
Meta-learning from Heterogeneous Tensors
for Few-shot Tensor Completion

Tomoharu Iwata Atsutoshi Kumagai
NTT Corporation

Abstract

We propose neural network-based models for
tensor completion in few observation settings.
The proposed model can meta-learn induc-
tive bias from multiple heterogeneous tensors
without shared modes. Although many ten-
sor completion methods have been proposed,
the existing methods cannot leverage knowl-
edge across heterogeneous tensors, and their
performance is low when only a small num-
ber of elements are observed. The proposed
model encodes each element of a given ten-
sor by considering information about other
elements while reflecting the tensor structure
via a self-attention mechanism. The missing
values are predicted by tensor-specific linear
projection from the encoded vectors. The
proposed model is shared across different ten-
sors, and it is meta-learned such that the ex-
pected tensor completion performance is im-
proved using multiple tensors. By experi-
ments using synthetic and real-world tensors,
we demonstrate that the proposed method
achieves better performance than the existing
meta-learning and tensor completion meth-
ods.

1 INTRODUCTION

Data are often represented by tensors, or multidi-
mensional arrays, in a wide variety of applications,
which include signal processing (Muti and Bouren-
nane, 2005), sensor array processing (Sidiropoulos
et al., 2000), spatio-temporal analysis (Takeuchi et al.,
2013), computer vision (Vasilescu and Terzopoulos,
2002), and neuroscience (Mocks, 1988). In these ap-

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

Figure 1: Proposed framework. In the meta-training
phase, our model is meta-learned using multiple ten-
sors with different sizes without shared modes. In the
meta-test phase, given an unseen tensor with missing
values and a mask tensor, we impute the missing val-
ues using the meta-learned model.

plications, tensor completion is an important machine
learning task, which aims to impute missing values of
a partially observed tensor (Romera-Paredes and Pon-
til, 2013). For tensor completion, many methods have
been proposed, such as tensor decomposition (Hitch-
cock, 1927; Tucker, 1966; Oseledets, 2011; Wu et al.,
2022; Razin et al., 2021; Tomioka et al., 2011) and
neural network-based methods (Liu et al., 2019; Zhao
et al., 2020; Socher et al., 2013; Ibrahim et al., 2023).
However, these existing methods are trained for each
tensor, and they do not leverage knowledge across mul-
tiple tensors. Therefore, they often fail when the num-
ber of observed elements is small, e.g., the tensor size
is small, and the missing value ratio is high.

In this paper, we propose neural network-based mod-
els that are meta-learned using multiple tensors for few
observation settings. Figure 1 illustrates our proposed
framework. In the meta-training phase, the proposed
model is meta-learned using a set of heterogeneous ten-
sors, where their modes are not shared across tensors,

Meta-learning from Heterogeneous Tensors

their sizes are different, and they are obtained from
different domains. In the meta-test phase, the meta-
learned model is used to impute missing values of un-
seen tensors that are different from but related to the
meta-training tensors.

The existing tensor decomposition methods use in-
ductive bias discovered by domain experts, such as
low-rankness (Hitchcock, 1927), sparsity (Xue et al.,
2021), train (Oseledets, 2011), ring (Zhao et al., 2016),
hierarchical (Grasedyck, 2010), and network (Li and
Sun, 2020) structures. These inductive biases are com-
mon in tensors from various domains. The proposed
method learns inductive biases from related tensors
based on a data-driven approach, and stores them in
our model. Due to the high expressive power of neu-
ral networks, we can obtain more complex inductive
biases than the existing tensor completion methods,
and use them adaptively for each tensor by inputting
it into our model.

For meta-learning from heterogeneous tensors, we de-
velop neural tensor attention networks (NTANs) that
take a tensor with missing values as input, and out-
put the imputed missing values. Our model consists of
an embedding layer, multi-head m-mode tensor atten-
tion layers (mMTAs), fiber-wise feed-forward networks
(FFNs), and a prediction layer as shown in Figuer 2.
The embedding layer linearly projects observed values
with missing value information, and obtains an em-
bedding vector for each element. The mMTA trans-
forms the embeddings by performing self-attention be-
tween subtensors sliced along each mode alternately,
which enables us to aggregate information of other el-
ements while considering tensor structure. Intuitively,
elements that compose similar subtensors are likely to
have similar embeddings. The mMTA is an extension
of vanilla attention (Vaswani et al., 2017) for higher-
order tensor inputs, allowing attention to be performed
along arbitrary modes. FFNs nonlinearly transform
the embeddings, by which the expressive power is im-
proved. The prediction layer outputs an imputed ten-
sor by linearly projecting the transformed embeddings,
where the projection is adapted to the observed val-
ues. By the adaptation, we can flexibly output an
imputed tensor that matches the input tensor. The
adapted projection can be obtained in a closed form
by minimizing the squared error, which enables effec-
tive meta-learning.

The model parameters are shared across different ten-
sors except for the prediction layer, by which we can
learn useful common inductive biases for imputing
various tensors. The parameters are optimized by
minimizing the expected test squared errors of miss-
ing value imputation when a few observed values are
given by randomly generating various tensors from the

meta-training tensors with an episodic training frame-
work (Ravi and Larochelle, 2017). The meta-learned
model can perform tensor completion efficiently since
it can output a predicted tensor by a forwarding pass
of the neural network without iterative optimization.
Since the proposed model does not assume that modes
are shared across tensors, we can use the learned induc-
tive bias for newly given tensors obtained in domains
different from meta-training tensors.

The main contributions of this paper are as follows:
1) We present a meta-learning framework for ten-
sor completion using various tensors without shared
modes. 2) We propose an attention-based neural net-
work model for tensor completion that can handle het-
erogeneous tensors. 3) Using synthetic and real-world
tensor datasets, we demonstrate the effectiveness of
the proposed method in tensor completion with a small
number of observations.

2 RELATED WORK

Many tensor completion methods have been pro-
posed (Song et al., 2019; Liu et al., 2012; Liu and
Moitra, 2020; Nimishakavi et al., 2018; Bugg et al.,
2022; Zhang et al., 2020; Lee and Wang, 2021; Romera-
Paredes and Pontil, 2013; Lacroix et al., 2018; Yang
et al., 2022; Li et al., 2023). However, these methods
are trained using only a single tensor, and cannot learn
knowledge common among different tensors. Although
transfer learning methods for tensor completion (Chen
et al., 2021; Mohammadi et al., 2019) can transfer
knowledge between tensors, they assume only two ten-
sors (source and target) and require the target tensor
for training. In contrast, the proposed method can
handle more than two tensors and does not require tar-
get tensors for training neural networks. Core tensor
networks (Zhang et al., 2021) can transfer knowledge
across multiple tensors. However, they are inapplica-
ble to tensors that do not share modes, and tensors
of different sizes. Also, existing attention-based meth-
ods for tensor data (Wang et al., 2023; Babiloni et al.,
2020; Bai et al., 2018) cannot handle tensors of dif-
ferent sizes. The exchangeable tensor layers (Hartford
et al., 2018) can handle tensors of different sizes, and
they are used for transfer learning in tensor comple-
tion. However, they do not use attention mechanisms,
and are not meta-learned using various tensors.

Meta-learning has been successfully used for improv-
ing performance with a limited number of observations
by learning how to learn from various tasks (Garnelo
et al., 2018; Finn et al., 2017; Vinyals et al., 2016; Li
et al., 2017; Ravi and Larochelle, 2017; Snell et al.,
2017). However, the existing meta-learning meth-
ods are inapplicable to tensor completion. In meta-

Tomoharu Iwata, Atsutoshi Kumagai

learning for regression tasks, it is effective in obtain-
ing task-specific parameters adapted to the given data
in a closed form (Bertinetto et al., 2018; Iwata and
Tanaka, 2021), where linear models or Gaussian pro-
cesses are used. In the proposed method, by obtain-
ing an embedding vector for each element in the input
tensor with missing values, a tensor completion task is
transformed into a regression task. Therefore, we can
perform the closed-form adaptation for tensor comple-
tion although the existing tensor completion methods
require iterative optimization.

