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Abstract
We propose a data-driven method for reducing
the dimensionality of linear programming prob-
lems (LPs) by generating instance-specific projec-
tion matrices using a neural network-based model.
Once the model is trained using multiple LPs by
maximizing the expected objective value, we can
efficiently find high-quality feasible solutions of
newly given LPs. Our method can shorten the
computational time of any LP solvers due to its
solver-agnostic nature, it can provide feasible so-
lutions by relying on projection that reduces the
number of variables, and it can handle LPs of dif-
ferent sizes using neural networks with permuta-
tion equivariance and invariance. We also provide
a theoretical analysis of the generalization bound
for learning a neural network to generate projec-
tion matrices that reduce the size of LPs. Our
experimental results demonstrate that our method
can obtain solutions with higher quality than the
existing methods, while its computational time is
significantly shorter than solving the original LPs.

1. Introduction
Linear programming (LP) is widely used in many applica-
tions, such as economics, engineering, and computer sci-
ence (Gass, 2003; Eiselt & Sandblom, 2007). While nu-
merous LP solvers have been developed, most of which are
based on the simplex or interior-point methods, efficiently
solving high-dimensional LPs remains an important chal-
lenge in operations research. Alongside advancements in
LP solvers, there is increasing interest in reducing LP sizes
through random projections (Vu et al., 2018; Poirion et al.,
2023; Akchen & Mišić, 2024). Projection-based approaches
are solver-agnostic in that it can work with any solvers to
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solve reduced-size LPs. This solver-agnostic property is
particularly advantageous since we can exploit the divergent
evolution of LP solvers based on the simplex and interior-
point methods.

Although the random projection approach is efficient, its
solution quality can be low because it is difficult for random
matrices to capture the subspace of good solutions. To
improve the quality, a data-driven projection approach has
been proposed (Sakaue & Oki, 2024), where a projection
matrix is trained using LP instances. This method produces
high-quality solutions when the test LPs are sufficiently
similar to the training LPs. However, it performs poorly
when the test LPs differ from the training ones since it
shares a projection matrix among heterogeneous LPs.

To obtain high-quality solutions efficiently for various LPs,
we propose a data-driven method for learning to generate a
projection matrix appropriate for each LP instance using a
neural network-based model, instead of learning a projection
matrix itself. Figure 1 shows our framework. In the training
phase, our model is trained using multiple LPs in an end-
to-end fashion. In the test phase, we are given test LPs that
are related to but different from the training LPs. For each
test LP instance, a projection matrix is generated using the
trained model from the LP parameters. A projected LP of
reduced size is obtained by the projection matrix, and it is
solved by an LP solver. Then, a solution of the original test
LP is recovered from the solution of the projected LP.

By generating instance-specific projected LPs based on neu-
ral networks, our method can improve the solution quality.
Since our method is solver-agnostic, we can improve the
efficiency of any LP solvers by reducing LP sizes. By using
LP solvers that can obtain feasible solutions in the projected
LPs, our method can always obtain feasible solutions since
the recovered solutions are always feasible for the original
LPs when the projected LPs are feasible.

Our model takes the parameters of an LP instance as in-
put, and outputs a projection matrix. We design our model
such that it is permutation equivariant to the order of the
variables, and permutation invariant to the order of the con-
straints, which enables us to efficiently train it by reducing
the model search space. Since our model can handle dif-
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(a) Training phase (b) Test phase

Figure 1. Our framework. (a) In the training phase, we train model f using training LPs π1, . . . ,πN . (b) In the test phase, we are
given a test LP π, which is different from but related to the training LPs. Its solution is obtained via solving a reduced-size LP using
instance-specific projection matrix P generated by trained model f . The size can be different across LPs.

ferent sizes of LPs, we can train it using LPs of various
sizes, and use it for new LPs whose sizes are different from
the training LPs. The training of our model is formulated
by a bilevel optimization, where projected LPs are solved
in the inner optimization, and the expected objective value
of the recovered solution is maximized by updating our
model’s parameters in the outer optimization. We perform
the bilevel optimization based on the implicit function the-
orem, by which we can derive an analytical expression of
the outer gradients which depends only on the solution of
the inner optimization and not the path taken by the inner
LP solver. By synthesizing LPs according to the LP’s pa-
rameter distribution of target LPs, and training our model
using the synthesized LPs beforehand, we can efficiently
find high-quality feasible solutions of target LPs that will
be given in the future.

The main contributions of this paper are as follows: 1) We
propose a framework of learning to generate instance-
specific projection matrices using neural networks to ef-
ficiently solve LPs. 2) We develop a neural network model
for LPs with permutation equivariance and invariance prop-
erties that can handle LPs of any sizes. 3) We provide a
theoretical analysis on the generalization bound for learning
a neural network to generate projection matrices that reduce
the size of LPs. 4) We empirically demonstrate that our
method achieves a higher quality of solutions than exist-
ing projection approaches while requiring significantly less
computational time compared to solving the original LPs.

