
Visual Nonlinear Discriminant Analysis
for Classifier Design

Tomoharu Iwata, Kazumi Saito and Naonori Ueda

NTT Corporation - NTT Communication Science Laboratories
2-4, Hikaridai, Seika-cho, Keihanna Science City, Kyoto - Japan

Abstract. We present a new method for analyzing classifiers by visu-
alization, which we call visual nonlinear discriminant analysis. Classifiers
that output posterior probabilities are visualized by embedding samples
and classes so as to approximate posterior probabilities using parametric
embedding. The visualization provides a better intuitive understanding of
such classifier characteristics as separability and generalization ability than
conventional methods. We evaluate our method by visualizing classifiers
for an artificial data set.

1 Introduction

Designing better classifiers is a major research issue as regards machine learning,
and it has been studied for a long time. In terms of classifier design, we must
understand classifier characteristics, for example, the degree to which samples
can be separated, which samples are difficult to classify, and which classes are
closely related. However, this is difficult since the input may consist of high
dimensional vectors and there may be many classes. Visualization, which is used
to understand complex and high dimensional data in broad applications, can be
used to understand classifiers. This visual process is called visual discriminant
analysis [2]. Fisher linear discriminant analysis (FLDA)[3] is used for visual
discriminant analysis, but we can only observe linear separability even though
many nonlinear classifiers have already been proposed.

In this paper, we present an new method for analyzing classifiers by visual-
ization, which we call visual nonlinear discriminant analysis (VNDA). We intend
to apply this to classifiers that output posterior probabilities, where samples are
classified in terms of the class that has the highest posterior probability. This
type of classifier is widely used. One example is a generative classifier that esti-
mates posterior probabilities by the Bayes rule, and another is a logistic regres-
sion that directly models the posterior probability as a function[4]. In VNDA,
we visualize classifiers by embedding samples and classes into two or three di-
mensional Euclidean spaces based on posterior probabilities using parametric
embedding (PE)[5]. PE seeks an embedding so as to approximate posterior
probabilities as closely as possible. The visualization enable us to understand
classifiers intuitively and this helps with their design.



2 Visual Nonlinear Discriminant Analysis

Let {(P (c1|xn), . . . , P (cK |xn))}N
n=1 be a set of posterior probabilities estimated

by a classifier, where xn is a sample, ck is a class, N is the number of samples, and
K is the number of classes. xn can be a vector, and also a sequence or a graph.
Given a set of posterior probabilities, we visualize classifiers by embedding sam-
ples and classes into two- or three-dimensional space such that the posterior
probabilities are approximated using PE. Let rn be a two- or three-dimensional
vector, which represents the coordinates of a sample xn in the visualization
space, and φk be a two- or three-dimensional vector, which represents the coor-
dinates of a class ck in the visualization space. In the visualization space, PE
assumes a unit variance Gaussian mixture. Then, the posterior probability in
the visualization space is

P (ck|rn) =
P (ck) exp(−1

2 ‖ rn − φk ‖2)
∑K

l=1 P (cl) exp(−1
2 ‖ rn − φl ‖2)

,

where ‖ · ‖ is the Euclidean norm. The sum of the KL divergences is a natural
measurement for the degree of posterior probability approximation, as follows:

E({rn}, {φk}) =
N∑

n=1

K∑

k=1

P (ck|xn) log
P (ck|xn)
P (ck|rn)

. (1)

We can obtain sample and class coordinates in the visualization space, {rn},
{φk}, by minimizing the above objective function using optimization methods
such as quasi-Newton methods[6].

With the assumption of a unit variance Gaussian mixture in PE, the pos-
terior probability in the visualization space becomes a function of Euclidean
distance between the sample and the class. And if the posterior probability is
high, the sample and the class are embedded closely; if it is low, they are em-
bedded far away from each other. Therefore, the visualization provides us with
an intuitive understanding of posterior probabilities, which represent classifier
characteristics. If few samples are located between classes, it suggests that the
discrimination between these classes is easy; otherwise, the discrimination is dif-
ficult. The visualization also shows which samples are misclassified, and which
class’s samples are likely to be misclassified in which class. From the difference
between the coordinates of learning and test samples, we can also determine the
generalization ability of the classifiers.

It is difficult to distinguish samples that are located too closely in the visual-
ization space. This difficulty commonly happens in other visualization method,
such as multi-dimensional scaling and FLDA. For facilitate visualization, we
want to find a set of new coordinates, in which the new coordinates r̃n is close
to the coordinates rn as much as possible but r̃n does not overlap with others
r̃m, where m 6= n. This can be achieved by minimizing the following objective



fiction:

J({r̃n}) =
1
2

N∑

n=1

‖ r̃n − rn ‖2 +η
N∑

n=1

∑

m6=n

exp(− 1
2σ2

‖ r̃n − r̃m ‖2), (2)

where the first term represents the distances between new coordinates and co-
ordinates that are output of PE, the second term represents the degree of over-
lapping among new coordinates, and η > 0, σ2 > 0.

3 Experimental Results

We evaluated VNDA by visualizing four classifiers of an artificial data set. In
each class, 10 learning and 90 test samples were generated from a six-class three-
dimensional Gaussian mixture with different covariances. Figure 1(a) shows the
original data. We used four classifiers: Gaussian mixture (GM), same covariance
Gaussian mixture (SGM), probabilistic nearest neighbor (PNN), and quadratic
logistic regression (QLR)[4]. VNDA is applicable to linear classifiers, and also
nonlinear, non-parametric, or discriminant classifiers that output posterior prob-
abilities.