3 PRELIMINARIES

In this section, we describe the notation of tensors
and their operations used in this paper. Let X ∈
RN1×···×NM be an Mth-order tensor, or a tensor with
M modes. An element of tensor X is denoted by
X(n1, . . . , nM) ∈ R. A colon is used to indicate all
elements of a mode. For example, X(n1, . . . , nM−1, :
) = [X(n1, . . . , nM−1, 1), . . . ,X(n1, . . . , nM−1, NM)] ∈
RNM is a vector called mode-M fiber (Kolda
and Bader, 2009). The m-mode product of ten-
sor X with matrix W ∈ RNm×H is denoted
by X ×m W ∈ RN1×···×Nm−1×H×Nm+1×···×NM ,
where (X ×m W)(n1, . . . , nm−1, h, nm+1, . . . , nM) =∑Nm

n=1 X(n1, . . . , nm−1, n, nm+1, . . . , nM)W(n, h) ele-
mentwisely.

4 PROPOSED METHOD

4.1 Problem formulation

In the meta-training phase, we are given meta-training
tensors, D = {Td}Dd=1, where Td ∈ RNd1×Nd2×···×NdM

is the dth tensor with M modes. The modes are not
shared across tensors. The size for each mode can be
different across tensors, i.e., Ndm 6= Nd′m. The ten-
sors can contain missing values. We assume that all
tensors have an identical number of modes M . An
extension of our model to different numbers of modes
is described in Section 4.4. In the meta-test phase,
we are given a meta-test tensor with missing values
X ∈ RN1×···×NM , which is different from but related
to the meta-training tensors. The missing values are
set to zero in X. Mask tensor S ∈ {0, 1}N1×···×NM

is also given for indicating observed elements, where
S(n1, . . . , nM) = 1 if observed, and zero otherwize.
Our aim is to improve the performance to predict miss-
ing values of meta-test tensors.

4.2 Model

Given an Mth-order observed tensor with missing
value X ∈ RN1×···×NM and its mask tensor S ∈

Algorithm 1 Neural tensor attention network.

1: Input: Observed tensor with missing values X,
mask tensor S.

2: Output: Imputed tensor X̂.
3: Obtain embedding tensor Z1,0 by Eq. (1).
4: for ` = 1 to L do
5: for m = 1 to M do
6: Transform tensor by O`m =

mMTA`m(Z`,m−1) in Eq. (7).
7: Transform tensor by Z`m = FFN`m(O`m) in

Eq. (8).
8: end for
9: Set Z`+1,0 = Z`M .

10: end for
11: Set Z = ZLM .
12: Obtain adapted prediction layer ŴL using X, S,

Z in Eq. (10).

13: Obtain imputed tensor by X̂ = Z′ ×M+1 ŴL in
Eq. (9).

{0, 1}N1×···×NM , the neural tensor attention network

(NTAN) outputs its imputed values X̂ ∈ RN1×···×NM .
Figure 2 illustrates the architecture of the NTAN, and
Algorithm 1 shows the forwarding pass. The NTAN
has a multi-head m-mode tensor attention mMTA`m

and a fiber-wise feed-forward network FFN`m for each
layer ` and for each mode m.

4.2.1 Embedding layer

First, by concatenating observed and mask ten-
sors, X and S, we obtain (M + 1)th-order tensor,
concatM+1(X,S) ∈ RN1×···×NM×2, where concatm
represents the concatination of tensors along the mth
mode. Then, the concatenated tensor is transformed
by a linear layer,

Z1,0 = concatM+1(X,S)×M+1 W
E, (1)

where Z1,0 ∈ RN1×···×NM×H is the (M + 1)th-order
embedding tensor, and WE ∈ R2×H is a linear projec-
tion matrix. By the embedding layer, we can encode
information on observed values and missingness.

4.2.2 Multi-head m-mode tensor attention
layer

The m-mode tensor attention layer (mTA) transforms
(M + 1)th-order tensor to another (M + 1)th-order
tensor by performing attention across subtensors sliced
along the mth mode. An mTA can handle tensors with
different sizes of modes except for the last mode, i.e.,
Nm can vary for m = 1, · · · ,M .

Let Z′ ∈ RN1×···×NM×H be an input tensor. First, the
input tensor is linearly transformed to query Q, key

Meta-learning from Heterogeneous Tensors

Figure 2: Neural tensor attention networks. 1) Observed and mask tensors, X and S, are embedded into an
(M + 1)th-order tensor by a linear embedding layer described in Section 4.2.1. 2) The tensor is transformed
by multi-head m-mode tensor attentions (mMTA) and fiber-wise feed-forward networks (FFNs) for each mode

m alternately (Sections 4.2.2 and 4.2.3)). It is iterated L times. 3) Imputed tensor X̂ is obtained by a linear
prediction layer that is adapted by given observed tensor X (Section 4.2.4).

K, and value V tensors,

Q = Z′ ×M+1 W
Q ∈ RN1×···×NM×HQ , (2)

K = Z′ ×M+1 W
K ∈ RN1×···×NM×HQ , (3)

V = Z′ ×M+1 W
V ∈ RN1×···×NM×HV , (4)

where WQ ∈ RH×HQ , WK ∈ RH×HQ , and WV ∈
RH×HV are linear projection matrices.

Next, attention matrix A is obtained using query Q
and key K tensors,

A = softmax

 Q(m)K
>
(m)√

HQ

∏
m′ 6=mNm′

 ∈ RNm×Nm ,

(5)

where softmax is the softmax function, and
Q(m) ∈ RN1...Nm−1Nm+1...NMHQ×Nm and K(m) ∈
RN1...Nm−1Nm+1...NMHQ×Nm are the m-mode matri-
cization of tensors Q and K, respectively. A value in
the attention matrix A(n, n′) represents relationship
between the nth and n′th slices along the mth mode
of input tensor Z′.

The output of the mTA is obtained by m-mode prod-
uct of value tensor V and attention matrix A,

mTA(Z′) = V ×m A ∈ RN1×···×NM×HV , (6)

where the nth slice along the mth mode of the out-
put tensor is calculated using other slices n′ of the
value tensor by weighting with their attention values
A(n, n′). With the mTA, the embedding of an element
is updated by referring to the embeddings of other el-
ements that compose similar subtensors sliced along
the mth mode.

The multi-head version of the mTA is given by con-

catenating multiple mTAs,

O = concatM+1(mTA1(Z′),. . .,mTAR(Z′))×M+1W
O

≡ mMTA(Z′) ∈ RN1×···×NM×HO , (7)

where mTAr is the rth mTA, each head has different
linear projection matrices, R is the number of heads,
and WO ∈ RHVR×HO is a linear projection matrix.
The use of multiple heads allows us to capture various
types of dependencies at different parts in the input
tensor simultaneously. Although we omit mode, layer,
and head indices in the parameters in Section 4.2.2 for
simplicity, e.g., WQ, the NTAN has parameters for
each layer `, for each mode m, and for each head r,
e.g., WQ

`mr.

When the input tensor is a second-order tensor, or
matrix, the one-mode tensor attention corresponds to
the vanilla attention (Vaswani et al., 2017). When
the input tensor is a third-order tensor, the one-mode
tensor attention corresponds to the variable-feature at-
tention (Iwata and Kumagai, 2023).

4.2.3 Fiber-wise feed-forward networks

After a multi-head m-mode tensor attention (mMTA)
layer, tensor O is nonlinearly transformed to another
tensor Z ∈ RN1×···×NM×H by a fiber-wise feed-forward
network (FFN). As position-wise feed-forward net-
works in Transformer (Vaswani et al., 2017), FFNs can
improve the expressive power of the NTAN. In partic-
ular, each mode-(M +1) fiber O(n1, . . . , nM , :) ∈ RHO

is transformed by a residual feed-forward neural net-
work with layer normalization (Ba et al., 2016),

Z(n1, . . . , nM , :) = O(n1, . . . , nM , :)
>WR

+ FF(LN(O(n1, . . . , nM , :)))

≡ FFN(O(n1, . . . , nM , :)) ∈ RH (8)

Tomoharu Iwata, Atsutoshi Kumagai

where WR ∈ RHO×H is a residual linear projection
matrix, FF : RHO → RH is a feed-forward neural net-
work, and LN is a layer normalization. The parameters
in WR, FF, and LN are shared across all fibers.

As shown in Lines 5–8 in Algorithm 1, mMTAs and
FFNs are alternately perform for each mode m =
1, . . . ,M , by which we can capture information on the
input tensor in different aspects (modes). By iterat-
ing mMTAs and FFNs for M modes and L layers, we
obtain tensor representation Z ∈ RN1×···×NM×H .