2. Related Work
Some existing projection-based methods for LPs reduce the
number of constraints (Vu et al., 2018; Poirion et al., 2023),
while others reduce the number of variables (Akchen &
Mišić, 2024; Sakaue & Oki, 2024). We focus on decreasing
the number of variables since the recovered solutions are
always feasible for the original LPs.

Learning to optimize is an approach to accelerate optimiza-
tion using machine learning techniques (Chen et al., 2023).
Many methods for learning to optimize have been pro-
posed (Monga et al., 2021; Chen et al., 2021; Amos, 2022;

Bengio et al., 2021; Nair et al., 2020; Gregor & LeCun,
2010), which use neural networks to output information
useful to solvers, such as initial solutions, or to output an
approximate optimal solutions for LPs (Wu & Lisser, 2023;
Chen et al., 2023; Qian et al., 2024). However, the existing
methods are not projection-based approaches for LPs except
for Sakaue & Oki (2024). The methods directly approx-
imate solutions by neural networks cannot guarantee the
feasibility of solutions. Unlike Sakaue & Oki (2024), our
method considers instance-specific projection matrices, by
which we can obtain high-quality solutions of LPs of dif-
ferent sizes with various parameters. Although permutation
equivariance in LPs has been considered using graph neural
networks (Chen et al., 2023; Qian et al., 2024), they are not
for generating projection matrices.

3. Preliminaries
We consider inequality-form LPs with parameters c ∈ RN ,
A ∈ RM×N , and b ∈ RM ,

maximize
x∈RN

c>x subject to Ax ≤ b, (1)

where N is the number of variables, and M is the num-
ber of constraints. An LP with equality constraints can
be transformed into an inequality-form LP if a (trivially)
feasible solution is available by restricting the feasible re-
gion (Sakaue & Oki, 2024)1. When the number of variables
N is large, we can efficiently compute an approximate solu-
tion of Eq. (1) by restricting variables to a low-dimensional
subspace using projection matrix P ∈ RN×K with K < N
(Poirion et al., 2023; Akchen & Mišić, 2024),

maximize
y∈RK

c>Py subject to APy ≤ b, (2)

which is an LP with K variables and M constraints. After
obtaining optimal solution y∗ to the projected LP in Eq. (2),
we can recover a solution of the original LP in Eq. (1) by

1Mathematically, we may rewrite Ax = b as Ax ≤ b and
Ax ≥ b, but this poses a challenge of identifying the subspace
satisfying Ax = b when generating projections. We sidestep this
feasibility issue by adopting the method of Sakaue & Oki (2024).
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x̃ = Py∗. Importantly, if the projected LP is feasible, re-
covered solution x̃ is always feasible for the original LP
since APy∗ ≤ b although it may not be optimal. The
feasibility of the projected LP is guaranteed (i.e., its feasible
region is non-empty) when x = 0 is feasible for the original
LP, since y = 0 is always feasible for any projected LPs.
Instead of x = 0, we may assume that there exists an arbi-
trary common feasible solution x without loss of generality.
This is because we can translate the feasible region so that
x coincides with the origin 0. The quality of the solution
is evaluated through objective value c>Py∗. Ideally, if the
columns of P span a linear subspace containing the optimal
solution of (1), the reconstructed solution is optimal to (1)
due to the optimality of y∗ to (2). Thus, finding appro-
priate P that is close to this ideal condition with small K
enables us to efficiently compute a high-quality solution of
the original LP (1) by solving the projected LP (2).

4. Proposed Method
We propose a neural network-based model to generate
instance-specific projection matrices for LPs. Once trained
on multiple LPs, the model can quickly produce an appro-
priate projection matrix through a single forward pass.

4.1. Problem Formulation

In the training phase, we are given a set of LP instances
{πd}Dd=1, where the dth LP instance is represented by its
parameters πd = (cd,Ad,bd). Here, cd ∈ RNd , Ad ∈
RMd×Nd , bd ∈ RMd , Nd is the number of variables, and
Md is the number of constraints.

In the test phase, we are given a test LP instance π with N
variables andM constraints, that is different from but related
to the training LPs {πd}Dd=1. The number of variables and
the number of constraints can be different from the training
LPs, N 6= Nd and M 6= Md. Our aim is to obtain a high-
quality solution of the test LP efficiently.

4.2. Model

Our neural network-based model fθ(π) outputs projection
matrix P ∈ RN×K appropriate for given LP instance π
with N variables and M constraints, where θ is model
parameters. Figure 2 illustrates our model, and Figure 6 in
Appendix A illustrates each component of our model.

