. Asymptotic theoretical analysis
for overparameterized ridge regression has been stud-
ied (Wu and Xu, 2020; Kobak et al., 2020; Hastie et al.,
2022; Bartlett et al., 2020). However, it is inapplica-
ble to the few-shot setting. Bayesian methods have
also been proposed for tuning the weights (MacKay,
1994; Tipping, 2001; Tew et al., 2023). Although a
unimodal posterior of a Bayesian formulation of ridge
regression is proved for a large enough number of
training data (Tew et al., 2023), regularization weight
tuning is difficult with a small number of training
data. Multi-task learning methods have been proposed
that share regularizers across tasks for linear regres-
sion (Zhou et al., 2010; Hallac et al., 2015; Yamada
et al., 2017; De Oliveira et al., 2019). However, they
require datasets in target tasks for training and are
inapplicable to unseen tasks. In addition, they require
that the feature space is identical for all tasks. On the
other hand, the proposed method does not need tar-
get tasks for meta-learning and can share knowledge
among tasks with different feature spaces.

Many meta-learning, or few-shot learning, methods
have been proposed (Schmidhuber, 1987; Bengio et al.,
1991; Ravi and Larochelle, 2017; Andrychowicz et al.,
2016; Vinyals et al., 2016; Snell et al., 2017; Finn
et al., 2017; Oreshkin et al., 2018; Guo and Che-

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

ung, 2020), which include methods that can handle
datasets with different feature spaces (Iwata and Ku-
magai, 2020; Zhu et al., 2023; Iwata and Kumagai,
2023). However, they use black-box models for predic-
tion, and therefore, it is hard to interpret them (Rudin,
2019). On the other hand, the prediction with the
proposed method is interpretable since it is based
on linear models although neural networks are used
for generating regularization weights. Several meta-
learning methods for linear regression have been pro-
posed (Rusu et al., 2019; Kong et al., 2020; Zhang
et al., 2024; Thekumparampil et al., 2021b,a). Model-
agnostic meta-learning (Finn et al., 2017) is applicable
to linear regression. Adaptive learning of hyperparam-
eters for fast adaptation (Baik et al., 2020) estimates
L2 regularization weights in meta-learning. However,
these methods assume an identical feature space across
different tasks, and cannot meta-learn from tasks with
heterogeneous feature spaces. Our model is related
to encoder-decoder-based meta-learning (Xu et al.,
2020), such as neural processes (Garnelo et al., 2018;
Kim et al., 2019), where a support set is encoded
and predictions are decoded by neural networks. Our
model encodes a support set and decodes regular-
ization weights by neural networks. The proposed
method can perform the inner optimization in a closed
form, unlike model-agnostic meta-learning (Finn et al.,
2017), which requires iterative optimization proce-
dures. Although ridge regression differentiable dis-
criminator (Bertinetto et al., 2018) analytically ob-
tains task-adapted coefficients for meta-learning, it
uses ridge regression on encoded features by neural
networks and is inapplicable to linear regression on
original features.

3 PROPOSED METHOD

3.1 Problem formulation

In the meta-training phase, we are given meta-
training datasets {Dt}Tt=1 from T tasks, where Dt =
{(xtn, ytn)}Nt

n=1 is the labeled data of the tth task,
xtn ∈ RMt

t is the feature vector of the nth instance
in the tth task, ytn ∈ R is its target value, and Nt

is the number of instances. In the meta-test phase,
we are given a small number of labeled data S =
{(xn, yn)}Nn=1, which is the support set, from an un-
seen meta-test task that is different from but related to
the meta-training tasks. Here, xn ∈ RM and yn ∈ R.
We are also given unlabeled data, which are called
the query set, from the meta-test task. Our aim is
to obtain a linear regression model that achieves high
prediction performance on the query set in meta-test
tasks. The feature space and number of features can
be different across tasks.

3.2 Model

Our model takes support set S = {(xn, yn)}Nn=1 of a
task as input, where xn ∈ RM and yn ∈ R. The output
of our model is task-specific coefficients β̂S ∈ RM+1,
which are used to predict the target value by ŷ = β̂>S x′,
where ′ represents the concatenation of one for the bias
term, i.e., x′ = [x>, 1]> ∈ RM+1. The proposed model
can handle support sets with different feature spaces,
different numbers of features M and different numbers
of instances N .

We consider desired properties of models for generat-
ing coefficients from a support set. First, the model
needs to be permutation equivariant on features and
permutation invariant on instances. Namely, when the
input features are permuted, the output coefficients
are also permuted accordingly; when the instances in
the support set are permuted, the output coefficients
are unchanged. This is because the order of the fea-
tures and instances should not affect coefficients. Sec-
ond, the model needs to consider all feature and target
values in the support set since the characteristics of a
coefficient depend on not only all values of the feature
but also values of the other features and target.

We design our model to have these desired properties
as follows. First, feature and target values are encoded
into embedding vectors for each feature and for each
target (Section 3.2.1). Second, the embedding vec-
tors are transformed by alternately performing atten-
tion between instances and between feature and target
variables and by position-wise neural networks (Sec-
tion 3.2.2). Third, task-specific regularization weights
λ are obtained from the transformed embedding vec-
tors using permutation invariant neural networks (Sec-

tion 3.2.3). Finally, task-specific coefficients β̂S are
analytically obtained by minimizing the squared er-
ror with the L2 regularization (Section 3.2.4). Algo-
rithm 1 shows the forwarding procedure of our model,
and Figure 2 illustrates it. Extensions of our model
to multiple target variables, classification tasks, linear
basis function models, and coefficient prior generation
are described in Appendix A.

3.2.1 Initial encoding of feature and target
values

First, we encode feature and target values for each
instance, feature, and target using the following initial
encoder,

z0nm =

{
fx(xnm), m = 1, . . . ,M,
fy(yn), m = M + 1,

(1)

where fx : R → RH0 and fy : R → RH0 are the feed-
forward neural networks, xnm ∈ R is the mth feature

Meta-learning for Few-shot Linear Regression

Figure 2: Our model for estimating task-specific coefficients β̂S from support set S.

Algorithm 1 Forwarding procedure of our model.

Input: Support set S = {(xn, yn)}Nn=1.

Output: Task-specific coefficients β̂S adapted to S.
1: Calculate initial embedding vectors
{{z0nm}Nn=1}M+1

m=1 from S by initial encoders
in Eq. (1).

2: for ` = 1, . . . , L do
3: Calculate query {{q`nm}Nn=1}M+1

m=1 , key
{{k`nm}Nn=1}M+1

m=1 , and value {{v`nm}Nn=1}M+1
m=1

vectors by Eq. (2).
4: if ` is an odd number then
5: Calculate output tensor {{o`nm}Nn=1}M+1

m=1

by performing attention across instances by
Eqs. (3,5).

6: else
7: Calculate output tensor {{o`nm}Nn=1}M+1

m=1 by
performing attention across feature and target
variables by Eqs. (4,5).

8: end if
9: Calculate embedding vectors {{z`nm}Nn=1}M+1

m=1

using position-wise neural networks in Eq. (6).
10: end for
11: Calculate regularization weights λ using
{{zLnm}Nn=1}M+1

m=1 by Eqs. (7,8).

12: Calculate task-specific coefficients β̂S using S and
λ by regularized error minimization in Eq. (10) or
Eq. (11).

of the nth instance, and z0nm ∈ RH0 is an initial em-
bedding vector. All features are encoded using the
same neural network fx. We use different neural net-
works for the features and the target since they have
different effects on appropriate regularization weights.

3.2.2 Attention between instances and
between feature and target variables

Let {{z`nm}Nn=1}M+1
m=1 be a set of embedding vectors at

the `th layer. We transform embedding vectors by al-

ternately performing attention across instances and at-
tention across feature and target variables using multi-
head variable-feature self-attention (MVSA) (Iwata
and Kumagai, 2023). With MVSA, we can flexibly ob-
tain embedding vectors that contain information about
other instances and other feature and target variables
while keeping the permutation equivariance.

In particular, in the `th layer, query q` ∈ RHK
` , key

k` ∈ RHK
` , and value v` ∈ RHV

` vectors are calculated
for each instance n = 1, . . . , N and for each variable
m = 1, . . . ,M + 1 using embedding vectors at the pre-
vious layer by

q`nm = WQ
` z`−1,n,m, k`nm = WK

` z`−1,n,m,

v`nm = WV
` z`−1,n,m, (2)

where WQ
` ∈ RHK

` ×H`−1 , WK
` ∈ RHK

` ×H`−1 , and

WV
` ∈ RHV

` ×H`−1 are linear projection matrices.