4.2.4 Adaptive Prediction layer

Imputed tensor X̂ of the same size with the input ten-
sor X is obtained by linear projection of tensor repre-
sentation Z,

X̂ = Z1 ×M+1 Ŵ
L ≡ NTAN(X,S) ∈ RN1×···×NM ,

(9)

where Z1 = concatM+1(Z,1) ∈ RN1×···×NM×(H+1),
1 ∈ RN1×···×NM×1 is the tensor with value one for all
elements, and ŴL ∈ R(H+1)×1 is a linear projection
vector adapted to given observed tensor X. Ones ten-
sor 1 is concatenated to introduce a bias term. NTAN
is our neural tensor attention network for tensor com-
pletion that takes observed X and mask S tensors as
input. The adapted linear projection matrix ŴL is
obtained in a closed form by minimizing the squared
Frobenius norm between the observed and imputed
tensors with `2 regularization as follows,

ŴL

= argmin
WL

‖ S� (X− Z1 ×M+1 W
L) ‖2F +β ‖WL ‖2F

= (Z1>
S=1Z

1
S=1 + βI)−1Z1>

S=1XS=1, (10)

where Z1
S=1 ∈ RI×(H+1) is the matrix of mode-(M+1)

fibers of Z1 at observed elements, XS=1 ∈ RI is the
vector of observed values in X, ‖ · ‖F is the Frobe-
nius norm, � is the element-wise product, I is the
number of observed elements, β ∈ R>0 is a posi-
tive scalar parameter, and I is the identity matrix
of size (H + 1) × (H + 1). Since NTAN can obtain
a vector representation for each input tensor element
Z(n1, . . . , nm, :) ∈ RH even for missing elements, the
prediction can be formulated as a linear regression
problem, which enables us to adapt the prediction
layer analytically as shown in Eq. (10).

Model paramters θ in NTAN are a linear
projection matrix in the embedding layer,
WE, linear projection matrices in mMTAs,
{{{WQ

`mr,W
K
`mr,W

V
`mr}Rr=1,W

O
`m}Mm=1}L`=1, and

parameters in FFNs, which include parameters in
feed-forward neural networks, {{FF`m}Mm=1}L`=1, lin-
ear projection matrices, {{WR

`m}Mm=1}L`=1, parameters

Algorithm 2 Meta-learning procedures.

1: Input: Meta-training tensors D = {T1, . . . ,TD},
taget tensor size (N1, . . . , NM), observed ratio µ.

2: Output: Trained model parameters θ.
3: while End condition is satisfied do
4: Randomly sample meta-training tensor index d

from {1, . . . , D}.
5: Randomly sample subtensor X of size N1×· · ·×

NM from meta-training tensor Td.
6: Randomly generate mask tensor S of size N1 ×

· · · ×NM according to observed ratio µ.
7: Predict missing values from observed tensor

X̂ = NTAN(X � S,S), where the prediction
layer is optimized using observed values X� S.

8: Evaluate prediction error on missing elements
‖ (1− S)� (X− X̂) ‖2F.

9: Update model parameters by minimizing the er-
ror by a stochastic gradient method.

10: end while

in layer normalizations {{LN`m}Mm=1}L`=1, and `2
regularization weight β in the adaptive prediction
layer. Parameters θ are shared across different
tensors, by which we can learn common knowledge on
tensor completion among heterogeneous tensors. All
the parameters do not depend on input tensor size
(N1, . . . , NM). Therefore, NTAN can predict missing
values for tensors of different sizes.

4.3 Meta-learning

Model parameters θ are trained by minimizing the fol-
lowing expected test error of predicting missing values,

EdE(X,S)∼Td

[
‖ (1− S)� (X−NTAN(X� S,S)) ‖2F

]
,

(11)

where Ed is the expectation over meta-training ten-
sors d = 1, . . . , D, and E(X,S)∼Td

is the expectation
over observed and masked tensors randomly generated
from the dth meta-training tensor Td. Here, X� S is
an observed tensor where its missing values are set to
zero, which is used for the input of the NTAN. The er-
ror is calculated only on the elements that are not used
for training by multiplying (1 − S), which enables us
to evaluate generalization performance. When meta-
training tensors and meta-test tensors are generated
from the same distribution, Eq. (11) converges to the
true test error as the number of the meta-training ten-
sors increases.

Algorithm 2 shows the meta-learning procedures of
NTAN. The expectation in Eq. (11) is approximated
by the Monte Carlo method. In Lines 4–5, a tensor is
randomly generated from meta-training tensors. Here,
the modes can be shuffled to increase the variety of

Meta-learning from Heterogeneous Tensors

training tensors, X and S. In Line 6, a mask tensor is
randomly generated assuming that meta-test tensors
are missing completely at random (Little and Rubin,
2019). When they are missing at random or missing
not at random, we can model the missing mechanism
using the meta-training tensors, and generate the mask
tensor using the missing mechanism model. In Line 7,
imputed tensor X̂ is obtained from observed tensor
X�S and its mask tensor S. In Line 8, the prediction
error at missing elements is evaluated.

When meta-training tensors contain missing values, el-
ements of originally missing values are excluded from
the prediction error evaluation. By minimizing the
test error on various tensors randomly generated from
meta-training tensors with an episodic training frame-
work (Ravi and Larochelle, 2017) as described above,
the NTAN is expected to perform well on unseen ten-
sors. The proposed method is a meta-learning method
that solves a bilevel optimization problem, where the
inner optimization corresponds to the adaptation of
the prediction layer by minimizing the error on ob-
served values X�S in Line 7, and the outer optimiza-
tion corresponds to the update of model parameters
shared across tensors by minimizing the error on held-
out values (1 − S) � X in Lines 8–9. The proposed
method can be considered as self-supervised learning
for tensors, where a model is trained by minimizing
the prediction error at randomly set missing elements.

The computational complexity of m-mode tensor at-
tention is O(HQN

2
m

∏
m′ 6=mNm′ + HV

∏
m′ Nm′). It

linearly increases with the size of each mode except
for mth mode, and quadratically increases with the
size of the mth mode. The complexity of adapting
the prediction layer is cubic to the number of hidden
units O(H3), which is required for the inverse of ma-
trix Z1>

S=1Z
1
S=1+βI of size (H+1)×(H+1) in Eq. (10).

Although we fix target tensor size (N1, . . . , NM) for
simplicity in mete-learning, we can consider a range of
target tensor sizes by defining minimum and maximum
tensor sizes, (Nmin

1 , . . . , Nmin
M) and (Nmax

1 , . . . , Nmax
M),

uniform randomly selecting a tensor size from them
for each iteration. Similarly, we can consider a range
of observed ratios for µ in meta-learning.

4.4 Permutation equivariance

An important property for modeling tensor data is
permutation equivariance (Zaheer et al., 2017; Hart-
ford et al., 2018). mMTAs and FFNs are permu-
tation equivariant on elements for each mode except
for the last mode. mMTAs are permutation equiv-
ariant on modes except for the mth and (M + 1)th
modes. Since the NTAN has mode-specific mMTAs,
the NTAN is not permutation equivariant on modes.

In Algorithm 1, mMTAs are sequentially performed for
each mode in Line 6. Instead, by performing mMTAs
(and FFN) parallelly and aggregating the outputs with
average pooling, the transformation becomes permu-
tation equivariant on all modes,

Z`+1 =
1

M

M∑
m=1

FFN`(mMTA`(Z`)), (12)

where Z` is tensor representation at the `th layer, and
the parameters in the mMTA and FFN are shared
across all modes. When Eq. (12) is used, our model
can transform tensors with different numbers of modes.
Although traditional sequence-based attention mech-
anisms typically include positional encoding (Vaswani
et al., 2017), since it eliminates the permutation equiv-
ariance property, NTAN does not use positional encod-
ing.

5 EXPERIMENTS

5.1 Synthetic Data

Data First, we evaluated the proposed method using
three types of synthetic tensors: low-rank, nonlinear,
and random. Low-rank tensors were generated by a
sum of two rank-one tensors, where rank-one tensors
were obtained by the outer product of vectors, whose
elements were normally distributed with mean zero
and variance one. Nonlinear tensors were generated by
nonlinearly transforming low-rank tensors via a three-
layered feed-forward neural network. The number of
hidden units was eight, the parameters in the neural
network were uniform randomly determined in [−1, 1],
and the rectified linear unit was used for activation.
Random tensors were generated uniform randomly in
[−1, 1] for each element. The size of all tensors was
10× 10× 10.

