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Abstract— We propose a data-driven control method for
nonlinear dynamical systems based on the Koopman operator
theory. Existing Koopman-based control methods apply linear
optimal control methods after system identification by approxi-
mating the original cost function in the Koopman space. There-
fore, errors in system identification and cost approximation
deteriorate the control performance. On the other hand, the
proposed method directly maximizes the control performance
with reinforcement learning, where a controller is modeled by
a neural network that consists of a linear quadratic regulator
and an encoder that embeds data into the Koopman space.
We experimentally demonstrate the effectiveness of the pro-
posed method over existing Koopman-based and reinforcement
learning-based methods with two nonlinear dynamical systems.

I. INTRODUCTION

Controlling nonlinear dynamical systems is an impor-
tant task in a wide variety of fields, such as engineering,
physics, epidemiology, and sociology [6], [18]. Recently, the
Koopman operator theory [13], [23] has attracted attention
for data-driven control. Based on the theory, a nonlinear
dynamical system is lifted to the corresponding linear one
in a possibly infinite-dimensional space by embedding states
using a nonlinear function. Therefore, various methods de-
veloped for controlling linear dynamical systems can be
extended to nonlinear [24], [17].

For the lifting, we need an appropriate encoder to embed
data in a finite-dimensional subspace, where the functions
span a function space invariant to the Koopman operator.
We call this subspace the Koopman space. To automatically
learn encoders from data, several methods based on neural
networks have been proposed [29], [20], [31], [16], [1], [9].
These methods have shown to achieve high performance
on predicting future values due to the high representation
power of neural networks. With existing control methods
based on the Koopman space [7], [17], [14], [10], [32], [21],
[8], [22], system identification is firstly performed, and then,
control methods for linear dynamics are applied while fixing
the identified system and approximating the original cost
function in the Koopman space. Since encoders and systems
are trained to improve the prediction performance without
considering control, errors in system identification and cost
approximation cannot be corrected in learning controllers.

In this paper, we propose a method for learning encoders
and dynamics in the Koopman space that directly maximizes
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the control performance based on reinforcement learning. We
consider a task of making measurement vectors close to a
predefined target value for a black-box nonlinear dynami-
cal system. By representing the task as a linear quadratic
problem in the Koopman space, we can obtain a controller
based on a linear quadratic regulator (LQR) [15] that takes
a Koopman embedding as input. We combine an encoder
with the LQR for transforming it to a controller that takes a
measurement vector as input. The controller can be seen as
a neural network, in which an encoder and LQR are used as
its layers. We use the controller as a policy network within
the reinforcement learning framework, and train it by the
policy gradient method [28] to maximize the rewards defined
based on the control performance. Since the LQR layers,
which include procedures for solving a Riccati equation, are
differentiable, we can backpropagate the expected rewards
to update the controller. Figure 1 illustrates our proposed
method.

The remainder of this paper is organized as follows. In
Section II, we briefly describe related works. In Section III,
we explain the Koopman operator theory, on which the
proposed method is based. In Section IV, we formulate our
problem, and present our method. In Section V, we exper-
imentally demonstrate that the proposed method achieves
better control performance than the existing method using
FitzHugh-Nagumo and Lorenz equations. Finally, we present
concluding remarks and discuss future work in Section VI.

II. RELATED WORK

Optimal control theory has been studied for a long
time [12]. LQRs are developed in the optimal control the-
ory, and have been successfully used in a wide variety
of applications. With LQRs, we can obtain the optimal
control when dynamics is linear and the cost is quadratic.
The proposed method incorporates LQRs for controlling
nonlinear dynamical systems based on the Koopman operator
theory.

Reinforcement learning methods are categorized into two
types: model-free, and model-based. With neural networks,
model-free reinforcement learning gives a flexible way to
learn controllers, or policies [27]. The proposed method is
model-free in a sense that a policy network is trained to
maximize the expected reward. It can also be seen as model-
based in a sense that it models linear dynamics and finds an
LQR in the Koopman space.



Fig. 1. Our proposed method. At each timestep, the controller receives
a measurement vector from a black-box nonlinear dynamical system. The
controller then chooses a control vector, which is subsequently sent to the
system. The controller assumes linear dynamics and quadratic cost in the
Koopman space. The cost is approximated from the original cost in the
measurement space. The optimal gain is calculated from the dynamics and
cost based on linear quadratic regulators. In the controller, a measurement
vector is embedded in the Koopman space by the encoder. The control
vector is determined using the optimal gain and Koopman embedding. The
parameters of the controller, which consist of the dynamics in the Koopman
space and the parameters of the encoder, are trained by minimizing the
original cost using reinforcement learning.