Variable-feature self-attention (VSA) calculates atten-
tion weights by the dot-product between the query and
keys, and updates the embedding tensor by aggregat-
ing values using the attention weights (Iwata and Ku-
magai, 2023). In the odd-numbered layers, the atten-
tion is performed across instances,

VSA`nm =

N∑
n′=1

softmax

 q>`nk`n′√
(M + 1)HK

`

v`n′m,

(3)

where q`n = [q`n1; . . . ; q`,n,M+1] ∈ R(M+1)HK
` and

k`n′ = [k`n′1; . . . ; k`,n′,M+1] ∈ R(M+1)HK
` are query

and key vectors concatenated for all feature and tar-
get variables for the nth and n′th instances, softmax
is the softmax function normalized over instances n′,
and VSA`nm ∈ RHV

` . By Eq. (3), embedding vec-
tors are updated using embedding vectors of other in-
stances. In the even-numbered layers, the attention is

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

performed across variables,

VSA`nm =

M+1∑
m′=1

softmax

q>`mk`m′√
NHK

`

v`nm′ , (4)

where q`m = [q`1m; . . . ; q`Nm] ∈ RNHK
` and k`m′ =

[k`1m′ ; . . . ; k`Nm′] ∈ RNHK
` are query and key vectors

concatenated for all instances for the mth and m′th
variables, softmax is the softmax function normalized
over variables m′, and VSA`nm ∈ RHV

` . By Eq. (4),
embedding vectors are updated using embedding vec-
tors of other variables.

Multi-head variable-feature self-attention (MVSA)
concatenates a set of VSAs by

o`nm = WO
` [VSA`nm1; . . . ; VSA`nmR] ∈ RHO

` , (5)

where R is the number of heads, VSA`nmr ∈ RHV
`

is the rth VSA, linear projection matrices are differ-
ent across heads, [VSA`nm1; . . . ; VSA`nmR] ∈ RRHV

` is

their concatenation, and WO
` ∈ RHO

` ×RHV
` is a linear

projection matrix.

As in Transformers (Vaswani et al., 2017), a position-
wise feed-forward neural network is applied for each
instance n = 1, . . . , N and for each variable m =
1, . . . ,M+1 after each of the MVSA layers to increase
expressiveness,

z`nm = WR
` o`nm + f`(LN`(o`nm)), (6)

where WR
` ∈ RH`×HO

` is a linear projection matrix,

f` : RHO
` → RH` is a feed-forward neural network, and

LN` is a layer normalization.

3.2.3 Regularization weight generators

After L layers of MVSA and position-wise neural net-
works, final embedding vectors {{zLnm}Nn=1}M+1

m=1 are
obtained, where zLnm ∈ RHL . Using the final embed-
ding vectors, we generate regularization weights for
each feature, λ = [λ1, . . . , λM+1]> ∈ RM+1

>0 . With
the feature-specific regularization weights, we can reg-
ularize coefficients flexibly (Hoerl and Kennard, 1970;
Maruyama and Strawderman, 2005; Mori and Suzuki,
2018; Wu and Xu, 2020). Regularization weight λm ∈
R>0 for the mth feature is calculated from final embed-
ding vectors {zLnm}Nn=1 of the feature by aggregating
them using average pooling,

λm = fM

(
1

N

N∑
n=1

zLnm

)
, m = 1, . . . ,M, (7)

where fM : RHL → R>0 is a feed-forward neural net-
work. Eq. (7) is a permutation invariant neural net-
work over instances, which does not change the output

with the permutation of instances, due to the permu-
tation invariant operation of average pooling (Zaheer
et al., 2017). Regularization weight λM+1 for the bias
term is calculated using a set of all final embedding
vectors {{zLnm}Nn=1}M+1

m=1 since the bias term depends
on all of the feature and target variables,

λM+1 = fB2

(
1

M + 1

M+1∑
m=1

fB1

(
1

N

N∑
n=1

zLnm

))
,

(8)

where fB1 : RHL → RH and fB2 : RH → R>0 are
feed-forward neural networks. Eq. (8) is a permutation
invariant neural network over instances and variables.
To make λm be always positive, we use the exponential
function at the last layer in fM and fB2.

3.2.4 Task-specific coefficient estimation by
regularized error minimization

Using regularization weights λ obtained by Eqs. (7,8),

task-specific coefficients β̂S are estimated by minimiz-
ing the squared error on support set S with a weighted
L2 regularizer,

β̂S = argmin
β

1

N
‖ y −X′β ‖2 +β>diag(λ)β, (9)

where diag(λ) ∈ R(M+1)×(M+1) is the diagonal ma-
trix with the elements of λ as the diagonal, y =
[y1, . . . , yN]> ∈ RN is the vector of the support tar-
get values, and X′ = [x′1; . . . ; x′N]> ∈ RN×(M+1) is the
matrix of the support feature vectors.

Eq. (9) can be solved in a closed form by

β̂S =
(
diag(λ) + X′>X′

)−1
X′>y. (10)

Since it requires the inverse of a matrix of size (M +
1)× (M + 1), its computational complexity is O(M3).
When number of features M is larger than number of
instances N , we can reduce the complexity by rewrit-
ing Eq. (10) by the Woodbury formula,

β̂S = diag(λ−1)X′>
(
I + X′diag(λ−1)X′>

)−1
y,
(11)

where its complexity is O(N3). Since we consider few-
shot settings, we use Eq. (11). All of the operations in
our model in Eqs. (1–11) are permutation equivariant
on features, and permutation invariant on instances.

3.3 Meta-learning

Let θ be our model parameters, which consist of pa-
rameters in neural networks fx, fy, f` for each layer
` = 1, . . . , L, fM, fB1, and fB2, linear projection matri-
ces WQ

` , WK
` , WV

` , WO
` , and WR

` for each layer, and

Meta-learning for Few-shot Linear Regression

parameters in layer normalization LN` for each layer.
Since model parameters θ are shared across different
datasets, we can store common knowledge for gen-
erating regularization weights that are useful in var-
ious datasets. To make our model generate appropri-
ate tasks-specific regularization weights that achieve
high generalization performance in linear regression,
we train model parameters θ by minimizing the fol-
lowing expected test squared error

θ̂ = argmin
θ

Et

E(S,Q)∼Dt

 1

|Q|
∑

(x,y)∈Q

‖ y − β̂>S x′ ‖2
,

(12)

where Et is the expectation over meta-training tasks,
Q ⊂ Dt is a query set that is a subset of meta-
training dataset Dt and does not overlap with support
set Q ∩ S = ∅, E(S,Q)∼Dt

is the expectation over sup-
port and query sets generated from Dt, and |Q| is the
query set size. With the squared errors of the query
set that are different from the support set used for es-
timating the coefficients, we can evaluate the general-
ization error. Eq. (12) can improve the generalization
performance in the meta-test phase under the assump-
tion that the task distributions are identical between
the meta-training and meta-test phases.

Algorithm 2 shows the meta-training procedure of
the proposed model. The expectation in Eq. (12) is
approximated with the Monte Carlo method, where
tasks, support sets, and query sets are randomly sam-
pled from the given meta-training datasets at Lines 3
and 4. By generating various tasks from the meta-
training datasets, we can expect that our model can
estimate coefficients properly for unseen tasks. Line 5
corresponds to the inner optimization of estimating
task-specific coefficients with regularized training er-
ror minimization. Line 7 corresponds to the outer op-
timization.

4 EXPERIMENTS

4.1 Synthetic data

4.1.1 Data

We first evaluated the proposed method on syn-
thetic tasks. For each task, data were gen-
erated from one of three classes, p(Dt) =∑K

k=1 p(k)
∏Nt

n=1N (xtn|µk, I)N (ytn|β>k x, 10−3),
where K = 3, p(k) = 1

K , N (·|µ,Σ) is Gaussian with
mean µ and covariance Σ, µk is the mean of the kth
class, and βk is coefficients of the kth class. A class
was randomly assigned to each task. The number of
features was ten for all tasks. Coefficients βk were
sparse, where only k ∈ {1, 2, 3} elements had non-zero

Algorithm 2 Meta-learning procedure of our model.

Input: Meta-training data {Dt}Tt=1, support set size
NS, query set size NQ.

Output: Trained model parameters θ.
1: Initialize model parameters θ.
2: while End condition is satisfied do
3: Randomly select task t from {1, · · · , T}.
4: Randomly sample support set S of size NS

and query set Q of size NQ from meta-training
dataset Dt, where S,Q ⊂ Dt, and S ∩ Q = ∅.

5: Optimize task-specific coefficients β̂S using Al-
gorithm 1.

6: Compute the mean squared error on the query
set using the estimated task-specific coefficients,

1
|Q|
∑

(x,y)∈Q ‖ y − β̂>S x′ ‖2.

7: Update model parameters θ using a stochastic
gradient method.