Four cases of meta-training tensors were considered:
LowR, NonL, Rand, and Mixed. Here, LowR (NonL,
Rand) contains only low-rank (nonlinear, random)
tensors, and Mixed contains all of the low-rank, non-
linear, and random tensors. Three cases of meta-test
tensors were considered: LowR, NonL, and Rand. For
each meta-test tensor, held-out elements were ran-
domly selected with observed ratio µ ∈ {0.1, 0.2, 0.3}
assuming missing completely at random. There was
no overlap between meta-training and meta-test ten-
sors. The values were normalized with mean zero and
variance one for each tensor. The number of meta-
training tensors was 700, and the number of meta-test
tensors was 200 for each experiment. The experiments
were conducted ten times.

Settings In NTAN, we used L = 2 layers of mMTAs
with four heads and FFNs, where the linear projec-

Tomoharu Iwata, Atsutoshi Kumagai

Table 1: Test mean squared errors on synthetic ten-
sors. Each column shows the method, where NTAN
Mixed, LowR, NonL, Rand represent our method
meta-trained with mixed, low-rank, nonlinear, and
random tensors, respectively. CPD represents canoni-
cal polyadic decomposition. Each row shows the meta-
test tensors, and µ represents the observed ratios of
the meta-test tensors. Values in bold typeface are not
statistically significantly different at the 5% level from
the best performing method in each setting according
to a paired t-test.

NTAN NTAN NTAN NTAN
Test \ Train µ Mixed LowR NonL Rand CPD

0.1 0.531 0.412 0.698 1.000 1.273
LowR 0.2 0.182 0.099 0.207 1.000 0.632

0.3 0.068 0.032 0.115 1.000 0.310
0.1 0.569 1.037 0.533 0.999 1.156

NonL 0.2 0.302 0.766 0.271 0.999 0.732
0.3 0.188 0.815 0.165 1.001 0.500
0.1 1.004 1.400 1.200 1.000 1.760

Rand 0.2 1.049 1.306 1.423 1.000 1.498
0.3 1.002 1.401 1.263 1.000 1.371

100 101 102

#meta-training tensors
0.05

0.10

0.15

0.20

Er
ro

r

Figure 3: Test mean squared errors by our method
on synthetic tensors with different numbers of meta-
training tensors. Meta-training tensors are LowR, and
meta-test tensors are LowR with observed ratio 0.2.
Bar shows the standard error.

tion size was set to H = HQ = HV = HO = 32 for
all layers, and FFNs were three-layered feed-forward
neural networks with 32 hidden units. For the acti-
vation function, we used the rectified linear unit. We
optimized models using Adam (Kingma and Ba, 2015)
with learning rate 10−4, and batch tensor size of eight.
The meta-validation tensors were used for early stop-
ping, for which the maximum number of meta-training
epochs was 3,000. In meta-learning, we generated sub-
tensors by shuffling modes with the same size and ob-
served ratio with meta-test tensors.

Results Table 1 shows the test mean squared er-
rors on meta-test tensors. Here, in addition to the
proposed NTAN with different meta-training tensors
(Mixed, LowR, NonL, and Rand), canonical polyadic

decomposition (Hitchcock, 1927) (CPD) with rank two
was compared. First, NTAN achieved the lowest error
for different types of meta-test tensors when the types
of meta-training and meta-test tensors were identical.
This result indicates that NTAN can flexibly meta-
learn different kinds of inductive bias based on the
attention-based architecture from the meta-training
tensors. Second, NTAN meta-learned with mixed ten-
sors achieved the second best performance in all cases.
This result implies that when different types of tensors
are included in meta-training, NTAN can adaptively
select inductive bias to use depending on the input ten-
sor. Third, when meta-training and meta-test tensors
were not similar (e.g., meta-trained with LowR and
meta-tested with NonL), NTAN did not perform well.
To improve performance with NTAN, it is beneficial to
prepare meta-training tensors that are related to meta-
test tensors. Fourth, NTAN meta-trained with ran-
dom tensors did not improve the performance. When
there is no pattern in meta-training tensors, we cannot
learn inductive bias. Fifth, although CPD used induc-
tive bias of low-rankness, NTAN (meta-trained with
Mixed, LowR, and NonL) achieved the better perfor-
mance than CPD for LowR meta-test tensors. It is
because NTAN meta-learned other inductive bias than
low-rankness, such as the distribution of rank-one ten-
sors. Figure 3 shows that the test mean squared errors
decreased as the number of meta-training tensors in-
creased. By using more tensors, NTAN can meta-learn
inductive bias more. Examples of imputed tensors by
NTAN were shown in Figure 5 in Appendix B.2.

5.2 Real-world Data

Data Next, we evaluated the proposed method us-
ing five real-world third-order tensors: Flow, Enose,
Amino, Sugar 1, and Traffic2. Flow, Enose, Amino,
and Sugar tensors were data in chemometric. Flow
tensor consists of data of flow injection analysis on
chemical substances of size 12 × 100 × 89 (substance
× wavelength × reaction time). Enose tensor consists
of electronic nose data of size 18 × 241 × 12 (sample
× reaction time × sensor). Amino tensor consists of
amino acids fluorescence of size 5×201×61 (sample ×
emission × excitation) (Bro, 1997). Sugar tensor con-
sists of sugar flourescence of size 268×571×7 (sample
× emission × excitation) (Bro, 1999). Traffic tensor
consists of vehicle counting in January 2019 by Greno-
ble Traffic Lab of size 31 × 24 × 21 (day × hour ×
segment) (De Wit et al., 2015).

We constructed five datasets of meta-training and

1Data in chemometric were downloaded from https:
//ucphchemometrics.com/datasets/.

2Traffic tensor was downloaded from https://gtl.
inrialpes.fr/data_download.

Meta-learning from Heterogeneous Tensors

Table 2: Test mean squared errors with different observed ratios µ. Values in bold typeface are not statistically
significantly different at the 5% level from the best performing method in each setting according to a paired
t-test. The standard error is shown in Table 9 in Appendix B.3.

µ NTAN MSEM MFEA SEM FEA CPD TD TTD TRD TSVD USVD FCTN
0.01 0.951 0.950 0.973 0.963 1.008 1.107 1.114 1.625 0.995 0.995 0.995 0.995

Flow 0.05 0.648 0.810 0.816 0.834 0.971 1.099 1.112 1.206 0.999 0.972 0.929 0.997
0.10 0.447 0.749 0.792 0.723 0.955 1.096 1.105 1.210 0.964 0.872 0.684 0.864
0.01 0.068 0.255 0.220 0.520 0.841 0.909 0.941 1.051 0.976 0.999 0.998 0.961

Enose 0.05 0.010 0.048 0.063 0.254 0.704 0.045 1.020 0.116 0.405 0.972 0.835 0.421
0.10 0.008 0.033 0.071 0.176 0.654 0.009 1.036 0.054 0.293 0.589 0.185 0.293
0.01 0.887 0.918 0.934 0.937 1.026 1.174 1.321 1.479 0.986 0.992 0.992 0.987

Amino 0.05 0.557 0.658 0.737 0.785 0.957 0.974 1.085 1.113 0.953 0.992 0.966 0.915
0.10 0.330 0.501 0.659 0.719 0.943 0.565 1.091 0.829 0.853 0.709 0.607 0.610
0.01 0.536 0.586 0.657 0.666 0.856 1.097 1.106 1.144 0.997 0.997 0.997 0.996

Sugar 0.05 0.225 0.157 0.299 0.383 0.737 0.378 0.974 0.311 0.674 0.646 0.345 0.672
0.10 0.210 0.127 0.176 0.312 0.782 0.179 1.042 0.184 0.474 0.341 0.174 0.472
0.01 0.473 0.447 0.523 0.711 0.902 1.097 1.033 1.103 0.990 1.000 1.000 0.988

Traffic 0.05 0.186 0.279 0.322 0.475 0.812 0.385 1.063 0.447 0.558 0.482 0.379 0.437
0.10 0.130 0.216 0.265 0.380 0.781 0.191 1.064 0.436 0.271 0.357 0.219 0.263

Table 3: Ablation study. Test mean squared errors av-
eraged over all observed ratios and datasets, and their
standard errors are shown. NoAdapt is NTAN with-
out an adaptive prediction layer, where a linear layer
is shared across all tensors. NoAttn is NTAN with-
out attention mechanism, where exchangeable ten-
sor layers were used instead of mMTAs and FFNs.
NoShuf is NTAN without mode shuffling when gen-
erating subtensors in meta-learning. Share is NTAN
that shares parameters of mMTAs and FFNs across
different modes for each layer by Eq. (12).