Optimal solution x∗ of LP instance π is permutation equiv-
ariant to the order of variables and permutation invariant
to the order of constraints; i.e., when the variables of the
LP instance are permuted, the variables of the optimal solu-
tion permuted accordingly; when the constraints of the LP
instance are permuted, the optimal solution is unchanged.
Therefore, appropriate projection matrix P is permutation
equivariant on variables and permutation invariant on con-

straints. To incorporate this inductive bias, we design our
model f such that it always ensures permutation equivari-
ance on variables and permutation invariance on constraints.
With this design, the model search space can be signifi-
cantly reduced by a factor of N !M !, which makes training
efficient.

First, our model obtains embeddings for each element of LP
parameters c, A, and b using permutation equivariant linear
programming problem (PELP) layers. Let z

c(`)
n ∈ RH(`)

,
z
A(`)
mn ∈ RH(`)

, and z
b(`)
m ∈ RH(`)

be embedding vectors
at the `th layer of an element in c, A, and b, respectively,
where n and m are indices of elements. The embeddings
at the zeroth layer are the LP parameters themselves, i.e.,
z
c(0)
n = cn ∈ R, z

A(0)
mn = Amn ∈ R, and z

b(0)
m = bm ∈ R.

The PELP layer computes the embedding of the (n,m)th
element of A by

zA(`+1)
mn = σ

(
WA1(`)zc(`)n + WA2(`)zA(`)

mn

+
WA3(`)

M

M∑
m′=1

z
A(`)
m′n +

WA4(`)

N

N∑
n′=1

z
A(`)
mn′

+ WA5(`)zb(`)m + wA6(`)

)
, (3)

where WAj(`) ∈ RH(`)×H(`+1)

, j = 1, . . . , 5 and wA6(`) ∈
RH(`+1)

are parameters at the `th layer, and σ is a nonlinear
activation function. The first term transforms the embedding
of the nth element of c, the second term transforms the
embedding of itself, the third (fourth) term transforms the
embeddings of the nth row (mth column) of A aggregated
by average pooling, the fifth term transforms the embedding
of the mth element of b, and the sixth term is the bias. The
model parameters for this transformation are shared across
all elements n = 1, . . . , N , m = 1, . . . ,M . Similarly, the
embedding of the mth element of b is computed by

zb(`+1)
m = σ

(
Wb1(`)

N

N∑
n=1

zA(`)
mn + Wb2(`)zb(`)m

+
Wb3(`)

M

M∑
m′=1

z
b(`)
m′ + wb4(`)

)
, (4)

where Wbj(`) ∈ RH(`)×H(`+1)

, j = 1, . . . , 3, and wb4(`) ∈
RH(`+1)

. The embedding of the nth element of c is com-
puted by

zc(`+1)
n = σ

(
Wc1(`)zc(`)n +

Wc2(`)

N

N∑
n′=1

z
c(`)
n′

+
Wc3(`)

M

M∑
m=1

zA(`)
mn + wc4(`)

)
, (5)
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Figure 2. Our model takes LP parameters as input, and outputs a projection matrix.

where Wcj(`) ∈ RH(`)×H(`+1)

, j = 1, . . . , 3, and wc4(`) ∈
RH(`+1)

. Eqs. (3,4,5) are permutation equivariant on the
order of variables and the order of constraints. By iterat-
ing multiple PELP layers, information in other elements is
gathered through a nonlinear transformation, allowing us to
obtain embeddings that incorporate information in all LP
parameters, c, A, and b.

After the L PELP layers are applied, the nth row of pro-
jection matrix P = [p>1·, . . . ,p

>
N ·]
> is calculated by the

following projection generator,

pn· = g
([

zc(L)n ,max
m

zA(L)
nm

])
∈ RK , (6)

where g : R2H(L) → RK is a fully-connected neural net-
work, and max is max pooling. Neural network g is shared
across different variables n. Eq. (6) is permutation equivari-
ant on variables, and permutation invariant on constraints.
Therefore, our model f using PELP layers in Eqs. (3,4,5)
and the projection generator in Eq. (6) is permutation equiv-
ariant on variables, and permutation invariant on constraints.
Our model parameters do not depend on the number of
variables N or the number of constraints M . Therefore, it
can handle LPs of different sizes; it generates a projection
matrix of size N ×K when an LP with N variables and M
constraints is given for any N and M .

Algorithm 1 shows the procedures to obtain a solution using
the projection matrix generated by our model. The compu-
tational complexity of our model is O((N +M)L); i.e., it
linearly scales with the number of variables and constraints.
Although permutation equivariance and invariance can be
achieved with attention mechanisms (Lee et al., 2019), they
quadratically scale with them.

4.3. Training

We train our model in an end-to-end fashion by maximizing
the expected objective value using training LPs {πd}Dd=1,

θ̂ = arg max
θ

Ed [u (Pd,πd)] , (7)

where Pd = fθ(πd) is a projection matrix generated by our
model,

u(P,π) = max
y∈RK

{c>Py | APy ≤ b}, (8)

Algorithm 1 Procedures to obtain a solution using projec-
tion matrix generated by our model.
Input: LP instance π = (c,A,b).
Output: Solution x̃.