8: end while

values for a task with the kth class. The non-zero
values in coefficients and mean µk were generated
uniform randomly in [−1, 1]. Linear coefficients βk

and feature vector x were randomly permuted over
features for each task to have different feature spaces
aross tasks. The meta-training, meta-validation, and
meta-test tasks were 70, 10, and 20, respectively. The
number of instances per meta-training task was 100.
The support set size was NS = 5, and the query set
size was NQ = 10.

4.1.2 Settings

For all neural networks fx, fy, f` for ` = 1, . . . , L,
fM, fB1, and fB2 in our model, we used three-layered
feed-forward neural networks with 128 hidden units
and leaky rectifier linear unit activation functions.
A part of initial encoders fx and fy were shared,
where the difference was modeled by inputting a bi-
nary value as follows, fx = f0(·, 0), fy = f0(·, 1), and
f0 : R2 → RH0 . All of the embedding dimensions were
set to H0 = H` = HK

` = HV
` = HO

` = H = 128. We
used MVSA layers with R = 4 heads and L = 6 layers.
For meta-learning, we used Adam (Kingma and Ba,
2015) with learning rate 10−4, and a batch size of 32
tasks. The maximum number of meta-training epochs
was 100 for synthetic data and 5,000 for OpenML data,
and the meta-validation datasets were used for early
stopping. The code of the proposed method is avail-
able at https://www.kecl.ntt.co.jp/as/members/

iwata/meta_linear.html.

4.1.3 Results

Figure 3 shows examples of the estimated regulariza-
tion weights and coefficients by the proposed method,

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

Task1

Task2

(a) True β (b) λ by ours (c) β̂S by ours (d) β̂S by ridge

Figure 3: Examples of (a) true coefficients β in synthetic data, (b) estimated regularization weights λ by the

proposed method, (c) estimated coefficients β̂S by the proposed method, and (d) estimated coefficients β̂S by
ridge regression in two meta-test tasks, where the Task1’s class is k = 1, and the Task2’s class is k = 3. The
horizontal axis is the feature index.

and the estimated coefficients by ridge regression with
a regularization weight tuned with leave-one-out cross-
validation for each task. The estimated regularization
weights by the proposed method for non-zero true co-
efficients were relatively small, e.g., the sixth feature
in Task1. The average of the estimated regularization
weights for non-zero true coefficients was 0.018, and
that for zero true coefficients was 0.264. This result
suggests that the proposed method can properly esti-
mate regularization weights using meta-learned knowl-
edge. The estimated regularization weights were dif-
ferent across tasks, which demonstrates that the pro-
posed method can flexibly determine the weights de-
pending on a few observed data. Ridge regression uses
a single regularization weight shared for all features,
and the weight is estimated using only the support set
based on cross-validation. On the other hand, the pro-
posed method uses different weights across features,
and the task-specific weights are estimated using the
support set and meta-learned knowledge. Therefore,
the estimated coefficients by the proposed method
were closer to the true coefficients than those by ridge
regression. From the estimated coefficients as shown
in Figure 3(c), we can directly understand the influ-
ence of each feature on prediction, which is unavailable
for nonlinear regression models. The performance was
evaluated by the test mean squared error on the meta-
test datasets averaged over the ten experiments with
different dataset splits. The test mean squared error
by the proposed method was 0.355 with standard er-
ror 0.014, and that by ridge regression was 0.922 with
standard error 0.022. The proposed method achieved

better prediction performance than ridge regression.

4.2 OpenML Data

4.2.1 Data

We next evaluated the proposed method using 35
datasets for regression in OpenML-CTR23 (Fischer
et al., 2023), which is a curated tabular regression
benchmarking suite. The number of instances ranges
from 517 to 72,000, and the number of features ranges
from five to 190 after onehot encoding. The statistics
of the datasets are shown in Table 3 in Appendix B.1.
Missing values were imputed using the mean for nu-
merical features, and using the most frequent value for
categorical features. Numerical features were normal-
ized with zero mean and one standard deviation, and
categorical features were represented by binary vec-
tors with onehot encoding. For each experiment, we
randomly selected 21 datasets for meta-training, seven
datasets for meta-validation, and the remaining seven
datasets for meta-test. In the proposed method, a sin-
gle model was meta-trained using 21 datasets. There
was no overlap of data between meta-training, meta-
validation, and meta-test datasets. Therefore, the dis-
tribution of the meta-training tasks differed from that
of the meta-test tasks, corresponding to an out-of-
distribution setting. We performed 20 experiments
with different dataset splits. For each of the meta-
validation and meta-test datasets, we randomly gen-
erated ten tasks with different support and query sets.
The support set size was NS = {3, 5, 10}, and the

Meta-learning for Few-shot Linear Regression

query set size was NQ = 10.

4.2.2 Compared methods

We compared the proposed method (Ours) with
the ridge regression differentiable discriminator
(R2D2) (Bertinetto et al., 2018), meta-learning Gaus-
sian processes with deep kernels (MGP) (Iwata
and Tanaka, 2022), model-agnostic meta-learning
(MAML) (Finn et al., 2017), meta-learn from hetero-
geneous feature spaces (MLH) (Iwata and Kumagai,
2020), hypernetworks (Hyper) (Ha et al., 2016), meta-
learning the shared regularization weights (Shared),
ridge regression with a regularization weight tuned
with leave-one-out cross-validation (Ridge), Lasso lin-
ear regression with cross-validation (Lasso), elastic
net linear regression with cross-validation (Elastic),
linear models with automatic relevance determina-
tion (ARD) (MacKay, 1994), Bayesian linear models
(BLM) (Tipping, 2001), ridge regression that jointly
learns coefficients and regularization weights within
an iterative expectation maximization (REM) (Tew
et al., 2023), decision trees (DT), gradient boosting
(GB) (Ke et al., 2017), and multi-layer perceptron re-
gressor (MLP).

The proposed method, R2D2, MGP, MAML, MLH,
Hyper, and Shared are meta-learning methods, which
were trained using meta-training datasets by mini-
mizing the expected test error. The other meth-
ods, i.e., Ridge, Lasso, Elastic, ARD, BLM, REM,
DT, GB, and MLP, are standard machine learning
methods, which were trained using the support set
for each task. Ridge, Lasso, and Elastic are cross-
validation-based methods. ARD, BLM, and Ridge EM
are Bayesian methods. The proposed method, Hyper,
Shared, Rdige, Lasso, Elastic, ARD, BLM, and REM
consider a linear regression model for each task. The
details of the implementation of the compared meth-
ods are described in Appendix B.2. The settings of
the proposed method are described in Section 4.1.2.

4.2.3 Results

The test mean squared errors on the meta-test datasets
are shown in Table 1. The values in bold are not statis-
tically different at 5% level from the best-performing
method in each dataset by a Wilcoxon signed-rank
test. The proposed method achieved the lowest test
errors. With most of the methods, the error reason-
ably decreased as the support set size increased. Meta-
learning methods (our method, MGP, MAML, MLH,
Hyper, and Shared) outperformed single-task methods
(Ridge, Lasso, Elastic, ARD, BLM, REM, DT, GB,
and MLP). This result indicates that sharing knowl-
edge across tasks is important, and it is difficult to
perform well with only a few training instances. The

Figure 4: Average test mean squared error on OpenML
data with support set size NS = 5 by our method with
different numbers of meta-training datasets. The bars
show the standard error.

errors of existing meta-learning methods, i.e., R2D2,
MGP, MAML, and MLH, were higher than those of
the proposed method. This result implies that consid-
ering linear models is effective for few-shot regression.
Hyper was worse than the proposed method because
it is difficult for Hyper to directly generate coefficients
using a forwarding pass of neural networks. On the
other hand, the proposed method generates regular-
ization weights by neural networks, and obtains coef-
ficients by minimizing the regularized error using sup-
port sets. Therefore, the proposed method can per-
form well in at least areas close to the support in-
stances. Since Shared used the same regularization
weight for all tasks, its performance was worse than
that of the proposed method. This result indicates
the effectiveness of generating task-specific regulariza-
tion weights with the proposed method. ARD is ridge
regression with feature-specific regularization weights,
which are optimized based on evidence maximization.
Since obtaining appropriate feature-specific weights is
difficult with a few training instances, ARD did not
perform well.

Even when distributions between meta-training and
meta-test tasks are different, if there exists a func-
tion that can output appropriate regularization weight
given support set in both the meta-training and meta-
test tasks, the proposed method can improve the meta-
test performance as demonstrated by its better perfor-
mance. The proposed method avoids the risk of losing
important information during the encoding process by
conducting linear regression using raw feature vectors
instead of encoded vectors. This property alleviates
the difficulty of meta-learning few-shot regression for
tasks with different feature spaces.