NTAN NoAdapt NoAttn NoShuf Share

0.378 0.424 0.412 0.519 0.388

meta-test tensors, where one of the five tensors was
used for meta-test, and the other four tensors were
used for meta-training. We called a dataset using
the name of the tensor used for meta-test; e.g., the
Flow dataset consists of meta-test tensors generated
from Flow tensor, and meta-training tensors of Enose,
Amino, Sugar, and Traffic tensors. There was no
overlap between meta-training and meta-test tensors.
We randomly generated 50 meta-test tensors for each
dataset by sampling subtensors such that the num-
ber of elements in each mode was not larger than 30,
where all elements were used when the element size was
not larger than 30. The values were normalized with
mean zero and variance one for each tensor. For each
meta-test tensor, held-out elements were randomly se-
lected with observed ratio µ ∈ {0.01, 0.05, 0.1} as-
suming missing completely at random. The experi-
ments were conducted ten times by permutating meta-
training tensors, and resampling meta-test tensors.
When the size of meta-training tensors was smaller
than that of meta-test tensors, we fit the smaller one.

Comparing methods We compared the proposed
NTAN method with the following methods: the
self-supervised exchangeable model (Hartford et al.,
2018) (SEM), the factorized exchangeable autoen-
coder (Hartford et al., 2018) (FAE), meta-learning
of SEM and FAE (MSEM and MFAE), canoni-
cal polyadic decomposition (Hitchcock, 1927) (CPD),
Tucker decomposition (Tucker, 1966) (TD), tensor
train decomosition (Oseledets, 2011) (TTD), ten-
sor ring decomposition (TRD) (Zhao et al., 2016),
tensor SVD by Fourier transform (G.-J. Song and
Zhang, 2020) (TSVD), tensor SVD by unitary trans-
form (G.-J. Song and Zhang, 2020) (USVD), and
fully-connected tensor network (Zheng et al., 2021)
(FCTN). NTAN, MSEM, and MFAE are meta-
learning methods, which are trained using meta-
training tensors. Since there have been no exist-
ing meta-learning methods for tensor completion, we
newly developed MSEM and MFAE as baselines.
SEM, FAE, CPD, TD, TTD, TRD, TSVD, USVD, and
FCTN are trained for each meta-test tensor. NTAN,
MSEM, MFAE, SEM, and FAE are neural network-
based methods, and the other methods are tensor
decomposition-based methods. The detailed experi-
mental settings of the compared methods are described
in Appendix B.1.

Results Table 2 shows the test mean squared er-
rors of missing value prediction in meta-test tensors
averaged over ten experiments. The proposed NTAN
achieved the lowest error in many cases. As the ob-
served ratio increased, the error generally decreased
in all methods. The errors by meta-learning meth-
ods (NTAN, MSEM, and MFEA) were lower than the
other methods that were trained for each meta-test
tensor. This result indicates that the meta-learning
approach is effective for tensor completion when the

Tomoharu Iwata, Atsutoshi Kumagai

Table 4: Test mean squared errors when meta-learned with third-order tensors, and meta-tested with fifth-order
tensors.

NTAN (Share) SEM FEA CPD TD TTD TRD FCTN
0.715 0.906 1.004 0.846 1.058 0.842 0.846 0.934

Table 5: Test mean squared errors when meta-learned with target tensor size 30× 24× 21 and meta-tested with
tensors of size 30 × 24 × 1 (or matrices of size 30 × 24) on Traffic dataset with different observed ratio µ. We
omit TSVD and USVD since the implementation did not work for tensors with modes of size one.

µ NTAN MSEM MFEA SEM FEA CPD TD TTD TRD FCTN
0.01 0.985 1.177 1.256 0.959 1.005 1.131 1.366 1.304 1.022 1.022
0.05 0.590 0.788 0.779 0.706 0.896 0.926 1.132 1.133 1.023 1.023
0.10 0.350 0.512 0.472 0.522 0.762 0.551 0.899 0.775 0.923 0.915

number of observed elements is small. The better
performance of the proposed method compared with
MSEM and MFEA demonstrates the effectiveness of
our neural network-based model.

Table 3 shows the results of the ablation study. When
the prediction layer was not adapted for each tensor
(NoAdapt), and when our tensor attention layers were
not used (NoAttn), the performance decreased. This
result indicates the effectiveness of the adaptation and
attention in our model. Since we can train with more
diverse tensors by shuffling modes in meta-learning,
removing shuffling (NoShuf) increased the error. The
sharing (Share) slightly degraded the performance.

The proposed method took 1.9 hours for meta-
training, 1.3 seconds for meta-test on computers with
Nvidia A100 GPU with 40GB memory and AMD
EPYC 7262 CPU with 512GB memory for the Traf-
fic dataset with observed ratio 0.01. Although the
meta-training time was long, the proposed method
efficiently performed tensor completion by using the
meta-learned model.

When the proposed model shares the parameters
across modes in Eq. (12), it can handle tensors with
different numbers of modes. Table 4 shows the re-
sult when the number of modes of meta-test tensors
is larger than that of meta-training tensors with ob-
served ratio 0.1. NTAN with shared parameters was
meta-learned using the Traffic dataset, which consists
of tensors with three modes. The number of modes of
meta-test tensors was five, where we used a tensor of
enzymatic activity of size 3× 3× 3× 3× 5 (Mortensen
and Bro, 2006)3. The tensor contains the activity of
polyphenol oxidase at different levels of O2, CO2, tem-
perature, pH, and substrate according to a factorial
design. Even when the number of modes in meta-test
was larger than that in meta-training, the proposed
method achieved low errors. MSEM and MFEA are in-

3The enzymatic activity data were downloaded from
https://ucphchemometrics.com/datasets/.

applicable to tensors with different numbers of modes.

When the number of modes of meta-test tensors is
smaller than that of meta-training tensors, The pro-
posed method is directly applicable by adding modes
of size one to the meta-test tensors to align the num-
ber of modes. Table 5 shows that the proposed method
performed well in such a case.

Tables 7 and 8 in Appendix B.3 show that even when
the number of elements in each mode is different be-
tween meta-test and meta-training tensors, the pro-
posed method can use the meta-learned knowledge,
and achieved high performance.

Additional experimental results, such as the results
with different hyperparameters, and those with differ-
ent numbers of meta-training tensors, are shown in
Appendix B.3.

6 CONCLUSION

We proposed neural attention tensor networks for ten-
sor completion, which is meta-learned using various
tensors without shared modes. The experimental re-
sults show that our method achieves the high tensor
completion performance with a small number of obser-
vations compared with the existing methods.

Although we believe that our work is an important
step for learning from a wide variety of datasets, we
must extend our approach in several directions. First,
we plan to develop our method for tensors with missing
not at random. Second, we want to extend our method
to be able to handle heterogeneous types of elements,
e.g., categorical values and natural language. Third,
for handling tensors with a large number of elements,
we need to use scalable attention models (Ainslie et al.,
2020; Zaheer et al., 2020; Grefenstette et al., 2019).

Meta-learning from Heterogeneous Tensors

References

J. Ainslie, S. Ontanon, C. Alberti, V. Cvicek,
Z. Fisher, P. Pham, A. Ravula, S. Sanghai, Q. Wang,
and L. Yang. ETC: Encoding long and structured
inputs in transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 268–284, 2020.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer nor-
malization. arXiv preprint arXiv:1607.06450, 2016.

F. Babiloni, I. Marras, G. Slabaugh, and S. Zafeiriou.
TESA: Tensor element self-attention via matriciza-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13945–13954, 2020.

Y. Bai, J. Fu, T. Zhao, and T. Mei. Deep attention
neural tensor network for visual question answering.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 20–35, 2018.

L. Bertinetto, J. F. Henriques, P. Torr, and
A. Vedaldi. Meta-learning with differentiable closed-
form solvers. In International Conference on Learn-
ing Representations, 2018.

R. Bro. PARAFAC. tutorial and applications. Chemo-
metrics and Intelligent Laboratory Systems, 38(2):
149–171, 1997.

R. Bro. Exploratory study of sugar production us-
ing fluorescence spectroscopy and multi-way analy-
sis. Chemometrics and Intelligent Laboratory Sys-
tems, 46(2):133–147, 1999.

C. Bugg, C. Chen, and A. Aswani. Nonnegative tensor
completion via integer optimization. Advances in
Neural Information Processing Systems, 35:10008–
10020, 2022.

Z. Chen, Z. Xu, and D. Wang. Deep transfer tensor de-
composition with orthogonal constraint for recom-
mender systems. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
4010–4018, 2021.