1: Initialize embeddings by the LP parameters, z
c(0)
n = cn,

z
A(0)
mn = Amn, z

b(0)
m = bm for n = 1, . . . , N and

m = 1, . . . ,M .
2: for each layer ` = 1, . . . , L do
3: Compute embeddings {{zA(`)

mn }Nn=1}Mm=1,
{zb(`)m }Mm=1, {zc(`)n }Nn=1 by the PELP layer in
Eqs. (3,4,5).

4: end for
5: Compute projection matrix P by the projection genera-

tor in Eq. (6).
6: Obtain optimal solution y∗ to projected LP π̃ =

(P>c,AP,b) by an LP solver.
7: Recover solution of original LP π by x̃ = Py∗.

is the optimal objective value of a projected LP, and Ed is
the expectation over the training LPs. Model parameters
θ to be trained are the parameters in the PELP layers and
the projection generator. Eq. (7) is a bilevel optimization
problem, where model parameters θ are optimized in the
outer level, while reduced variables y of projected LPs are
optimized in the inner level. To efficiently solve this bilevel
optimization problem, we leverage the implicit function
theorem. The gradient of the objective function in Eq. (7)
for each LP instance is given by

∂u(Pd,πd)

∂θ
= vec

(
∂u(Pd,πd)

∂Pd

)>
∂vec(Pd)

∂θ
, (9)

via the chain rule, where vec: RN×M → RNM denotes the
vectorization of a matrix. Assume that the projected LP
satisfies a regularity condition, which requires that optimal
solution y∗d ∈ RK exists at which active constraints are
linearly independent. Then, the first factor is computed
based on the implicit function theorem (Tan et al., 2020;
Sakaue & Oki, 2024) by

∂u(Pd,πd)

∂Pd
= cdy

∗>
d −A>d λ

∗
dy
∗
d,
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Algorithm 2 Training procedures of our model.
Input: Training LPs {πd}Dd=1.
Output: Trained model parameters θ.

1: while End condition is not satisfied do
2: Sample batch of LP instances ΠB from {πd}.
3: for each LP instance πd ∈ ΠB do
4: Generate projection matrix Pd = fθ(πd).
5: Obtain primal y∗d and dual λ∗d optimal solutions

of projected LP (P>d cd,AdPd,bd) using an LP
solver.

6: Calculate gradient in Eq. (9) by automatic differen-
tiation of vec(cdy

∗>
d −A>d λ

∗
dy
∗
d)
>vec(Pd) with

respect to θ.
7: end for
8: Update parameters θ using the gradients by stochas-

tic gradient ascent.
9: end while

where λ∗d ∈ RM is the dual optimal solution of the pro-
jected LP. Here, we do not need to differentiate through the
inner LP optimization path, and we can use any LP solvers
that provide primal and dual optimal solutions. Eq. (9) can
be computed by automatic differentiation on scalar value
vec(cdy

∗>
d − A>d λ

∗
dy
∗
d)
>vec(Pd) with respect to model

parameters θ without explicitly calculating large-size Jaco-
bian ∂vec(Pd)

∂θ . Algorithm 2 shows the training procedures
of our model.

5. Theoretical Analysis
We discuss the generalization ability of the approach to
solve LPs with projection matrices generated by neural
networks based on data-driven algorithm design (Gupta
& Roughgarden, 2017; Balcan, 2021; Cheng et al., 2024),
which analyzes the amount of data sufficient for establish-
ing generalization guarantees for data-driven algorithms. In
particular, our analysis is based on the recent theoretical
study by Cheng et al. (2024) for using neural networks in
data-driven algorithm design.

5.1. Settings

Let Π be a set of LP instances with N variables and M
constraints, where we may regard N and M as the largest
values in Π to handle LPs of different sizes via zero padding.
Assume that the optimal value of LPs in Π always lies in
[0, B], which is a common boundedness assumption. Let
K ∈ {1, 2, . . . , N} and P = [−1,+1]N×K be the set of
projection matrices, where the restriction to [−1,+1]N×K

does not lose generality since the scale of P does not change
the optimal value of projected LPs. For any projection
matrix P ∈ P and instance π ∈ Π, define score function
u(P,π) as in Eq. (8), i.e., the optimal value of the LP

instance whose feasible region is restricted to Im P.

For the analysis, we consider a fully-connected neural net-
work described in Appendix B.1, leaving analysis specific
to neural networks with permutation equivariance and in-
variance described in Section 4.2 for future work. Let
fNθ : Π → P denote the fully-connected neural network
with W parameters, θ ∈ RW , which maps an LP instance
π ∈ Π to an output projection matrix P ∈ P . Our central
interest lies in the function class defined as

FuN :=
{
u
(
fNθ (·), ·

)
: Π→ [0, B]

∣∣ θ ∈ RW
}
,

where each u
(
fNθ (·), ·

)
is a function that is parameterized

by θ and maps π ∈ Π to its optimal value under the condi-
tion that the feasible region is restricted to Im fNθ (π).