Figure 4 shows that the test mean squared errors of the
proposed method decreased as the number of meta-
training datasets increased. With more meta-training
datasets, tasks that resemble meta-test datasets are
more likely to be included in meta-learning. The

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

Table 1: Average test mean squared errors on OpenML data and their standard errors with different support
set sizes NS.

NS 3 5 10
Ours 0.888 ± 0.033 0.840 ± 0.033 0.778 ± 0.036
R2D2 1.025 ± 0.040 1.035 ± 0.048 1.050 ± 0.066
MGP 0.960 ± 0.029 0.930 ± 0.030 0.852 ± 0.032
MAML 1.066 ± 0.039 1.029 ± 0.036 0.954 ± 0.031
MLH 0.932 ± 0.032 0.897 ± 0.032 0.826 ± 0.033
Hyper 0.978 ± 0.038 0.913 ± 0.033 0.869 ± 0.039
Shared 0.922 ± 0.032 0.879 ± 0.032 0.861 ± 0.072
Ridge 1.277 ± 0.066 1.106 ± 0.040 0.913 ± 0.039
Lasso 1.535 ± 0.148 1.227 ± 0.044 1.064 ± 0.057
Elastic 1.375 ± 0.104 1.189 ± 0.043 0.998 ± 0.050
ARD 6.757 ± 1.009 1.911 ± 0.101 4.940 ± 3.233
BLM 1.404 ± 0.080 1.221 ± 0.040 0.993 ± 0.044
REM 1.278 ± 0.037 1.142 ± 0.034 0.960 ± 0.042
DT 1.710 ± 0.050 1.581 ± 0.047 1.385 ± 0.045
GB 1.326 ± 0.038 1.195 ± 0.032 1.091 ± 0.028
MLP 1.216 ± 0.043 1.199 ± 0.050 1.040 ± 0.045

Table 2: Ablation study. Average test mean squared errors on OpenML data with different support set sizes NS.
NoMVSA is our model that uses Transformer encoders instead of MVSA layers, where Transformer performs
attention only across features. Singleλ is our model that generates a scalar feature-shared regularization weight
instead of feature-specific regularization weights for each task, where Eq. (8) is used for the generation. NoTarget
is our model that does not use target values {yn}Nn=1 in support set S for generating regularization weights.
Prior is our model that generates Gaussian priors for coefficients instead of regularization weights as described
in Appendix A.4.

NS 3 5 10
Ours 0.888 ± 0.033 0.840 ± 0.033 0.778 ± 0.036
NoMVSA 0.922 ± 0.035 0.878 ± 0.033 0.793 ± 0.038
Singleλ 0.923 ± 0.031 0.879 ± 0.031 0.795 ± 0.035
NoTarget 0.920 ± 0.035 0.885 ± 0.031 0.796 ± 0.035
Prior 0.927 ± 0.034 0.885 ± 0.035 0.805 ± 0.036

proposed method learned how to set regularization
weights from a wide variety of datasets, and ade-
quately used the knowledge for improving the perfor-
mance on meta-test datasets.

Table 2 shows the test mean squared errors in abla-
tion study. The increases of the error by removing
MVSAs indicates the effectiveness of attention across
instances, features, and targets using MVSAs. The
table also shows the effectiveness of generating regu-
larization weights for each feature (Singleλ), and the
effectiveness of the use of target values for encoding
(NoTarget). When both the mean and precision of
Gaussian priors for coefficients were generated (Prior),
their errors were higher than the proposed method,
which generates the prior precision (or regularization
weights) and uses fixed zero mean. This is because
generating an appropriate prior mean is difficult, and
the zero mean is an effective inductive bias for lin-
ear regression as ridge regression has been successfully

used in various domains. Additional experimental re-
sults are shown in Appendix B.3.

5 CONCLUSION

We proposed a few-shot learning method for linear re-
gression. With the proposed method, regularization
weights are generated by neural networks, which are
shared across datasets with different feature spaces.
The neural networks are meta-learned by minimizing
the expected test error using various datasets. Al-
though we believe that our approach is an important
step for learning linear models with few data, we must
extend our method in several directions. First, we
will evaluate the extensions of the proposed method
to classification tasks, multiple target variables, and
linear basis function models. Second, we would like to
apply our method to other regularizations than ridge,
such as Lasso, elastic net, and group Lasso.

Meta-learning for Few-shot Linear Regression

References

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoff-
man, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas. Learning to learn by gradient de-
scent by gradient descent. In Advances in Neural
Information Processing Systems, pages 3981–3989,
2016.

S. Arlot and A. Celisse. A survey of cross-validation
procedures for model selection. Statistics Surveys,
4:40–79, 2010.

S. Baik, M. Choi, J. Choi, H. Kim, and K. M. Lee.
Meta-learning with adaptive hyperparameters. Ad-
vances in Neural Information Processing Systems,
33:20755–20765, 2020.

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler.
Benign overfitting in linear regression. Proceed-
ings of the National Academy of Sciences, 117(48):
30063–30070, 2020.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a
synaptic learning rule. In International Joint Con-
ference on Neural Networks, 1991.

L. Bertinetto, J. F. Henriques, P. Torr, and
A. Vedaldi. Meta-learning with differentiable closed-
form solvers. In International Conference on Learn-
ing Representations, 2018.

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter,
S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-
L. Boulesteix, et al. Hyperparameter optimiza-
tion: Foundations, algorithms, best practices, and
open challenges. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 13(2):e1484,
2023.

S. Bzovsky, M. R. Phillips, R. H. Guymer, C. C.
Wykoff, L. Thabane, M. Bhandari, and V. Chaud-
hary. The clinicians guide to interpreting a regres-
sion analysis. Eye, 36(9):1715, 2022.

S. De Oliveira, A. R. Gonçalves, and F. Von Zuben.
Group lasso with asymmetric structure estimation
for multi-task learning. In International Joint Con-
ference on Artificial Intelligence, pages 3202–3208,
2019.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference
on Machine Learning, pages 1126–1135, 2017.

S. F. Fischer, M. Feurer, and B. Bischl. OpenML-
CTR23–a curated tabular regression benchmarking
suite. In AutoML Conference, 2023.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and
M. Pontil. Bilevel programming for hyperparame-
ter optimization and meta-learning. In International

Conference on Machine Learning, pages 1568–1577,
2018.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ra-
malho, D. Saxton, M. Shanahan, Y. W. Teh,
D. Rezende, and S. A. Eslami. Conditional neural
processes. In International Conference on Machine
Learning, pages 1690–1699, 2018.

Y. Guo and N.-M. Cheung. Attentive weights gen-
eration for few shot learning via information maxi-
mization. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13499–13508,
2020.

D. Ha, A. M. Dai, and Q. V. Le. Hypernetworks. In
International Conference on Learning Representa-
tions, 2016.

D. Hallac, J. Leskovec, and S. Boyd. Network Lasso:
Clustering and optimization in large graphs. In Pro-
ceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 387–396, 2015.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshi-
rani. Surprises in high-dimensional ridgeless least
squares interpolation. Annals of Statistics, 50(2):
949, 2022.

A. E. Hoerl and R. W. Kennard. Ridge regression: Bi-
ased estimation for nonorthogonal problems. Tech-
nometrics, 12(1):55–67, 1970.

T. Iwata and A. Kumagai. Meta-learning from tasks
with heterogeneous attribute spaces. Advances in
Neural Information Processing Systems, 33:6053–
6063, 2020.

T. Iwata and A. Kumagai. Meta-learning of semi-
supervised learning from tasks with heterogeneous
attribute spaces. arXiv preprint arXiv:2311.05088,
2023.

T. Iwata and Y. Tanaka. Few-shot learning for spa-
tial regression via neural embedding-based Gaussian
processes. Machine Learning, 111:1239–1257, 2022.

S. W. Jarantow, E. D. Pisors, and M. L. Chiu. Intro-
duction to the use of linear and nonlinear regression
analysis in quantitative biological assays. Current
Protocols, 3(6):e801, 2023.

K. Ji, J. Yang, and Y. Liang. Bilevel optimization:
Convergence analysis and enhanced design. In In-
ternational Conference on Machine Learning, pages
4882–4892, 2021.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. LightGBM: A highly efficient
gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami,
D. Rosenbaum, O. Vinyals, and Y. W. Teh. Atten-
tive neural processes. In International Conference
on Learning Representations, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In International Conference on
Learning Representations, 2015.

D. Kobak, J. Lomond, and B. Sanchez. The optimal
ridge penalty for real-world high-dimensional data
can be zero or negative due to the implicit ridge reg-
ularization. Journal of Machine Learning Research,
21(169):1–16, 2020.

W. Kong, R. Somani, Z. Song, S. Kakade, and S. Oh.
Meta-learning for mixed linear regression. In In-
ternational Conference on Machine Learning, pages
5394–5404, 2020.