C. C. De Wit, F. Morbidi, L. L. Ojeda, A. Y. Kiban-
gou, I. Bellicot, and P. Bellemain. Grenoble traffic
lab: An experimental platform for advanced traffic
monitoring and forecasting. IEEE Control Systems
Magazine, 35(3):23–39, 2015.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference
on Machine Learning, pages 1126–1135, 2017.

M. K. N. G.-J. Song and X.-J. Zhang. Robust tensor
completion using transformed tensor singular value
decomposition. Numerical Linear Algebra with Ap-
plications, 27:e2299, 2020.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ra-
malho, D. Saxton, M. Shanahan, Y. W. Teh,
D. Rezende, and S. A. Eslami. Conditional neural
processes. In International Conference on Machine
Learning, pages 1690–1699, 2018.

L. Grasedyck. Hierarchical singular value decomposi-
tion of tensors. SIAM Journal on Matrix Analysis
and Applications, 31(4):2029–2054, 2010.

E. Grefenstette, B. Amos, D. Yarats, P. M. Htut,
A. Molchanov, F. Meier, D. Kiela, K. Cho, and
S. Chintala. Generalized inner loop meta-learning.
arXiv preprint arXiv:1910.01727, 2019.

J. Hartford, D. Graham, K. Leyton-Brown, and S. Ra-
vanbakhsh. Deep models of interactions across sets.
In International Conference on Machine Learning,
pages 1909–1918, 2018.

F. L. Hitchcock. The expression of a tensor or a
polyadic as a sum of products. Journal of Math-
ematics and Physics, 6(1-4):164–189, 1927.

S. Ibrahim, X. Fu, R. Hutchinson, and E. Seo. Under-
counted tensor completion with neural incorpora-
tion of attributes. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202, pages 14283–14315, 2023.

T. Iwata and A. Kumagai. Meta-learning of semi-
supervised learning from tasks with heterogeneous
attribute spaces. arXiv preprint arXiv:2311.05088,
2023.

T. Iwata and Y. Tanaka. Few-shot learning for spa-
tial regression via neural embedding-based Gaussian
processes. Machine Learning, pages 1–19, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In International Conference on
Learning Representations, 2015.

T. G. Kolda and B. W. Bader. Tensor decomposi-
tions and applications. SIAM review, 51(3):455–500,
2009.

T. Lacroix, N. Usunier, and G. Obozinski. Canoni-
cal tensor decomposition for knowledge base com-
pletion. In International Conference on Machine
Learning, pages 2863–2872. PMLR, 2018.

C. Lee and M. Wang. Beyond the signs: Nonparamet-
ric tensor completion via sign series. Advances in
Neural Information Processing Systems, 34:21782–
21794, 2021.

C. Li and Z. Sun. Evolutionary topology search for ten-
sor network decomposition. In International Confer-
ence on Machine Learning, pages 5947–5957, 2020.

Y. Li, W. Liang, K. Xie, D. Zhang, S. Xie, and K. Li.
LightNestle: quick and accurate neural sequential

Tomoharu Iwata, Atsutoshi Kumagai

tensor completion via meta learning. In IEEE IN-
FOCOM 2023-IEEE Conference on Computer Com-
munications, pages 1–10. IEEE, 2023.

Z. Li, F. Zhou, F. Chen, and H. Li. Meta-SGD: Learn-
ing to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835, 2017.

R. J. Little and D. B. Rubin. Statistical analysis with
missing data, volume 793. John Wiley & Sons, 2019.

A. Liu and A. Moitra. Tensor completion made prac-
tical. Advances in Neural Information Processing
Systems, 33:18905–18916, 2020.

H. Liu, Y. Li, M. Tsang, and Y. Liu. Costco: A neural
tensor completion model for sparse tensors. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, pages 324–334, 2019.

J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor
completion for estimating missing values in visual
data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1):208–220, 2012.

J. Mocks. Topographic components model for event-
related potentials and some biophysical considera-
tions. IEEE Transactions on Biomedical Engineer-
ing, 35(6):482–484, 1988.

S. M. Mohammadi, S. Kouchaki, S. Sanei, D.-J. Dijk,
A. Hilton, and K. Wells. Tensor factorisation and
transfer learning for sleep pose detection. In Euro-
pean Signal Processing Conference, pages 1–5, 2019.

P. P. Mortensen and R. Bro. Real-time monitoring and
chemical profiling of a cultivation process. Chemo-
metrics and Intelligent Laboratory Systems, 84(1-2):
106–113, 2006.

D. Muti and S. Bourennane. Multidimensional filtering
based on a tensor approach. Signal Processing, 85
(12):2338–2353, 2005.

M. Nimishakavi, P. K. Jawanpuria, and B. Mishra. A
dual framework for low-rank tensor completion. Ad-
vances in Neural Information Processing Systems,
31, 2018.

I. V. Oseledets. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317,
2011.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32, 2019.

S. Ravi and H. Larochelle. Optimization as a model
for few-shot learning. In International Conference
on Learning Representations, 2017.

N. Razin, A. Maman, and N. Cohen. Implicit regu-
larization in tensor factorization. In International
Conference on Machine Learning, pages 8913–8924.
PMLR, 2021.

B. Romera-Paredes and M. Pontil. A new convex re-
laxation for tensor completion. Advances in Neural
Information Processing Systems, 26, 2013.

N. D. Sidiropoulos, R. Bro, and G. B. Giannakis. Par-
allel factor analysis in sensor array processing. IEEE
Transactions on Signal Processing, 48(8):2377–2388,
2000.

J. Snell, K. Swersky, and R. Zemel. Prototypical net-
works for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087,
2017.

R. Socher, D. Chen, C. D. Manning, and A. Ng. Rea-
soning with neural tensor networks for knowledge
base completion. Advances in Neural Information
Processing Systems, 26, 2013.

Q. Song, H. Ge, J. Caverlee, and X. Hu. Tensor
completion algorithms in big data analytics. ACM
Transactions on Knowledge Discovery from Data, 13
(1):1–48, 2019.

K. Takeuchi, R. Tomioka, K. Ishiguro, A. Kimura, and
H. Sawada. Non-negative multiple tensor factoriza-
tion. In 2013 IEEE 13th International Conference
on Data Mining, pages 1199–1204. IEEE, 2013.

R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima.
Statistical performance of convex tensor decompo-
sition. Advances in Neural Information Processing
Systems, 24, 2011.

L. R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

M. Usvyatsov, R. Ballester-Ripoll, and K. Schindler.
tntorch: Tensor network learning with PyTorch.
The Journal of Machine Learning Research, 23(1):
9394–9399, 2022.

M. A. O. Vasilescu and D. Terzopoulos. Multilinear
analysis of image ensembles: Tensorfaces. In Eu-
ropean Conference on Computer Vision, pages 447–
460. Springer, 2002.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra,
et al. Matching networks for one shot learning.
In Advances in Neural Information Processing Sys-
tems, pages 3630–3638, 2016.

J. Wang, A. Qu, Q. Wang, Q. Zhao, J. Liu, and
Q. Wu. TT-Net: Tensorized transformer network

Meta-learning from Heterogeneous Tensors

for 3D medical image segmentation. Computerized
Medical Imaging and Graphics, 107:102234, 2023.

Z.-C. Wu, T.-Z. Huang, L.-J. Deng, H.-X. Dou, and
D. Meng. Tensor wheel decomposition and its tensor
completion application. Advances in Neural Infor-
mation Processing Systems, 35:27008–27020, 2022.

J. Xue, Y. Zhao, S. Huang, W. Liao, J. C.-W. Chan,
and S. G. Kong. Multilayer sparsity-based tensor de-
composition for low-rank tensor completion. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 33(11):6916–6930, 2021.

C. Yang, C. Qian, N. Singh, C. D. Xiao, M. West-
over, E. Solomonik, and J. Sun. ATD: Augmenting
CP tensor decomposition by self supervision. Ad-
vances in Neural Information Processing Systems,
35:32039–32052, 2022.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. R. Salakhutdinov, and A. J. Smola. Deep sets.
In Advances in Neural Information Processing Sys-
tems, pages 3391–3401, 2017.

M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie,
C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, et al. Big bird: Transformers
for longer sequences. Advances in Neural Informa-
tion Processing Systems, 33:17283–17297, 2020.

J. Zhang, Z. Tao, L. Zhang, and Q. Zhao. Tensor
decomposition via core tensor networks. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 2130–2134, 2021.

Z. Zhang, J. Cai, and J. Wang. Duality-induced reg-
ularizer for tensor factorization based knowledge
graph completion. Advances in Neural Information
Processing Systems, 33:21604–21615, 2020.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Ci-
chocki. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016.