5.2. Generalization Bound

We first introduce fundamental concepts in learning theory.
Let F be a class of functions from Π to R. For D ∈ N, we
say set {πd}Dd=1 ⊆ Π of input instances are shattered by F
if there exist threshold values s1, . . . , sD ∈ R such that

|{(sgn(f(π1)−s1), . . . , sgn(f(πD)−sD) :f ∈F)}|=2D,

where sgn(x) = 0 if x < 0 and 1 otherwise. The pseudo-
dimension of F , denoted by Pdim(F), is the largest size of
an input set that can be shattered by F .

Assume that the range of functions in F is restricted to
[0, B]. The celebrated uniform convergence (e.g., Anthony
& Bartlett 2009, Theorem 19.2) ensures that for any distri-
bution D on Π, ε > 0, and δ ∈ (0, 1), if we have an i.i.d.
sample, π1, . . . ,πD, from D of size

D = Ω

(
B2

ε2

(
Pdim(F) log

B

ε
+ log

1

δ

))
,

then, with probability at least 1− δ, for all f ∈ F , we have∣∣∣∣∣ 1

D

D∑
d=1

f(πd)− Eπ∼D[f(π)]

∣∣∣∣∣ ≤ ε.
In our case, if Pdim (FuN) is bounded and the sample size
is sufficiently large to satisfy D & B2

ε2 Pdim (FuN) up to
log factors, then for all θ ∈ RW , the empirical average of
u
(
fNθ (·), ·

)
values deviates from the true average over un-

known D by at most ε with high probability. In other words,
once we find good parameters θ that deliver high empirical
performance on a sufficiently large training set, we can ex-
pect that the trained neural network will generalize well to
unseen future instances from the same distribution. Note
that the bound is uniform, which holds regardless of how θ
is learned. Thanks to this uniform bound, even though the
optimization of θ is non-convex and we cannot guarantee
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convergence to a globally optimal solution, once we find a
model that empirically performs well on the training data,
its use for unseen instances can be justified.

Let U be the size of a neural network, which is the total
number of hidden units. The following theorem provides an
upper bound on Pdim (FuN), which enables us to establish
the above generalization guarantee.
Theorem 5.1. LetP = [−1,+1]N×K be a set of projection
matrices, Π a set of LP instances, and u :P×Π→ [0, B] the
function that takes P ∈ P and π ∈ Π as inputs and returns
the optimal value of the LP instance whose feasible region is
restricted to Im P. Let W0 = N +MN +M and WL+1 =
NK, i.e., the sizes of an LP and a projection matrix, re-
spectively. For fully-connected neural network with ReLU
activationsN : RW0×RW → RWL+1 with L hidden layers,
having size U and W parameters, and using the clipped
ReLU squeezing function (see Appendix B.1), we have:

Pdim (FuN) = O(WL log(U +NK) +WK log(LMK)).

The proof is provided in Appendix B.2. This theorem allows
us to estimate the amount of training data sufficient for
keeping the expected test performance within an error of ε
via the relation of D & B2

ε2 Pdim (FuN), as discussed above.
However, as mentioned above, the bound would have room
for improvement by considering permutation equivariance
and invariance of the model described in Section 4.2.

6. Experiments
6.1. Data

We evaluated our method using three types of representa-
tive LPs: packing, maximum flow, and minimum-cost flow
problems, denoted by Packing, MaxFlow, and MinCostFlow,
respectively. A packing problem is an LP with non-negative
parameters c, A, and b. We generated packing problem
instances with 500 variables and 50 constraints by drawing
their parameter elements from the uniform distribution on
[0, 1] and multiplying b by N . A maximum flow problem
is an LP to find the largest flow that can be sent from a
source vertex to a sink vertex in a graph while satisfying ca-
pacity constraints. A minimum-cost flow problem is an LP
to find the cheapest way to send a specific amount of flow
through a graph, where costs are associated with arcs. To
generate an instance of MaxFlow or MinCostFlow, we first
randomly created a directed graph with 50 vertices and 500
arcs with source and sink vertices, where an arc from the
source to the sink was always included to ensure feasibility.
For MaxFlow, the capacity of each arc was randomly drawn
from the uniform distribution on [0, 1]. For MinCostFlow,
we set the supply at the source and the demand at the sink
to one. The capacity for all arcs was set to one, and the

cost for each arc was randomly drawn from the uniform
distribution on [0, 1]. The cost between the source and sink
was set to be sufficiently large. We transformed MaxFlow
and MinCostFlow instances into equivalent inequality-form
LPs using a trivially feasible solution (Sakaue & Oki, 2024).
For MaxFlow, we used all zeros, representing no flow, as
the trivially feasible solution. For MinCostFlow, we used
all zeros except for a single one at the entry corresponding
to the arc between the source and sink, which is trivially
feasible but costly. In MaxFlow and MinCostFlow, the num-
ber of variables was 500, and the number of constraints
was 1,000. All problems have non-negativity constraints
x ≥ 0, which were not included in the constraint counts,
and are formulated as maximization problems. For each
of the Packing, MaxFlow, and MinCostFlow, we generated
425 LP instances for training, 25 for validation, and 50 for
test.