III. PRELIMINARIES: KOOPMAN OPERATOR THEORY

We consider nonlinear discrete-time dynamical system,

xt+1 = f(xt), (1)

where xt ∈ X is the state at timestep t. Koopman operator
A is defined as an infinite-dimensional linear operator that
acts on observables g : X → R (or C) [13],

g(xt+1) = Ag(xt), (2)

with which the analysis of nonlinear dynamics can be lifted
to a linear (but infinite-dimensional) regime.

Although the existence of the Koopman operator is the-
oretically guaranteed in various situations, its practical use
is limited by its infinite dimensionality. We can assume the
restriction of A to a finite-dimensional subspace G [29]. If
G is spanned by a finite number of functions {g1, . . . , gK},
then the restriction of A to G, which we denote A ∈ RK×K ,
becomes a finite-dimensional operator,

gt+1 = Agt, (3)

where gt = [g1(xt), . . . , gK(xt)] ∈ RK is a vector of
observables at timestep t.

IV. PROPOSED METHOD

A. Problem formulation

We assume the following nonlinear dynamical system,

xt+1 = f(xt,ut), yt = h(xt), (4)

where xt ∈ X is the state, yt ∈ RD is the measurement
vector, and ut ∈ RJ is the exogenous control vector at
timestep t. Functions f and h are black-boxes, i.e., we do not
know them, but we can select control vector ut and observe
measurement vector yt+1 for each timestep. Our aim is to
find appropriate control sequence {ut}Tt=1 that makes the
measurement vectors close to a target y∗. It is evaluated by
the following cost function,

E =

T∑
t=1

(
‖ yt − y∗ ‖2 +u>t Rut

)
, (5)

where the first term is the distance between the observed
and target measurements, and the second term is the cost of
controls defined by R ∈ RJ×J .

B. System identification with control in Koopman space

According to the Koopman operator theory, we consider
the following linear dynamics with control in a finite-
dimensional Koopman space [26], [2],

gt+1 = Agt + But, (6)

where gt ∈ RK is the observables at timestep t, A ∈ RK×K
is a finite-dimensional approximation of the Koopman oper-
ator, and B ∈ RK×J represents the effect of a control vector
on the observables at the next timestep.

To realize a linear dynamics in the Koopman space, we
obtain the observables as a function of measurement vector,
φ : RD → RK ,

gt = φ(yt), (7)

where φ is a feed-forward neural network, and we call it an
encoder.

Suppose that we are given a set of N sequences of mea-
surement and control vectors, D = {{(ynt,unt)}Tt=1}Nn=1

using the dynamical system in Eq. (4), where ynt and unt
are the measurement and control vectors at timestep t in the
nth sequence. Let ψ : RK → RD be is a decoder modeled
by a feed-forward neural network that maps the observables
into the measurement space. We can estimate A, B, and
parameters of φ and ψ by minimizing the following objective
function,

H =

N∑
n=1

(
T∑
t=1

‖ ynt − ψ(gnt) ‖2

+ η

T−1∑
t=1

‖ yn,t+1 − ψ(Agnt + Bunt) ‖2
)
, (8)

where the first term is the reconstruction loss, the second
term is the prediction loss when the next measurement vector
is predicted through the Koopman space, and η > 0 is the
hyperparameter.



C. Control via Koopman space

We approximate the cost in the measurement space in
Eq. (5) by the cost in the Koopman space,

Ẽ =

T∑
t=1

(
‖ gt − g∗ ‖2 +u>t Rut

)
, (9)

where g∗ = φ(y∗) is the observables of target measurement
y∗. Here, we assume that if observables are closely located
in the Koopman space, their measurement vectors are also
closely located in the measurement space.