Figure 1(b) is the visualization result of GM before minimizing Equation 2, in
which many samples are overlapping. By separating off the overlapping samples
with the minimization of Equation 2, we can get a more facilitate visualization
as in Figure 1(c). In Figure 1(c), samples of the same class form a cluster. This
indicates that GM classifies samples appropriately. Some samples are located
between c1 and c3, reflecting the fact that it is difficult to discriminate between
them. Conversely, c2 samples are separated well, reflecting the fact that the
discrimination of c2 samples is easy. In Figure 1(d), the samples are scattered
and there are no clear clusters since SGM has an improper assumption. In
Figure 1(e), other class samples are located in the c5 cluster, indicating that
these samples are likely to be misclassified in c5. In Figure 1(f), six clusters are
well separated, however, some test samples are located in other class clusters,
indicating overfitting. On the other hand, in Figure 1(b), learning and test
samples are spread through each cluster since GM has a good generalization
ability.

Table 1 shows the precisions and confusion matrices of classifiers. They
are commonly used to evaluate the performance of classifiers. Of course, the
confusion matrices are more quantitative than the visualizations, however, it is
difficult to understand at a glance, especially in the case that many classes exists.
In addition, the visualization has more information than the confusion matrix.
For example, QLR clearly separated samples, which means that the posterior
probabilities are approximately one or zero, and SGM did not separate samples.
These characteristics are clear in the visualizations as in Figure 1(d)(f). On
the other hand, we cannot understand these characteristics from the confusion
matrices, Table1(b)(c).

For comparison, we visualized GM, SGM and QLR classifiers by FLDA and
kernel discriminant analysis (KDA)[1][7]. FLDA linearly embeds samples so as to
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(a) Original data (b) Gaussian mixture before separation

(c) Gaussian mixture (d) Same covariance Gaussian mixture

(e) Probabilistic nearest neighbor (f) Quadratic logistic regression

Fig. 1: The original three dimensional data (a), the two dimensional visualization
of the Gaussian mixtures before separation of overlapping samples (b), and two
dimensional visualizations of classifiers (b)∼(f) with VNDA. Filled and not-
filled particles represent learning and test samples, respectively, and the shape
indicates the class.



GM SGM PNN QLR
0.794(0.917) 0.746(0.733) 0.769(0.933) 0.669(1.000)

(a) Precisions

1 2 3 4 5 6

1 66( 7) 13( 2) 8( 1) 0( 0) 3( 0) 0( 0)
2 6( 1) 84( 9) 0( 0) 0( 0) 0( 0) 0( 0)
3 6( 1) 4( 0) 55( 7) 8( 1) 12( 0) 5( 1)
4 1( 0) 0( 0) 0( 0) 75( 6) 14( 4) 0( 0)
5 0( 0) 0( 0) 14( 0) 20( 2) 48( 8) 8( 0)
6 0( 0) 1( 0) 5( 0) 2( 0) 7( 3) 75( 7)

1 2 3 4 5 6

1 51(10) 26( 0) 13( 0) 0( 0) 0( 0) 0( 0)
2 3( 0) 87(10) 0( 0) 0( 0) 0( 0) 0( 0)
3 7( 0) 3( 0) 67(10) 1( 0) 9( 0) 3( 0)
4 0( 0) 1( 0) 1( 0) 54(10) 29( 0) 5( 0)
5 2( 0) 0( 0) 2( 0) 16( 0) 51(10) 19( 0)
6 3( 0) 0( 0) 13( 0) 15( 0) 8( 0) 51(10)

(b) Same covariance Gaussian mixture (c) Quadratic logistic regression

Table 1: The precisions (a) and confusion matrices (b)(c) of classifiers. The
values in and out of parenthesis are the values of learning and test samples,
respectively. In the confusion matrix, each row represents an true class, and
each column represents an estimated class.

maximize between-class variance and minimize within-class variance. KDA is an
extension of FLDA to nonlinear embedding using the kernel trick. Figure 2 shows
the visualizations. We separated overlapping samples by minimizing Equation 2
after we obtained coordinates by FLDA and KDA. As inputs, FLDA and KDA
take samples and their estimated classes, but not their posterior probabilities.
Therefore, unlike with VNDA, differences between classifiers are not expressed
in their visualization. In Figure 2(a)∼(c), the clusters overlap because of the
limitation of the linear method. In Figure 2(d)∼(f), some clusters are clearly
separated, although some samples cannot be clearly classified by their classifiers.
FLDA and KDA need more computational time than VNDA since they lead to
generalized eigenvalue problems, whose complexity is cubic in the matrix size.

4 Concluding Remarks

We presented a new method for analyzing classifiers by visualization, namely
visual nonlinear discriminant analysis. We showed experimentally that the vi-
sualization results represent such classifier characteristics as separability and
generalization ability. Our method can assist classifier design with the comple-
mentary use of conventional evaluation, such as a precision or confusion matrix.
In the experiments, we visualized different classifiers for artificial data. The vi-
sualization can also show how a classifier changes with increases in the number
of learning samples or with changes in control parameters. We now plan to de-
velop an interactive visualization system with the proposed method to facilitate
classifier design.



(a) GM by FLDA (b) SGM by FLDA (c) QRL by FLDA

(d) GM by KDA (e) SGM by KDA (f) QRL by KDA

Fig. 2: Two dimensional visualization of GM, SGM, QRL classifiers by
FLDA(a)∼(c) and KDA(d)∼(f). The symbols are the same as in Figure 1.
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