6.2. Compared Methods

We compared our method (Ours) with the following meth-
ods: Rand, PCA, SharedP, FCNN, and Direct. Rand
is a random projection matrix method (Akchen & Mišić,
2024), which reduces the dimensionality by selecting K
variables randomly and fixing the others to zeros. PCA is a
data-driven method that obtains a projection matrix shared
across LPs by applying principal component analysis to the
set of optimal solutions of the training LPs (Sakaue & Oki,
2024). SharedP trains a projection matrix shared across
LPs by maximizing the expected objective value on training
LPs (Sakaue & Oki, 2024). FCNN generates an instance-
specific projection matrix using a fully-connected neural
network, where LP parameters (c,A,b) are vectorized and
concatenated for input. It is not permutation equivariant or
invariant. Direct outputs a solution using a neural network
given an LP instance, where the same model was used with
our method by generating each element of a solution by
the projection generator. The implementation details are
described in Appendix D.1

6.3. Results

To evaluate the quality of the solution, we used the average
objective ratio over test LP instances, where the objective
ratio was the objective value of the solution divided by the
optimal value of the original LP. To evaluate the efficiency,
we used the computational time to obtain a solution averaged
over test LP instances, which included the time required to
generate a projection matrix using the trained neural network
and the time taken to solve the (reduced) LP using a solver.

Figure 3 shows the average test objective ratio and computa-
tional time with different reduced dimensions K. Here,
Full was included as a baseline that solves original N -
dimensional LPs without reducing the dimensionality. Our
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(a) Packing (b) MaxFlow (c) MinCostFlow

Figure 3. Average test objective ratio (upper row) and computational time in seconds for solving an LP (lower row) with different reduced
dimensions K. Bars show the standard error.

(a) Packing 1 (b) Packing 2

Figure 4. Examples of generated projection matrix P> using our method (top), solution x> obtained with our method (middle), and
solution x∗> obtained by solving the original LPs without dimensionality reduction (bottom) for two different packing problems. Black
represents zero, which is the lowest value. The horizontal axis in all plots represents the variables, and the vertical axis in P> corresponds
to the reduced variables. 150 variables out of 500 and 30 reduced variables out of 50 are shown for better visibility. The same model with
K = 50 was used to obtain P and x in these two problems.

Table 1. Average test objective ratio and computational time in seconds for solving an LP on packing problems with 100,000 variables.
Full Ours Rand PCA SharedP FCNN Direct

Objective ratio 1.000 0.924 0.230 0.066 0.070 0.257 0.014
Time 23.487 0.055 0.013 0.029 0.063 0.049 0.005

Table 2. Average test objective ratios when types of training and test LPs were different. Mix data contain Packing, MaxFlow, and
MinCostFlow.

Test \ Train Packing MaxFlow MinCostFlow Mix
Packing 0.985 ± 0.032 0.187 ± 0.072 0.164 ± 0.084 0.981 ± 0.023
MaxFlow 0.142 ± 0.083 0.994 ± 0.014 0.230 ± 0.139 0.954 ± 0.058
MinCostFlow 0.000 ± 0.000 0.029 ± 0.083 0.894 ± 0.068 0.787 ± 0.201
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(a) Packing (M ) (b) Packing (N ) (c) MaxFlow (#Nodes)

(d) MaxFlow (#Edges) (e) MinCostFlow (#Nodes) (f) MinCostFlow (#Edges)

Figure 5. Average test objective ratio (upper row) and computational time in seconds for solving an LP (lower row) with various sizes
of test LPs. Red lines (Ours) represent our method trained with LPs of a fixed size described in Section 6.1. Purple lines represent our
method trained with LPs of various sizes, where the range of the training LP size was the same with the range of the test LP size. (a)
The number of constraints M of the test LPs was varied while fixing N = 500. (b) The number of variables N was varied while fixing
M = 50. (c,e) The number of nodes was varied while fixing the number of edges at 500. (d,f) The number of edges was varied while
fixing the number of nodes at 50. The reduced dimension was K = 50.