The approximated cost (9) can be rewritten in a quadratic
form,

Ẽ =

T∑
t=1

(
g′>t Qg′t + u>t Rut

)
+ T ‖ g∗ ‖2, (10)

where

g′t =

[
gt
1

]
∈ RK+1, (11)

Q =

[
I −g∗

−g∗> 0

]
∈ R(K+1)×(K+1). (12)

Using Eq.(6), the dynamics of g′t is given by

g′t+1 = A′g′t + B′ut, (13)

where

A′ =

[
A 0
0 1

]
∈ R(K+1)×(K+1), (14)

B′ =

[
B
0

]
∈ R(K+1)×J . (15)

Since the dynamics is linear in Eq. (6) and the cost is
quadratic in Eq. (10), linear quadratic regulators (LQRs) are
applicable in the Koopman space. With LQRs, the optimal
control vector is given by

ut = −Fg′t, (16)

where F ∈ RJ×(K+1) is the optimal gain matrix calculated
by

F = (R + B′>PB′)−1(B′>PA′). (17)

P ∈ R(K+1)×(K+1) is the solution of the following discrete-
time Riccati equation,

P = A′>PA′

− (A′>PB′)(R + B′>PB′)−1(B′>PA′) + Q. (18)

The Riccati equation can be solved by iterating Eq. (18) until
convergence with initialization P = Q.

Fig. 2. Our policy network π. The parameters in π to be estimated are
Ψ = {A,B,θ}, where A and B are the dynamics in the Koopman space
in Eq. (6), and θ is the parameters of encoder φ. First, solution P of the
Riccati equation in Eq. (18) is solved by iterating Eq. (18) using A, B,
Q, and R with initialization P = Q. Second, optimal gain matrix F is
calculated using P, A, B, and R by Eq. (17). Third, measurement vector
y is transformed to observable g in the Koopman space by encoder φ with
parameter θ. Finally, control vector u is obtained using F and g by Eq. (16).
Our policy network can be seen as a neural network with parameters Ψ that
takes measurement vector y as input and outputs control vector u.

D. Improving control with reinforcement learning

If we perfectly identify the dynamical system A,B, φ via
the Koopman space, and the cost in the Koopman space
in Eq. (9) is exactly equivalent to that in the measurement
space in Eq. (5), the control based on LQRs in Eq. (16) is
optimal. However, the system identification is difficult due
to its nonlinearity and measurement noise. In addition, the
cost in the Koopman space might not approximate that in
the measurement space well when these two spaces have far
different metrics.

Let θ be parameters of encoder φ. To improving control
via the Koopman space, we propose to tune parameters Ψ =
{A,B,θ} using reinforcement learning, such that the cost
in the measurement is minimized when an LQR is adopted
in the Koopman space. Our problem in Section IV-A can
be defined on a Markov decision process (MDP), where the
current measurement vector yt is a state of the MDP, the
control vector ut is an action, and the cost at a timestep

E(y,u) =‖ y − y∗ ‖2 +u>Ru, (19)

is a negative reward. Let π : RD → RJ be a controller, or
policy in the MDP, that takes a measurement vector as input,
and outputs an appropriate control vector. We model policy
π using A, B and φ considering an LQR in the Koopman
space as in Eq. (16),

π(y;Ψ) = −F(A,B)[φ(y)>1]>, (20)

where F(A,B) is the optimal gain matrix obtained by
Eqs. (17,18), which is a function of A and B. Figure 2
illustrates our policy network π. Since Eq. (17) and the
iteration of Eq. (18) are differentiable, we can backpropagate
the rewards through our policy network in Eq. (20) to update
parameters Ψ.



We estimate the parameters of the policy network Ψ using
the policy gradient method [28]. Let

rt(yt,ut) = −
T∑
τ=t

γτ−tE(yτ ,uτ ) (21)

be the cumulative discounted reward at timestep t with
discount factor γ. With the reinforcement learning frame-
work, the objective function to be maximized is the expected
cumulative discounted reward,

J(Ψ) =

T∑
t=1

Eyt,ut
[rt(yt,ut)], (22)

where E is the expectation when measurement yt is gener-
ated from the dynamical system in Eq. (4), and control ut
is generated from the following policy distribution,

p(ut|yt;Ψ) = N (π(yt;Ψ), σ2I). (23)

Here, N (µ,Σ) is the normal distribution with mean µ and
covariance Σ. With the policy gradient theorem, the gradient
of objective function J with respect to parameters Ψ is given
by

∂J(Ψ)

∂Ψ
=

T∑
t=1

Eyt,ut

[
rt(yt,ut)

∂ log p(ut|yt;Ψ)

∂Ψ

]
. (24)

The training procedure is shown in Algorithm 1. The
expectation in Eqs. (22,24) is approximated by the Monte
Carlo method using sampled measurement vectors, control
vectors, and cumulative discount rewards. We use the average
of the discounted sum of the future rewards as a baseline to
reduce the variance [30], [4].