X.-L. Zhao, W.-H. Xu, T.-X. Jiang, Y. Wang, and
M. K. Ng. Deep plug-and-play prior for low-rank
tensor completion. Neurocomputing, 400:137–149,
2020.

Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Q. Zhao, and
T.-X. Jiang. Fully-connected tensor network decom-
position and its application to higher-order tensor
completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 11071–
11078, 2021.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] We described them in Section 4.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes] The analysis of the properties
is described in Section 5, and the complexity
is described in Section 4.3.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results.
[Not Applicable]

(c) Clear explanations of any assumptions. [Not
Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [No] The code is proprietary. The
details of our experiments were described in
Section 5 and Appendix B.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
The training details were described in Sec-
tion 5 and Appendix B.1.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] The definition, statis-
tical test results, and error bars are described
in Section 5 and Appendix B.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] It is described in the
last paragraph of Section 5.2.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

Tomoharu Iwata, Atsutoshi Kumagai

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Meta-learning from Heterogeneous Tensors

A Proposed method

Figure 4 illustrates the two-mode tensor attention layer of a fourth-order tensor.

B EXPERIMENTS

B.1 Settings

SEM and FAE used two layers of exchangeable tensor layers (Hartford et al., 2018) with 32 hidden units,
where exchangeable tensor layers can perform permutation equivariant nonlinear transformation based on neural
networks but no attention mechanisms. The prediction layer is linear in SEM, and it is factorized matrices with
rank three in FAE. The factorized matrices were obtained using three-layered feed-forward neural networks with
32 hidden units with average pooling. SEM and FAE were trained with 100 training epochs for each meta-test
tensor. In MSEM and MFAE, the same meta-learning procedures were used as NTAN. NTAN, MSEM, MFAE,
SEM, and FAE were implemented with PyTorch (Paszke et al., 2019). In CPD, TD, TTD, TRD, and FCTN,
the result with the best-performed rank selected from {2, 4, 8, 16, 32} was shown. TTD, CPD, and TD were

Figure 4: Two-mode tensor attention of a fourth-order tensor input. 1) Input tensor Z′ of size N1×N2×N3×H
is represented by a set of N2 subtensors of size N1 ×N3 ×H, {Z′(:, 1, :, :), Z′(:, 2, :, :), . . . , Z′(:, N2, :, :)}, sliced
over elements of the second mode. 2) Input tensor Z′ is linearly transformed to query Q ∈ RN1×N2×N3×HQ , key
K ∈ RN1×N2×N3×HQ , and value V ∈ RN1×N2×N3×HV tensors. 3) Attention matrix A ∈ RN2×N2 is calculated
from the query and key tensors. Each element of attention matrix A(n, n′) represents relationship between the
nth query subtensor Q(:, n, :, :) and the n′th key subtensor K(:, n′, :, :). 4) By two-mode product of attention
matrix A and value tensor V, output tensor O′ ∈ RN1×N2×N3×HV is obtained, where each subtensor is calculated
by O′(:, n, :, :) =

∑N2

n′=1A(n, n′)V(:, n′, :, :).

Tomoharu Iwata, Atsutoshi Kumagai

(a) True low-rank tensor

(b) Imputed low-rank tensor

(c) True nonlinear tensor

(c) Imputed nonlinear tensor

Figure 5: Examples of true tensors and imputed meta-test tensors by NTAN meta-trained with mixed tensors
with observed ratio 0.2.

implemented with tntorch (Usvyatsov et al., 2022). Tensor Network Toolbox 4 was used for TRD and FCTN.
The authors’ implementation was used for TSVD and USVD 5. We used their default hyperparameters.

The evaluation measurement was the test mean squared errors on the meta-test tensors,

1

DT

DT∑
d=1

‖ (1− ST
d)�

(
XT

d −NTAN(XT
d � ST

d ,S
T
d)
)
‖2F

|1− SDT

d |
, (13)

where DT is the number of meta-test tensors, XDT

d is the dth meta-test tensor, SDT

d is its mask tensor, and

|1− SDT

d | is the number of missing elements.

B.2 Results on synthetic data

Figure 5 shows examples of true tensors and imputed meta-test tensors by NTAN meta-trained with mixed
tensors. Here, the low-rank and nonlinear tensors were imputed using a meta-trained NTAN with the same
parameters. This result suggests that NTAN can impute different patterns of tensors with a single model
adaptively depending on the input tensor with missing values. Figure 6 shows the test mean squared errors by
our method with the nonlinear tensors.

B.3 Results on real-world data

Table 6 shows the performance when the maximum number of elements in each mode was set to 20 for meta-
test tensors. The model was meta-learned using target tensors of the same size as meta-test tensors. NTAN
outperformed the other methods with smaller target tensor sizes. Since the number of observed elements increases

4https://github.com/YuBangZheng/TenNet_ToolBox
5https://github.com/xjzhang008/Transformed-Tensor-SVD

Meta-learning from Heterogeneous Tensors

100 101 102

#meta-training tensors

0.3

0.4

0.5

0.6

0.7

Er
ro

r

Figure 6: Test mean squared errors by our method on synthetic tensors with different numbers of meta-training
tensors. Meta-training tensors are NonL, and meta-test tensors are NonL with observed ratio 0.2. Bar shows
the standard error.

Table 6: Test mean squared errors with different observed ratios µ with meta-test tensor size 20 × 20 × 20 at
maximum. Values in bold typeface are not statistically significantly different at the 5% level from the best
performing method in each setting according to a paired t-test.

µ NTAN MSEM MFEA SEM FEA CPD TD TTD TRD TSVD USVD FCTN
0.01 0.987 1.006 1.007 0.972 1.029 1.199 1.352 1.660 0.992 0.992 0.992 0.992

Flow 0.05 0.669 0.797 0.824 0.853 0.974 1.094 1.097 1.170 1.000 0.987 0.979 0.999
0.10 0.470 0.744 0.788 0.749 0.962 1.010 1.099 1.191 0.985 0.886 0.767 0.992
0.01 0.113 0.388 0.367 0.569 0.859 1.076 1.034 1.163 0.988 1.000 1.000 0.985

Enose 0.05 0.013 0.050 0.044 0.286 0.723 0.116 0.975 0.129 0.449 0.956 0.846 0.459
0.10 0.010 0.040 0.080 0.191 0.662 0.012 1.041 0.023 0.334 0.600 0.248 0.333
0.01 0.956 0.974 0.981 0.984 1.067 1.190 1.581 1.417 1.000 1.004 1.004 0.999

Amino 0.05 0.658 0.740 0.785 0.829 0.975 1.093 1.084 1.246 0.975 1.000 0.996 0.977
0.10 0.417 0.578 0.691 0.751 0.955 0.798 1.081 1.039 0.936 0.794 0.708 0.835
0.01 0.663 0.713 0.780 0.727 0.884 1.074 1.189 1.164 0.982 0.983 0.983 0.982

Sugar 0.05 0.275 0.192 0.355 0.430 0.745 0.607 0.854 0.508 0.847 0.768 0.483 0.849
0.10 0.196 0.135 0.192 0.334 0.702 0.269 0.950 0.226 0.553 0.414 0.249 0.552
0.01 0.541 0.509 0.548 0.734 0.911 1.110 1.088 1.291 0.986 0.995 0.995 0.989

Traffic 0.05 0.215 0.306 0.331 0.515 0.836 0.520 1.062 0.573 0.710 0.509 0.426 0.567
0.10 0.142 0.228 0.268 0.401 0.789 0.279 1.062 0.380 0.449 0.369 0.261 0.321

Table 7: Test mean squared errors when meta-learned with target tensor size 30× 24× 21 and meta-tested with
tensors of size 20× 20× 20 on Traffic dataset with different observed ratio µ.

µ NTAN MSEM MFEA SEM FEA CPD TD TTD TRD TSVD USVD FCTN
0.01 0.479 0.501 0.586 0.734 0.911 1.110 1.088 1.291 0.986 0.995 0.995 0.989
0.05 0.199 0.302 0.323 0.515 0.836 0.520 1.062 0.573 0.710 0.509 0.426 0.567
0.10 0.135 0.232 0.261 0.401 0.789 0.279 1.062 0.380 0.449 0.369 0.261 0.321

as the tensor size increases, the errors in Table 6 were generally lower than those in Table 2 with larger meta-test
tensor sizes.

Tables 7 and 8 show the results when the number of elements in each mode is different betwenn meta-test and
meta-training tensors.