method significantly outperformed the compared methods
in terms of objective ratios. This result indicates that our

method can generate appropriate projection matrices for
unseen LPs compared with the other methods. Our method
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with large K achieved 89% to 99% objective ratio and was
much faster than Full. As reduced dimension K increased,
the objective ratio by our method improved while the com-
putational time increased. Since Rand does not use infor-
mation on the training LPs, its solution quality was low.
Although PCA and SharedP are data-driven approaches,
their objective ratios were low, since they use a projection
matrix shared across all LPs. On the other hand, our method
can generate different projection matrices tailored for input
LPs. The low objective ratio of FCNN implies the effec-
tiveness of permutation equivariance and invariance of our
model. The objective ratio of Direct was lower than that of
our method, which indicates that finding appropriate projec-
tion matrices is easier than directly finding optimal solutions.
In addition, Direct violated constraints in 10% to 48% of
the test LPs. On the other hand, our method always satis-
fied constraints by using LP solvers for reduced-size LPs.
The computational time of projection-based methods (Ours,
Rand, PCA, SharedP, and FCNN) increased as reduced
dimension K increased. Since Direct does not use solvers,
it was faster than the other method. The training time for our
method with K = 50 on Packing was 1.7 hours. Although
it requires a long time for training, it can efficiently give
high-quality solutions for unseen LPs once it is trained.

Figure 4 shows examples of projection matrices and solu-
tions obtained by our method for two packing problems.
While the same model was used in these different LPs, our
method generated different projection matrices and suc-
ceeded in obtaining solutions close to the optimal solutions
of the original LPs. The generated projection matrices have
high values for variables that have non-zero values in the the
original optimal solutions x∗. This is necessary to obtain
good solutions since we cannot recover non-zero solutions
when the variables are removed by the projection.

An advantage of our method is that our model with identical
parameters can generate projection matrices for LPs of dif-
ferent sizes. Figure 5 shows the results of our method when
the test LP’s sizes were varied. Here, we also evaluated our
method trained with LPs of various sizes, where their ranges
were the same with that of the test LP’s sizes;M ∈ [20, 200]
and N ∈ [200, 2000] in Packing, and the number of edges
ranged from 30 to 90, and the number of nodes ranged from
300 to 900 in MaxFlow and MinCostFlow. First, we fo-
cus on our method trained with fixed-size LPs described in
Section 6.1 (Ours). In Packing, the objective ratio by our
method was high even when the number of constraints M
changed in the test LPs (a), while the increase of the com-
putational time with M was small compared with Full. The
objective ratio was decreased gradually as the number of
variables N exceeded the training size N = 500 (b). These
results indicate that our method works well for LPs when
its number of variables is close to or smaller than that of the
training LPs even when its number of constraints is different

in packing problems. In MaxFlow, the objective ratio was
high when the number of nodes was close to or smaller than
that of the training LPs (c), and the number of edges was
close to that of the training LPs (d). In MinCostFlow, the ob-
jective ratio was high when the number of nodes was small
(e), and it did not vary much with the number of edges (f).
The increase in computational time with our method, as
the number of edges grew, was substantially smaller than
that with Full. Next, we focus on our method trained with
varied-size LPs. In general, the performance was better than
or comparable to our method trained with fixed-size LPs.
This is reasonable since it was trained using LPs that were
similar to test LPs.

The results on larger LPs are shown in Table 1, where pack-
ing problems with 100,000 variables and 50 constraints
were used with reduced dimension K = 50. Our method
achieved a higher objective ratio than the other methods
(Rand and PCA), and significantly reduced computational
time compared to solving the original LPs (Full) on these
large instances.

Table 2 shows the objective ratios by our method when dif-
ferent types of LPs were used for training and test; e.g., our
model was trained with Packing and tested with MaxFlow.
We included Mix data for training, which consisted of Pack-
ing, MaxFlow, and MinCostFlow LPs. The objective ratios
were high when the same type was used for training and
test LPs, and they were low when the same type was not
included. Although our method trained with the Mix data
achieved slightly worse than that trained with the same type,
it was much better than that trained with different types. It
is important to include LPs in training that are similar to test
LPs.

7. Conclusion
We proposed a method for learning to generate projection
matrices for improving the efficiency of LP solvers by
reducing LP sizes. Our method uses a neural network-based
model that generates a projection matrix appropriate for
a given LP instance. Since our model can handle any size
of LPs, we can use it for newly given LPs whose sizes are
different from the training LPs. Our theoretical analysis
guarantees that the generalization error decreases as the
training data size increases, potentially bringing it arbitrarily
close to zero. Experiments demonstrate that our method can
obtain high-quality solutions compared with the existing
methods. For future work, we plan to combine our method
with a smart predict-then-optimize framework (Elmachtoub
& Grigas, 2022) by incorporating the prediction of LP
parameters from contextual information.
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Akchen, Y.-C. and Mišić, V. V. Column-randomized lin-

ear programs: Performance guarantees and applications.
Operations Research, 2024.

Amos, B. Tutorial on amortized optimization for learning
to optimize over continuous domains. arXiv preprint
arXiv:2202.00665, 2022.