V. EXPERIMENTS

A. Dynamical systems

We evaluated the proposed method using two nonlinear
dynamical systems: FitzHugh-Nagumo and Lorenz equa-
tions. The FitzHugh-Nagumo equation [3], [25] is a model
of an excitable system such as a neuron. We added scalar
control variable u1 to the FitzHugh-Nagumo equation as
follows,

dx1
dt

= x1 −
x31
3
− x2 + I,

dx2
dt

= c(x1 − a− bx2) + u1,

(25)

where we used a = 0.7, b = 0.8, c = 0.08, and I = 0.8. The
control variable was bounded a continuous value [−2.5, 2.5].
The Lorenz equation [19] is a chaotic nonlinear system,
which was derived as as a model for atmospheric convection.
We added scalar control variable u1 to the Lorenz equation
as follows,

dx1
dt

= σ(x2 − x1),
dx2
dt

= x1(ρ− x3)− x2 + u1,

dx3
dt

= x1x2 − βx3, (26)

where we used σ = 10, ρ = 28, and β = 8/3. The control
variable was bounded a continuous value [−50, 50].

Algorithm 1 Training procedure of our policy network.
Input: Black-box dynamical system, target y∗, control cost

R, number of iterations to solve the Riccati equation L,
control variance σ2, discount factor γ.

Output: Trained parameters Ψ.
1: Pretrain parameters Ψ by minimizing H in Eq. (8) using

sequences of measurement and control vectors D.
2: while End condition is satisfied do
3: Initialize the solution of the Riccati equation P = Q.
4: for ` ∈ {1, · · · , L} do
5: Iterate Eq. (18) to solve the Riccati equation.
6: end for
7: Obtain optimal gain matrix F by Eq. (17).
8: Randomly sample initial measurement vector y1.
9: for t ∈ {1, · · · , T} do

10: Calculate the mean of the control distribution
π(yt;Ψ) by Eq. (20).

11: Sample control ut according to the control distri-
bution in Eq. (23).

12: Calculate netagive reward E(yt,ut) by Eq. (19).
13: Obtain next measurement vector yt+1 from the

system with sampled control ut.
14: end for
15: for t ∈ {1, · · · , T} do
16: Calculate cumulative discounted rewards rt(yt,ut)

by Eq. (21).
17: end for
18: Calculate J in Eq. (22) and its gradient in Eq. (24)

using sampled measurement vectors yt, control vec-
tors ut, and cumulative discount rewards rt for t ∈
{1, · · · , T}.

19: Update model parameters Ψ using J and its gradient
using a stochastic gradient method.

20: end while

Figure 3 shows examples of measurement vector se-
quences with random control. For both systems, measure-
ment vectors were obtained by yt = xt + ε, where ε
was Gaussian noise with mean 0 and standard deviation
10−2. For the cost function in Eq. (5), we used zero target
measurement vector y∗ = 0, control cost R = 10−2, and
timesteps T = 100.

B. Proposed method setting

We used four-layered feed-forward neural networks with
128 hidden units, ReLU activation, and Koopman space K =
64 for encoder φ and decoder ψ. We pretrained parameters
Ψ as well as parameters of decoder ψ by minimizing H
in Eq. (8) with regularization hyperparameter η = 1 using
100 sequences of measurement and control vectors D with
random initialization and random control as described in
Section IV-B. For the optimization, we used Adam [11] with
learning rate 10−3, batch size one, and 1,000 training epochs.
Then, parameters Ψ were tuned by maximizing J in Eq. (22)
using the policy gradient method as described in Section IV-
D. The maximum number of iterations for solving the Riccati



(a) FitzHugh-Nagumo (b) Lorenz

Fig. 3. Measurement vector sequences with random control.

equation in Eq. (18) was 20. The discount factor in Eq (21)
was γ = 0.99. The variance of control σ2 in Eq. (23) was
set to half of the bounded width of the control variable, i.e.,
2.5 for FitzHugh-Nagumo, and 50 for Lorenz equations. For
the optimization, we used Adam with learning rate 10−3,
batch size 10, and maximum number of iterations 5,000. 50
simulation runs were evaluated for each iteration for early
stopping.

C. Comparing methods

We compared the proposed method with the following five
methods: NDMD, NDMD+C, NDMD+D, DMD, DMD+RL,
and RL, which were based on the Koopman operator theory
and/or reinforcement learning. The comparing methods were
trained in the same way with the proposed method.

NDMD is neural dynamic mode decomposition [29],
where system identification in the Koopman space was con-
ducted as in Section IV-B assuming the neural network-based
encoder and decoder. The control sequences were obtained
by an LQR as in Section IV-C. NDMD corresponds to the
proposed method without reinforcement learning procedures
in Section IV-D.