D. J. MacKay. Bayesian nonlinear modeling for the
prediction competition. ASHRAE Transactions, 100
(2):1053–1062, 1994.

Y. Maruyama and W. E. Strawderman. A new class of
generalized Bayes minimax ridge regression estima-
tors. Annals of Statistics, 33(4):1753–1770, 2005.

Y. Mori and T. Suzuki. Generalized ridge estimator
and model selection criteria in multivariate linear
regression. Journal of Multivariate Analysis, 165:
243–261, 2018.

K. Mu, Q. Shi, Y. Ma, and J. Tan. Exploration of
entrepreneurship education by linear regression and
psychological factor analysis. Frontiers in Psychol-
ogy, 11:2045, 2020.

K. P. Murphy. Machine learning: a probabilistic per-
spective. MIT press, 2012.

B. Oreshkin, P. Rodŕıguez López, and A. Lacoste.
TADAM: Task dependent adaptive metric for im-
proved few-shot learning. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neu-
ral Information Processing Systems, 32, 2019.

P. Patil, Y. Wei, A. Rinaldo, and R. Tibshirani. Uni-
form consistency of cross-validation estimators for
high-dimensional ridge regression. In International
Conference on Artificial Intelligence and Statistics,
pages 3178–3186, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press,
2005.

S. Ravi and H. Larochelle. Optimization as a model
for few-shot learning. In International Conference
on Learning Representations, 2017.

R. Rifkin and A. Klautau. In defense of one-vs-all clas-
sification. Journal of Machine Learning Research, 5:
101–141, 2004.

C. Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelli-
gence, 1(5):206–215, 2019.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pas-
canu, S. Osindero, and R. Hadsell. Meta-learning
with latent embedding optimization. In Inter-
national Conference on Learning Representations,
2019.

J. Schmidhuber. Evolutionary principles in self-
referential learning. on learning now to learn: The
meta-meta-meta...-hook. Master’s thesis, Technis-
che Universitat Munchen, Germany, 1987.

J. Snell, K. Swersky, and R. Zemel. Prototypical net-
works for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087,
2017.

W. Stephenson, Z. Frangella, M. Udell, and T. Brod-
erick. Can we globally optimize cross-validation
loss? quasiconvexity in ridge regression. Advances in
Neural Information Processing Systems, 34:24352–
24364, 2021.

S. Y. Tew, M. Boley, and D. Schmidt. Bayes beats
cross validation: Efficient and accurate ridge re-
gression via expectation maximization. Advances in
Neural Information Processing Systems, 36, 2023.

K. K. Thekumparampil, P. Jain, P. Netrapalli,
and S. Oh. Sample efficient linear meta-learning
by alternating minimization. arXiv preprint
arXiv:2105.08306, 2021a.

K. K. Thekumparampil, P. Jain, P. Netrapalli, and
S. Oh. Statistically and computationally efficient
linear meta-representation learning. Advances in
Neural Information Processing Systems, 34:18487–
18500, 2021b.

M. E. Tipping. Sparse Bayesian learning and the rele-
vance vector machine. Journal of Machine Learning
Research, 1(Jun):211–244, 2001.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

Meta-learning for Few-shot Linear Regression

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra,
et al. Matching networks for one shot learning.
In Advances in Neural Information Processing Sys-
tems, pages 3630–3638, 2016.

D. Wu and J. Xu. On the optimal weighted `2 regular-
ization in overparameterized linear regression. Ad-
vances in Neural Information Processing Systems,
33:10112–10123, 2020.

J. Xu, J.-F. Ton, H. Kim, A. Kosiorek, and Y. W.
Teh. Metafun: Meta-learning with iterative func-
tional updates. In International Conference on Ma-
chine Learning, pages 10617–10627, 2020.

M. Yamada, T. Koh, T. Iwata, J. Shawe-Taylor, and
S. Kaski. Localized lasso for high-dimensional re-
gression. In Artificial Intelligence and Statistics,
pages 325–333, 2017.

Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang. A
data-driven customer segmentation strategy based
on contribution to system peak demand. IEEE
Transactions on Power Systems, 35(5):4026–4035,
2020.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. R. Salakhutdinov, and A. J. Smola. Deep sets.
In Advances in Neural Information Processing Sys-
tems, pages 3391–3401, 2017.

T. T. Zhang, L. F. Toso, J. Anderson, and N. Matni.
Sample-efficient linear representation learning from
non-iid non-isotropic data. In International Confer-
ence on Learning Representations, 2024.

Y. Zhang and Y. Yang. Cross-validation for selecting a
model selection procedure. Journal of Econometrics,
187(1):95–112, 2015.

Y. Zhou, R. Jin, and S. C.-H. Hoi. Exclusive lasso
for multi-task feature selection. In International
Conference on Artificial Intelligence and Statistics,
pages 988–995, 2010.

M. Zhu, K. Kobalczyk, A. Petrovic, M. Nikolic,
M. van der Schaar, B. Delibasic, and P. Lio. Tabular
few-shot generalization across heterogeneous feature
spaces. arXiv preprint arXiv:2311.10051, 2023.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] It is described in Section 3.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes] The analysis of the properties

is described in Section 4, and the complexity
is described in Section 3.2.4.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results.
[Not Applicable]

(c) Clear explanations of any assumptions. [Not
Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental re-
sults (either in the supplemental ma-
terial or as a URL). [Yes] The code
of the proposed method is available
at https://www.kecl.ntt.co.jp/as/

members/iwata/meta_linear.html. The
details of our experiments were described in
Section 4 and Appendix B.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
The training details were described in Ap-
pendix B.2.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] The definition, statis-
tical test results, and error bars are described
in Section 4 and Appendix B.3.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes] It is described in
Section 4.2.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Meta-learning for Few-shot Linear Regression

A EXTENSIONS

A.1 Multiple target variables

In Section 3.2, we consider a single target variable. Our model can be extended to multiple target variables
y ∈ RC . Initial encoding, attention, and position-wise transformation are performed in the same way with the
single target variable setting. We generate a regularization weight for the mth feature and the cth target using
final embedding vectors of the feature {zLnm}Nn=1 and the target {zL,n,M+1+c}Nn=1 by

λmc = fM2

(
1

N

N∑
n=1

fM1(zLnm, zL,n,M+1+c)

)
, (13)

where fM1 : R2HL → RH and fM2 : RH → R are feed-forward neural networks. A regularization weight for the
bias term is calculated using a set of all final embedding vectors of all features and all targets,

λM+1,c = fB3

(
1

M

M∑
m=1

fB2

(
1

N

N∑
n=1

fB1(zLnm, zL,n,M+1+c)

))
, (14)

where fB1 : RHL → RH fB2 : RH → RH , fB3 : RH → R are feed-forward neural networks.

A.2 Classification

The proposed method is also applicable to classification tasks by using least-squares classification (LSC) (Rifkin
and Klautau, 2004; Rasmussen and Williams, 2005) for task-specific coefficient estimation at the inner optimiza-
tion, where the classification task is treated as a regression one by setting target values +1 or −1 in binary
classification. With LSC, no iterative procedures are needed. Another way is to use iterative solvers for the
inner optimization. Our model is applicable as long as the operations are differentiable. When the iteratively
reweighted least squares method (Murphy, 2012; Bertinetto et al., 2018) is used, the estimated coefficient at the
ith iteration for binary target variable y ∈ {−1, 1} is given by

β̂Si = diag(λ−1)X′>
(
diag(s−1

i)+X′diag(λ−1)X′>
)−1

ui, (15)

where si = mi(1 − mi), ui = X′β̂S,i−1 + (y − mi)/si, and mi = sigmoid(X′β̂S,i−1). For updating model
parameters in Eq. (12), a classification loss such as the cross-entropy loss can be used.

A.3 Linear basis function models

Instead of linear models with respect to original feature values, we can also consider linear models with respect
to basis functions. Let x̄ ∈ RM̄ be an original feature vector, and {φm}Mm=1 be a set of basis functions, where
φm : RM̄ → R. By setting xm = φm(x̄) for m = 1, . . . ,M , the proposed method is directly applicable to
linear basis function models. We can use arbitrary basis functions. For example, polynomial basis functions can
enhance the expression power while keeping the interpretability. Parameters in basis functions can be trained by
minimizing the expected test error in Eq. (12) by including the basis function parameters in model parameters
θ.