Figure 7 shows that the test mean squared errors decreased as the number of meta-training tensors increased
except for the Traffic dataset. The proposed method meta-learned a wide variety of patterns in the meta-training
tensors with different kinds of modes, and adequately used them for improving the tensor completion performance
on meta-test tensors.

Figure 8 shows the results with different numbers of layers of of mMTAs and FFNs, hidden units in mMTAs
and FFNs, and heads in mMTAs.

Table 9 shows the standard errors of Table 2 in Section 5.2.

Tomoharu Iwata, Atsutoshi Kumagai

1 2 3 4
#meta-training tensors

0.94

0.96

0.98

1.00

1.02
Er

ro
r

1 2 3 4
#meta-training tensors

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r

1 2 3 4
#meta-training tensors

0.88

0.90

0.92

0.94

0.96

0.98

Er
ro

r

1 2 3 4
#meta-training tensors

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Er
ro

r

1 2 3 4
#meta-training tensors

0.45

0.46

0.47

0.48

Er
ro

r

(a) Flow (b) Enose (c) Amino (d) Sugar (e) Traffic

Figure 7: Test mean squared errors by our method with different numbers of meta-training tensors on real-world
tensors with observed ratio 0.01. Bar shows the standard error.

Table 8: Test mean squared errors when meta-learned with target tensor size 20× 20× 20 and meta-tested with
tensors of size 30× 24× 21 on Traffic dataset with different observed ratio µ.

µ NTAN MSEM MFEA SEM FEA CPD TD TTD TRD TSVD USVD FCTN
0.01 0.592 0.447 0.486 0.711 0.902 1.097 1.033 1.103 0.990 1.000 1.000 0.988
0.05 0.207 0.286 0.329 0.475 0.812 0.385 1.063 0.447 0.558 0.482 0.379 0.437
0.10 0.140 0.216 0.272 0.380 0.781 0.191 1.064 0.436 0.271 0.357 0.219 0.263

0 1 2 3
#layers

0.5

0.6

0.7

0.8

0.9

1.0

Er
ro
r

20 40 60
#hidden units

0.46

0.47

0.48

Er
ro

r

2 4 6 8
#heads

0.460
0.465
0.470
0.475
0.480
0.485
0.490

Er
ro
r

(a) #Layers (b) #Hidden units (c) #Heads

Figure 8: Test mean squared errors by our method with different numbers of (a) layers, (b) hidden units, and
(c) heads on Traffic dataset with observed ratio 0.01. Bar shows the standard error.

C LIMITATIONS

Our proposed method requires multiple meta-training tensors to improve performance. When meta-training
tensors and meta-test tensors are significantly different, the performance might be degraded. We focus on
improving the performance when there are few observed elements in a tensor. When a sufficient number of
observed values in a tensor are available, it might be better to train models for each tensor. The proposed
method requires a long computational time for meta-learning with large tensors. For handling tensors with a
huge number of elements, we need to use scalable attention models (Ainslie et al., 2020; Zaheer et al., 2020;
Grefenstette et al., 2019).

Meta-learning from Heterogeneous Tensors

Table 9: Test mean squared errors and their standard errors with different observed ratios µ. Values in bold
typeface are not statistically significantly different at the 5% level from the best performing method in each
setting according to a paired t-test.

µ NTAN MSEM MFEA SEM FEA CPD
0.01 0.951 ± 0.007 0.950 ± 0.006 0.973 ± 0.014 0.963 ± 0.006 1.008 ± 0.005 1.107 ± 0.006

Flow 0.05 0.648 ± 0.007 0.810 ± 0.004 0.816 ± 0.004 0.834 ± 0.003 0.971 ± 0.003 1.099 ± 0.003
0.10 0.447 ± 0.010 0.749 ± 0.006 0.792 ± 0.008 0.723 ± 0.003 0.955 ± 0.003 1.096 ± 0.002
0.01 0.068 ± 0.012 0.255 ± 0.012 0.220 ± 0.020 0.520 ± 0.002 0.841 ± 0.003 0.909 ± 0.010

Enose 0.05 0.010 ± 0.001 0.048 ± 0.002 0.063 ± 0.007 0.254 ± 0.001 0.704 ± 0.002 0.045 ± 0.001
0.10 0.008 ± 0.000 0.033 ± 0.001 0.071 ± 0.008 0.176 ± 0.001 0.654 ± 0.002 0.009 ± 0.001
0.01 0.887 ± 0.004 0.918 ± 0.006 0.934 ± 0.005 0.937 ± 0.005 1.026 ± 0.005 1.174 ± 0.008

Amino 0.05 0.557 ± 0.004 0.658 ± 0.003 0.737 ± 0.003 0.785 ± 0.003 0.957 ± 0.003 0.974 ± 0.004
0.10 0.330 ± 0.006 0.501 ± 0.003 0.659 ± 0.005 0.719 ± 0.005 0.943 ± 0.006 0.565 ± 0.005
0.01 0.536 ± 0.031 0.586 ± 0.033 0.657 ± 0.034 0.666 ± 0.031 0.856 ± 0.030 1.097 ± 0.032

Sugar 0.05 0.225 ± 0.021 0.157 ± 0.006 0.299 ± 0.015 0.383 ± 0.017 0.737 ± 0.027 0.378 ± 0.014
0.10 0.210 ± 0.015 0.127 ± 0.003 0.176 ± 0.010 0.312 ± 0.010 0.782 ± 0.028 0.179 ± 0.003
0.01 0.473 ± 0.006 0.447 ± 0.002 0.523 ± 0.013 0.711 ± 0.002 0.902 ± 0.002 1.097 ± 0.001

Traffic 0.05 0.186 ± 0.003 0.279 ± 0.001 0.322 ± 0.004 0.475 ± 0.000 0.812 ± 0.002 0.385 ± 0.003
0.10 0.130 ± 0.002 0.216 ± 0.002 0.265 ± 0.002 0.380 ± 0.000 0.781 ± 0.001 0.191 ± 0.002

µ TD TTD TRD TSVD USVD FCTN
0.01 1.114 ± 0.005 1.625 ± 0.011 0.995 ± 0.005 0.995 ± 0.005 0.995 ± 0.005 0.995 ± 0.005

Flow 0.05 1.112 ± 0.003 1.206 ± 0.004 0.999 ± 0.003 0.972 ± 0.004 0.929 ± 0.003 0.997 ± 0.003
0.10 1.105 ± 0.003 1.210 ± 0.004 0.964 ± 0.003 0.872 ± 0.003 0.684 ± 0.003 0.864 ± 0.004
0.01 0.941 ± 0.014 1.051 ± 0.023 0.976 ± 0.001 0.999 ± 0.001 0.998 ± 0.001 0.961 ± 0.002

Enose 0.05 1.020 ± 0.009 0.116 ± 0.008 0.405 ± 0.004 0.972 ± 0.004 0.835 ± 0.006 0.421 ± 0.005
0.10 1.036 ± 0.005 0.054 ± 0.007 0.293 ± 0.004 0.589 ± 0.005 0.185 ± 0.005 0.293 ± 0.003
0.01 1.321 ± 0.024 1.479 ± 0.008 0.986 ± 0.004 0.992 ± 0.004 0.992 ± 0.004 0.987 ± 0.004

Amino 0.05 1.085 ± 0.004 1.113 ± 0.005 0.953 ± 0.003 0.992 ± 0.003 0.966 ± 0.004 0.915 ± 0.007
0.10 1.091 ± 0.005 0.829 ± 0.006 0.853 ± 0.005 0.709 ± 0.005 0.607 ± 0.004 0.610 ± 0.007
0.01 1.106 ± 0.037 1.144 ± 0.033 0.997 ± 0.036 0.997 ± 0.036 0.997 ± 0.036 0.996 ± 0.036

Sugar 0.05 0.974 ± 0.031 0.311 ± 0.011 0.674 ± 0.029 0.646 ± 0.032 0.345 ± 0.020 0.672 ± 0.031
0.10 1.042 ± 0.034 0.184 ± 0.004 0.474 ± 0.018 0.341 ± 0.014 0.174 ± 0.004 0.472 ± 0.017
0.01 1.033 ± 0.003 1.103 ± 0.007 0.990 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 0.988 ± 0.002

Traffic 0.05 1.063 ± 0.002 0.447 ± 0.003 0.558 ± 0.009 0.482 ± 0.001 0.379 ± 0.001 0.437 ± 0.002
0.10 1.064 ± 0.001 0.436 ± 0.006 0.271 ± 0.007 0.357 ± 0.001 0.219 ± 0.000 0.263 ± 0.003