NDMD+C is NDMD with a regularizer to im-
prove controllability as [7]. A linear dynamical sys-
tem is controllable if controllability matrix C =
[B AB A2B · · · AK−1B] has full row rank. Since
the number of non-zero singular values is equal to the rank of
the matrix, we added regularization term 1

K

∑K
k=1

1
s̃k

to H
in Eq. (8), where s̃k = sk∑K

k′=1
sk′

is the normalized singular
value, and sk is the singular value of controllability matrix
C.

NDMD+D is NDMD with a regularizer to improve cost
function approximation as [17] by making distances in the
Koopman space close to those in the measurement space.
We added regularization term

∑N
n=1

∑T
t=1

∑T
t′=1 ‖‖ ynt −

ynt′ ‖2 − ‖ φ(ynt)− φ(ynt′) ‖2‖2 to H in Eq. (8).
DMD is dynamic mode decomposition, where system

identification in the Koopman space was conducted without
neural network-based encoders and decoders assuming the
Koopman space was the same with the measurement space
gt = yt. The control sequences were obtained by an LQR.

DMD+RL is the DMD with reinforcement learning pro-
cedures in Section IV-D. DMD+RL corresponds to the
proposed method without encoders and decoders.

TABLE I
AVERAGE TEST COSTS AND THEIR STANDARD ERRORS.

FitzHugh-Nagumo Lorenz
Ours 83.1 ± 2.9 5151.8 ± 786.8
NDMD 443.9 ± 90.6 83152.3 ± 521.2
NDMD+C 343.2 ± 4.9 86526.7 ± 24.0
NDMD+D 940.3 ± 293.4 84631.8 ± 1171.8
DMD 312.8 ± 1.5 73073.3 ± 1982.8
DMD+RL 211.7 ± 15.3 37590.1 ± 3059.8
RL 85.7 ± 2.6 24310.1 ± 4131.8

RL is reinforcement learning using the policy gradient
method with a policy of a feed-forward neural network. The
policy network takes a measurement vector as input, and
outputs a control vector. We used a four-layered feed-forward
neural network with 128 hidden units, and ReLU activation.
RL corresponds to the proposed method with a black-box
policy that considers neither Koopman spaces nor LQRs.

D. Results

Table I shows test costs averaged over ten experiments.
Figure 4 show examples of controlled dynamics by the
proposed method, NDMD, and RL. The proposed method
achieved the lowest test cost with both systems. The test
cost of NDMD was high because system identification of
nonlinear dynamical systems was difficult, and the cost
in the Koopman space could not approximate that in the
measurement space appropriately. Even with regularizers
(NDMD+C/D), the performance was not improved well. On
the other hand, the proposed method directly minimized
the cost in the measurement space with the reinforcement
learning framework. The test cost of the DMD was high
because it could not model the nonlinear dynamical systems.
By incorporating the reinforcement learning framework with
DMD+RL, the performance was improved compared with
DMD. However, the performance of DMD+RL was worse
than that of the proposed method. This result indicates that
it is important to use nonlinear transformation by encoders
to the Koopman space for controlling nonlinear dynamical
systems. RL achieved better performance than the other
comparing methods due to its direct minimization of the cost
in the measurement space, and the high representation power
of neural networks. With RL, the policy network was fully
modeled by a neural network as a black-box function. In
contrast, with the proposed method, the policy network was
modeled by a neural network incorporating the knowledge on
the Koopman operator theory and linear quadratic regulators.
Therefore, the proposed method obtained better controllers
than RL.

VI. CONCLUSION

We proposed a method to learn a controller for nonlinear
dynamical systems. With the proposed method, a policy
network is modeled based on a linear quadratic regulator
in a Koopman space, and it is trained by minimizing the
expected cost with reinforcement learning. Although our
results are encouraging, we must extend our approach in
several future directions. First, we will apply it to other
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Fig. 4. Examples of controlled dynamics of (Left) FitzHugh-Nagumo and
(Right) Lorenz equations by (a) our method, (b) NDMD, and (c) RL.

nonlinear dynamical systems, such as fluid and robots.
Second, we plan to improve our proposed method using
reinforcement learning techniques, which includes actor-
critic methods [5]. Third, we will incorporate other control
methods for linear dynamical systems than linear quadratic
regulators in our framework based on the Koopman operator
theory and reinforcement learning.
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