A.4 Generating coefficient priors

The regularization weights can be seen as precision parameters of a Gaussian prior N (β|0,diag(λ−1)) for co-
efficients with the maximum a posteriori (MAP) estimation in a Bayesian framework, where the mean of the
Gaussian prior is considered as zero. We can consider to generate a task-specific mean vector for the prior based
on the proposed method. Let N (β|µ,diag(λ−1)) be the Gaussian prior with mean µ and covariance diag(λ−1).
Mean vector µ is generated in the same way with the regularization weights in Eqs. (7,8). The MAP estimation
can be performed in a closed form by

β̂S = µ + diag(λ−1)X′>
(
I + X′diag(λ−1)X′>

)−1
(y −X′µ) . (16)

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

Table 3: The number of instances and the number of features after onehot encoding for each dataset in OpenML
data.

Name #instances #features
Moneyball 1232 72
QSAR-fish-toxicity 908 6
abalone 4177 10
airfoil-self-noise 1503 5
auction-verification 2043 16
brazilian-houses 10692 49
california-housing 20640 8
cars 804 17
concrete-compressive 1030 8
cps88wages 28155 12
cpu-activity 8192 21
diamonds 53940 26
energy-efficiency 768 8
fifa 19178 190
forest-fires 517 12
fps-benchmark 24624 125
geographical-origin 1059 116
grid-stability 10000 12
health-insurance 22272 25
kin8nm 8192 8
kings-county 21613 132
miami-housing 13932 15
naval-propulsion-plant 11934 14
physiochemical-protein 45730 9
pumadyn32nh 8192 32
red-wine 1599 11
sarcos 48933 21
socmob 1156 39
solar-flare 1066 29
space-ga 3107 6
student-performance-por 649 56
superconductivity 21263 81
video-transcoding 68784 24
wave-energy 72000 48
white-wine 4898 11

B EXPERIMENTS

B.1 Data

Table 3 shows the statistics of OpenML datasets used in our experiments.

B.2 Settings

In R2D2, MGP, and MAML, we used three-layered feed-forward neural networks with 128 hidden units for
embedding each input feature. Then, the embedding vectors were encoded using Transformer (Vaswani et al.,
2017) encoders with three layers, 128 hidden units, and four heads, which are permutation equivariant on features
and can handle features with different sizes. In R2D2, target values were predicted by linear projection of the
encoded vectors, where the linear projection was adapted to the support set for each task. In MGP, the encoded
vectors were used for the input of a Gaussian process (Rasmussen and Williams, 2005) with RBF kernels, where
the GP was adapted to the support set. In MAML, target values were predicted using a three-layered feed-
forward neural network with 128 hidden units from the encoded vectors, where model parameters were adapted
to the support set by gradient descent with learning rate 10−2 and five epochs. In MLH, feature and target
embedding vectors were obtained by an inference network with three layers of deep sets (Zaheer et al., 2017),
and then target values were predicted by a prediction network using the embedding vectors and an input feature
vector. For each block of MLH, we used three-layered feed-forward neural networks with 128 hidden units. Hyper
generated coefficients using the same neural networks as our model instead of generating regularization weights.

Meta-learning for Few-shot Linear Regression

Table 4: Average test mean squared errors on synthetic data.
Ours R2D2 MGP MAML MLH Hyper Shared Ridge Lasso Elastic ARD BLM REM DT GB MLP

0.355 0.783 1.101 1.153 0.422 0.638 0.575 0.922 0.928 0.972 0.606 0.828 0.875 1.882 1.426 0.984

Table 5: Accuracy of selecting best regularization weights by cross-validation with ridge regression on OpenML
data.

NS Accuracy
3 0.474 ± 0.016
5 0.445 ± 0.018
10 0.458 ± 0.022

Table 6: Average test mean squared errors on OpenML data by ridge regression with hyperparameter tuning
based on leave-one-out cross-validation. Ridge selected a regularization weight from {10−1, 1, 10}, which is the
default setting in scikit-learn, and Ridge+ selected it from 10−3, 10−2, 10−1, 1, 10, 102, 103.

NS Ridge Ridge+
3 1.277 ± 0.066 1.342 ± 0.091
5 1.106 ± 0.040 1.162 ± 0.042
10 0.913 ± 0.039 0.994 ± 0.043

Table 7: Meta-training time in seconds on OpenML data with support set size NS = 5.
Ours R2D2 MGP MAML MLH Hyper Shared

10120 11384 13238 86132 9970 11199 3111

Table 8: Meta-test time in seconds on OpenML data with support set size NS = 5.
Ours R2D2 MGP MAML MLH Hyper Shared Ridge Lasso Elastic ARD BLM REM DT GB MLP
0.715 0.597 0.973 6.125 0.671 0.789 0.259 0.337 4.264 3.902 1.024 0.495 1.529 0.185 0.467 2.155

Note that we newly developed this Hyper as a baseline since there have been no existing hypernetworks for linear
regression with datasets with different feature spaces. Shared meta-learned scalar regularization weight λ ∈ R>0,
which is shared across all tasks. We implemented the meta-learning methods with PyTorch (Paszke et al., 2019).
For neural network-based compared methods, i.e., R2D2, MGP, MAML, MLH, and Hyper, we used the same
meta-learning procedures as our method. We used scikit-learn (Pedregosa et al., 2011) for Ridge, Lasso, Elastic,
ARD, BLM, DT, and MLP, used LightGBM (Ke et al., 2017) for GB with their default parameter settings, and
used the authors’ implementation for REM.

B.3 Results

Table 4 shows the test mean squared errors on synthetic data.

Table 5 shows the accuracy of selecting the best regularization weights by leave-one-out cross-validation (LOOCV)
with ridge regression. Here, regularization weights were selected from λ = {10−1, 1, 10}, and the accuracy is
the probability that the regularization weight that minimized the squared error with LOOCV matched with the
regularization weight that minimized squared error with the query set. All of the accuracies were low, and this
result indicates that selecting appropriate regularization weights using LOOCV is difficult with few-shot settings.
Table 6 shows the test mean squared error with different settings for regularization weight candidates. Even
when the number of candidates increased, the performance did not increase in ridge regression. This result also
indicates that tuning weights with a small number of data with LOOCV is difficult.

Tables 7 and 8 show the computational time for meta-training and meta-test on computers with NVIDIA GeForce
GTX 1080 Ti GPU, Intel Xeon Gold 6126 CPU, and 128GB memory. The meta-training time of the proposed
method was comparable to R2D2, MGP, and Hyper. Since MAML needs iterative optimization for each task, it
took longer than the other meta-learning methods. Once our method is meta-trained, it can obtain coefficients
efficiently as demonstrated in its short meta-test time.

Tomoharu Iwata, Atsutoshi Kumagai, Yasutoshi Ida

Table 9: Average test mean squared errors on OpenML data with support set size NS = 3.
Dataset Ours R2D2 MGP MAML MLH Hyper Shared Ridge Lasso Elastic ARD BLM REM DT GB MLP
Moneyball 0.843 0.545 0.756 0.875 0.665 0.820 0.909 0.936 1.011 1.032 9.183 1.011 0.541 1.432 1.222 0.958
QSAR-fish-toxicity 0.942 0.744 0.825 0.938 0.708 1.051 0.989 1.102 1.130 1.239 9.035 1.410 1.012 1.604 1.407 1.188
abalone 0.987 1.140 0.978 1.025 1.020 0.993 0.973 1.667 2.413 2.695 8.056 2.452 1.530 1.829 1.170 1.055
airfoil-self-noise 0.946 1.064 0.952 1.035 1.175 0.906 0.983 1.279 1.352 1.451 2.729 1.540 1.282 1.641 1.225 1.226
auction-verification 1.087 1.104 0.969 1.015 0.927 1.110 1.037 1.549 1.478 1.489 3.514 1.602 1.422 1.991 1.484 1.402
brazilian-houses 0.736 0.061 0.062 0.067 0.461 0.804 0.829 1.171 1.193 1.188 2.404 1.292 0.089 1.301 1.230 1.176
california-housing 1.023 1.143 1.075 1.119 1.000 1.083 1.097 0.781 0.877 0.863 2.882 0.856 1.907 1.454 1.044 0.748
cars 0.659 0.956 0.886 1.065 0.871 0.699 0.658 0.793 0.778 0.766 0.809 0.785 1.001 1.046 0.804 0.735
concrete-compressive 0.659 0.896 0.944 1.131 0.893 0.680 0.652 0.995 1.049 1.130 7.197 1.013 1.330 1.559 1.077 0.903
cps88wages 0.902 0.919 0.753 0.752 0.758 0.942 0.930 1.030 1.057 1.050 2.947 1.173 0.937 1.295 1.107 0.997
cpu-activity 0.934 1.237 1.351 1.406 1.535 1.032 0.976 0.751 0.770 0.918 2.603 0.718 1.423 0.779 0.841 0.624
diamonds 0.936 0.776 0.976 1.316 0.465 1.102 1.094 0.851 1.007 1.057 1.879 0.773 0.789 0.989 1.427 0.617
energy-efficiency 0.723 0.375 0.808 1.106 0.527 0.703 0.731 1.049 1.107 1.082 8.468 1.146 0.952 1.306 1.133 1.225
fifa 0.717 0.606 0.567 0.595 0.460 0.735 0.747 1.941 1.963 4.656 8.504 1.995 0.950 2.332 2.122 2.049
forest-fires 1.736 2.060 2.076 2.041 2.160 1.797 1.771 0.969 1.017 1.010 2.764 1.015 2.309 1.502 0.963 1.010
fps-benchmark 0.698 1.306 0.991 1.025 0.946 0.847 0.753 1.571 1.724 2.016 2.911 1.670 1.380 2.214 1.636 1.296
geographical-origin 0.897 1.098 0.885 1.214 0.959 0.869 0.822 2.882 3.421 3.783 10.483 2.485 1.651 1.968 1.391 2.388
grid-stability 0.578 0.776 0.942 0.744 0.803 0.606 0.574 1.156 1.233 1.393 1.805 1.252 1.396 1.699 1.433 0.971
health-insurance 0.926 1.242 1.028 1.063 1.067 1.048 0.934 1.451 1.611 1.519 2.570 1.624 1.479 2.192 1.549 1.368
kin8nm 1.137 0.974 0.886 1.045 1.171 1.277 1.018 1.776 2.024 2.375 2.837 1.979 1.323 2.259 2.053 1.663
kings-county 0.894 1.135 1.077 1.266 0.871 1.215 0.924 1.401 1.531 1.507 4.058 1.630 1.188 1.741 1.234 1.299
miami-housing 1.039 0.721 0.723 0.753 0.743 1.048 1.005 1.272 1.262 1.265 9.307 1.326 0.834 1.733 1.350 1.307
naval-propulsion-plant 0.990 2.446 1.118 1.151 1.095 1.048 1.014 1.351 1.400 1.357 18.257 1.372 1.587 2.109 1.285 1.677
physiochemical-protein 1.419 1.300 1.152 1.318 1.119 1.598 1.705 2.214 2.145 2.124 3.503 2.409 1.799 1.798 1.700 1.414
pumadyn32nh 0.748 1.057 0.947 1.323 0.980 0.915 0.687 1.246 1.241 1.393 2.364 1.346 1.393 1.623 1.551 1.166
red-wine 0.745 1.148 1.124 1.284 1.099 0.851 0.789 1.489 1.514 1.540 12.296 1.544 1.634 2.146 1.663 1.383
sarcos 0.783 1.079 1.052 1.163 1.014 0.775 0.784 1.127 1.155 1.269 9.232 1.171 1.113 1.686 1.141 1.151
socmob 0.774 0.784 0.867 1.177 0.691 0.888 0.924 1.488 1.665 1.761 3.817 1.975 0.873 1.973 1.482 1.419
solar-flare 0.889 1.550 1.337 1.343 1.297 1.918 0.944 1.101 1.200 1.259 27.373 1.239 1.737 1.378 1.223 1.163
space-ga 0.991 1.032 0.967 1.214 1.024 1.014 1.043 1.240 1.396 1.478 2.770 1.398 1.741 1.729 1.294 0.994
student-performance-por 0.888 1.294 1.049 1.052 1.047 0.997 1.083 1.343 1.342 1.344 4.230 1.417 1.623 2.089 1.379 1.280
superconductivity 1.142 0.592 0.803 0.978 0.613 1.156 1.203 0.686 0.783 0.818 0.846 0.585 1.226 1.089 1.407 0.753
video-transcoding 0.849 0.759 0.760 0.789 0.738 0.888 0.900 0.952 1.023 1.030 3.462 0.986 1.000 1.635 1.086 1.092
wave-energy 0.692 0.978 1.118 1.272 0.945 0.719 0.748 1.002 1.069 1.084 7.989 1.023 1.415 1.454 1.108 1.120
white-wine 0.941 1.144 0.939 0.941 1.008 0.976 0.960 1.063 1.069 1.085 21.390 1.463 1.462 1.479 1.095 1.088

Table 10: Average test mean squared errors on OpenML data with support set size NS = 5.
Dataset Ours R2D2 MGP MAML MLH Hyper Shared Ridge Lasso Elastic ARD BLM REM DT GB MLP
Moneyball 0.758 0.517 0.641 0.751 0.574 0.782 0.815 0.788 0.863 0.892 1.218 0.785 0.340 1.195 1.128 0.808
QSAR-fish-toxicity 0.844 0.753 0.765 0.846 0.657 0.952 0.887 1.024 1.090 1.118 1.608 1.090 1.016 1.368 1.229 1.238
abalone 0.940 1.200 0.978 0.994 0.945 1.000 0.967 1.052 1.181 1.291 1.619 1.065 1.313 2.083 1.148 0.993
airfoil-self-noise 0.855 1.140 0.872 1.084 1.099 0.912 0.919 1.212 1.206 1.324 2.197 1.488 1.239 1.497 1.130 1.038
auction-verification 1.004 1.110 0.940 1.092 0.870 1.014 0.970 1.437 1.497 1.156 1.894 1.579 1.345 1.709 1.384 1.396
brazilian-houses 0.737 0.054 0.056 0.062 0.168 0.785 0.709 0.988 1.079 1.096 1.104 1.009 0.072 1.074 1.182 1.173
california-housing 0.921 1.276 1.064 1.108 0.956 1.042 1.002 0.747 0.753 0.930 0.748 0.780 1.513 1.076 0.901 0.691
cars 0.644 0.759 0.791 0.886 0.757 0.614 0.644 0.706 0.738 0.716 0.863 0.775 0.694 1.275 0.725 0.734
concrete-compressive 0.613 0.849 0.913 1.118 0.851 0.616 0.628 0.979 1.055 1.082 2.738 1.238 1.387 1.306 0.991 0.862
cps88wages 0.831 1.297 0.759 0.767 0.774 0.929 0.878 1.301 1.403 1.438 2.956 1.424 1.220 1.785 1.036 1.128
cpu-activity 0.850 1.321 1.371 1.539 1.532 0.975 0.946 0.544 0.721 0.713 1.595 0.614 1.424 0.775 0.842 0.810
diamonds 0.865 0.635 0.803 0.859 0.359 1.101 1.046 0.725 0.817 0.828 0.775 0.739 0.735 0.998 1.324 0.616
energy-efficiency 0.704 0.264 0.694 1.030 0.564 0.648 0.694 1.011 0.984 0.975 2.488 1.171 0.563 1.237 1.042 1.214
fifa 0.743 0.538 0.538 0.693 0.470 0.736 0.760 1.713 1.834 1.916 2.327 1.770 0.858 2.265 1.965 2.058
forest-fires 1.754 2.091 2.083 2.090 2.112 1.778 1.810 0.894 0.872 0.910 1.933 1.116 2.199 1.492 0.867 1.164
fps-benchmark 0.760 1.261 1.004 1.034 0.974 0.782 0.753 1.276 1.305 1.351 1.532 1.388 1.362 1.807 1.409 1.474
geographical-origin 0.841 1.023 0.896 1.218 0.948 0.866 0.795 1.577 1.623 1.534 2.160 1.426 1.480 1.800 1.263 2.409
grid-stability 0.514 0.789 0.895 0.704 0.898 0.600 0.538 0.737 0.885 0.911 1.581 0.718 1.175 1.541 1.275 0.820
health-insurance 0.840 1.189 1.013 1.111 1.076 1.037 0.890 1.222 1.319 1.349 3.777 1.340 1.351 1.993 1.365 1.220
kin8nm 1.043 1.039 0.848 1.007 1.035 1.138 0.912 1.360 1.399 1.172 1.603 1.649 1.327 1.712 1.503 1.478
kings-county 0.879 1.071 1.072 1.191 0.880 0.857 0.877 1.040 1.127 1.219 1.848 1.090 0.995 1.772 1.146 1.219
miami-housing 0.941 0.724 0.687 0.786 0.675 1.117 0.947 1.327 1.372 1.531 2.100 1.549 0.789 1.969 1.285 1.303
naval-propulsion-plant 0.971 2.514 1.188 1.198 1.096 1.089 1.020 1.362 1.638 1.754 2.225 1.266 1.250 1.643 1.144 2.082
physiochemical-protein 1.197 1.897 1.257 1.241 1.356 1.311 1.602 1.361 2.133 2.089 2.351 2.005 1.953 1.488 1.442 1.579
pumadyn32nh 0.644 1.108 0.956 1.110 1.008 0.778 0.599 0.986 1.026 1.045 1.600 1.161 1.244 1.389 1.253 1.153
red-wine 0.766 1.202 1.094 1.224 1.059 0.856 0.750 1.235 1.338 1.359 2.088 1.364 1.446 1.848 1.431 1.478
sarcos 0.658 1.080 1.048 1.131 0.914 0.684 0.714 1.044 1.101 1.158 1.443 1.125 1.040 1.780 1.033 1.120
socmob 0.814 0.695 0.759 0.837 0.722 0.936 0.937 1.324 1.597 1.738 2.282 1.670 0.783 1.699 1.330 1.197
solar-flare 0.905 1.564 1.279 1.393 1.250 0.954 0.901 1.244 1.260 1.326 1.648 1.491 1.483 1.651 1.121 0.994
space-ga 0.998 1.068 0.931 1.199 0.964 1.067 1.038 1.158 1.101 1.166 1.382 1.086 1.232 1.565 1.131 1.104
student-performance-por 0.867 1.206 1.028 1.046 1.020 0.998 1.051 1.066 1.157 1.253 2.039 1.161 1.344 1.504 1.085 1.013
superconductivity 1.173 0.805 0.698 0.893 0.473 1.126 1.177 0.384 0.347 0.374 0.420 0.386 0.830 0.701 1.294 0.566
video-transcoding 0.716 0.780 0.720 0.779 0.724 0.830 0.845 0.828 0.939 0.951 1.334 0.999 0.947 1.162 1.020 0.989
wave-energy 0.677 0.849 1.095 1.022 0.932 0.722 0.726 0.951 1.028 1.063 1.742 1.025 1.187 1.533 1.026 1.110
white-wine 0.922 1.380 0.964 1.021 1.049 0.953 1.012 1.234 1.179 1.263 4.552 2.325 1.121 2.040 1.089 1.295

Meta-learning for Few-shot Linear Regression

Table 11: Average test mean squared errors on OpenML data with support set size NS = 10.
Dataset Ours R2D2 MGP MAML MLH Hyper Shared Ridge Lasso Elastic ARD BLM REM DT GB MLP
Moneyball 0.657 0.279 0.468 0.549 0.363 0.728 1.510 0.536 0.508 0.523 0.583 0.537 0.184 1.103 1.071 0.628
QSAR-fish-toxicity 0.727 0.747 0.639 0.790 0.561 0.839 0.979 0.763 0.825 0.859 1.073 0.764 0.801 1.046 1.094 0.930
abalone 0.947 1.151 0.862 0.901 1.039 0.979 0.905 0.687 0.767 0.780 0.983 0.825 0.967 1.182 1.008 0.937
airfoil-self-noise 0.842 2.345 0.779 0.977 0.997 0.879 0.861 1.005 1.160 1.332 1.344 1.112 0.872 1.325 1.014 0.827
auction-verification 0.868 0.858 0.833 0.981 0.870 0.964 0.878 1.170 1.313 1.325 1.487 1.298 0.940 1.579 1.228 1.132
brazilian-houses 0.660 0.055 0.053 0.055 0.215 0.710 0.649 0.801 0.772 0.772 0.743 0.891 0.061 1.156 1.057 0.746
california-housing 0.889 1.165 0.978 1.113 0.854 0.926 0.939 0.853 1.024 1.227 0.900 0.908 1.059 0.725 0.823 0.772
cars 0.639 0.573 0.653 0.826 0.568 0.620 0.677 0.695 1.638 1.862 2.492 0.900 0.546 2.493 0.712 0.968
concrete-compressive 0.541 0.656 0.805 0.974 0.782 0.559 0.568 0.707 0.811 0.944 0.975 0.819 1.026 0.905 0.863 0.742
cps88wages 0.740 2.099 0.771 0.752 0.781 0.870 0.772 0.869 1.006 0.909 1.456 0.930 0.948 1.154 0.973 0.905
cpu-activity 0.822 1.168 1.271 1.327 1.298 0.810 0.799 0.399 0.431 0.411 117.236 0.632 1.351 0.551 0.776 0.559
diamonds 0.728 0.518 0.643 0.590 0.386 0.873 0.828 0.474 0.457 0.484 0.455 0.469 0.435 0.685 1.252 0.448
energy-efficiency 0.525 0.186 0.431 1.019 0.249 0.500 0.502 0.883 0.923 0.936 2.037 0.983 0.220 1.165 0.973 1.255
fifa 0.744 0.543 0.478 0.426 0.465 0.754 0.782 1.645 1.709 1.673 1.859 1.681 0.817 2.077 1.930 1.759
forest-fires 1.736 2.177 2.120 2.102 2.194 1.736 1.767 1.022 1.082 1.340 1.654 1.187 2.123 1.453 0.798 0.897
fps-benchmark 0.701 1.177 0.955 1.005 0.947 0.726 0.776 1.174 1.220 1.266 1.871 1.249 1.330 1.790 1.283 1.306
geographical-origin 0.716 1.147 0.953 1.113 0.981 0.805 0.684 1.333 1.717 2.362 1.949 1.339 1.715 1.999 1.031 1.543
grid-stability 0.487 0.650 0.743 0.572 0.744 0.533 0.728 0.539 0.554 0.561 0.668 0.595 1.078 1.129 1.165 0.601
health-insurance 0.795 1.445 0.921 1.040 0.980 0.922 0.826 0.959 1.042 1.320 2.567 1.104 1.072 1.417 1.230 1.082
kin8nm 0.978 0.973 0.806 1.077 0.972 1.140 0.895 1.304 1.533 1.515 2.188 1.560 1.166 1.746 1.402 1.495
kings-county 0.763 0.803 0.915 0.912 0.779 0.721 0.687 1.006 1.121 1.194 4.696 0.982 0.794 1.337 1.054 1.103
miami-housing 0.904 0.617 0.621 0.751 0.557 1.119 0.932 1.107 1.207 1.234 1.650 1.156 0.711 1.754 1.182 1.203
naval-propulsion-plant 0.913 1.923 1.110 1.054 1.100 1.056 0.931 1.116 1.038 1.099 2.280 1.338 1.079 1.904 1.044 1.798
physiochemical-protein 1.232 2.828 1.171 1.436 1.170 1.141 1.300 1.027 1.124 1.200 1.019 0.947 1.383 1.660 1.341 1.453
pumadyn32nh 0.671 1.246 1.007 1.037 1.059 0.971 0.696 0.829 0.910 0.969 1.259 0.899 1.419 1.278 1.099 0.878
red-wine 0.660 1.277 1.079 1.301 0.972 0.705 0.665 1.122 1.160 1.180 4.277 1.264 1.269 1.671 1.260 1.428
sarcos 0.551 1.066 1.037 1.203 0.781 0.622 0.595 0.741 0.711 0.728 0.966 0.772 0.800 1.400 0.944 0.987
socmob 0.719 0.626 0.672 0.744 0.559 0.854 0.811 0.982 1.155 1.167 1.360 1.091 0.688 1.345 1.134 0.980
solar-flare 0.885 1.910 1.229 1.322 1.238 1.650 1.023 0.949 1.191 1.231 1.401 1.049 1.412 1.328 1.029 0.850
space-ga 0.928 1.234 0.812 1.139 0.784 1.031 0.959 0.727 0.776 0.777 0.819 0.720 1.006 1.129 1.053 1.251
student-performance-por 0.868 1.224 1.033 1.144 1.042 0.904 0.945 1.007 1.116 1.230 1.537 1.024 1.264 2.205 0.949 1.068
superconductivity 1.210 0.601 0.540 1.004 0.494 1.094 2.257 0.192 0.178 0.198 0.241 0.209 0.759 0.479 1.243 0.369
video-transcoding 0.655 0.770 0.686 0.710 0.762 0.727 0.670 0.833 0.834 0.913 1.536 0.874 0.757 1.667 0.986 0.957
wave-energy 0.649 0.739 0.996 0.901 0.868 0.666 0.683 0.891 0.961 0.982 1.259 0.957 1.040 1.480 1.018 1.013
white-wine 0.938 1.482 1.008 1.154 0.923 1.130 0.980 1.369 1.403 1.371 3.502 1.706 1.093 1.747 1.090 1.263

Tables 9, 10, and 11 show the test mean squared errors for each dataset in OpenML data. Our method did not
achieve the best performance in some datasets although our method achieved significantly better performance
on average as shown in Table 1. When the meta-training datasets are not related to the test dataset, our method
cannot improve the performance. When the relationship between feature vectors and target values is nonlinear,
our method does not perform well.

C Limitations

Compared with the existing cross-validation-based and Bayesian methods that tune regularization weights for
each task, our method requires meta-learning using multiple datasets that are computationally more expensive.
When a sufficient number of training data are available, the existing cross-validation, Bayesian or deep learning-
based methods perform well. Although our method achieved better performance than the compared methods
in terms of the test mean squared error averaged over meta-test datasets as shown in Table 1, our method was
outperformed for some datasets as shown in Tables 9, 10, and 11. We evaluated our method only for linear
regression in our experiments.