Anthony, M. and Bartlett, P. L. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
2009.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Balcan, M.-F. Data-driven algorithm design. In Beyond the
Worst-Case Analysis of Algorithms, pp. 626–645. Cam-
bridge University Press, 2021.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight VC-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20(63):1–17, 2019.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
dfhorizon. European Journal of Operational Research,
290(2):405–421, 2021.
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A. Proposed Method
Figure 6 illustrates the PELP layer to obtain embeddings (a–c) and the projection generator (d).

Reducing the number of constraints and reducing the number of variables are equivalent from the perspective of LP duality.
In our paper, we focus on reducing the number of variables purely for simplicity to avoid intricate discussions on infeasibility.
However, from a duality perspective, one could also consider reducing the number of constraints.

By the LP relaxation of the given MILP, we can apply our method to MILPs. Our method cannot be directly used for
reducing MILPs because we design our training procedures tailored to LPs. However, our high-level idea of learning to
generate projections could be extended to solve MILP instances efficiently. Developing such extensions to MILPs is an
interesting direction for future work.

B. Theoretical Analysis
B.1. Neural Networks

This section describes neural networks considered in the theoretical analysis. Let N be the set of positive integers.
For any N ∈ N, let [N ] = {1, 2, . . . , N}. Let L ∈ N and consider a neural network (NN) with architecture
[W0,W1, . . . ,WL,WL+1] ∈ NL+2, which generates projection matrix P ∈ P from LP instance π ∈ Π. Here, L
denotes the number of hidden layers, and W` denotes the number of hidden units of the `th layer. Let U = W1 + · · ·+WL

be the size of the NN. We encode LP instance π = (c,A,b) as an input vector of length W0 = N + MN + M by
concatenation, denoted by Enc : RN × RM×N × RM → RW0 . We also decode a vector of length WL+1 = NK as
a projection matrix with size N × K, denoted by Dec : RNK → RN×K . The NN is parameterized by L + 1 affine
transformations T` : RW`−1 → RW` , where TL+1 is linear. We use θ ∈ RW to denote the parameters of the NN, where W
is the number of the parameters. Using the NN, mapping from an LP instance to a projection matrix is given by

fNθ (π) = Dec(TL+1(σ(TL(· · ·T2(σ(T1(Enc(π)))) · · · )))),

where σ is the activation function. As in Cheng et al. (2024), we force the NN’s output to lie in [η1, τ1] × · · · ×
[ηWL+1

, τWL+1
] ⊂ RWL+1 by applying a squeezing activation function σ′ : R→ [0, 1] to each output coordinate yi ∈ R,

namely, ηi + (τi − ηi)σ′(yi) for i = 1, . . . , wL+1. We let τ1 = · · · = τwL+1
= +1 and η1 = · · · = ηwL+1

= −1 for
simplicity. We focus on the fully-connected NNs with ReLU and clipped ReLU (CReLU) activation functions considered in
Cheng et al. (2024), leaving analysis specific to permutation equivariant/invariant NNs for future work. Specifically, we use
σ(x) = ReLU(x) = max{0, x} and σ′(x) = CReLU(x) = min{max{0, x}, 1} for activation functions. As a side note,
it is not difficult to replace ReLU with any piecewise linear activation function, such as the leaky ReLU, by accordingly
modifying the bound on Q discussed below based on Bartlett et al. (2019, Section 4).

(a) A’s embedding (b) b’s embedding (c) c’s embedding (d) Projection matrix P

Figure 6. (a–c) PELP layer to obtain embeddings of A, b, and c. (d) Projection generator to obtain projection matrix P.
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B.2. Proof

This section provides the proof of theorem 5.1.

Proof. As shown in the proof of Cheng et al. (2024, Theorem 2.6), for any D ∈ N and π1, . . . ,πD ∈ Π, there are

Q ≤ 2L+1

(
2eD(U + 2NK)

W

)(L+1)W

subregions,W1, . . . ,WQ of RW such that their union is RW and fNθ (πd) restricted to θ ∈ Wq is a polynomial of degree at
most L+ 2 in θ for all (q, d) ∈ [Q]× [D].

Fix (q, d) ∈ [Q]× [D] and let P(θ) = fNθ (πd) ∈ P for any θ ∈ Wq . Observe that (P(θ)>c,AP(θ),b) ∈ RK×RM×K×
RM is a projected LP instance such that each entry is a polynomial of degree at most L+ 2 in θ. Then, Sakaue & Oki (2024,
Lemma 4.3) implies that, for any threshold value s ∈ R, there are up to

(
M+2K

2K

)
(M + 2K + 2) polynomials of degree at

most (2K + 1)(L+ 2) in θ whose sign patterns partitionWq into subregions such that u(P(θ),πd) ≥ s or not is identical
within each subregion.

Thus, for each q ∈ [Q] and any threshold values s1, . . . , sD ∈ R, by applying Warren’s theorem as in the proof of Sakaue &
Oki (2024, Theorem 4.4). The theorem states that, given γ polynomials of ν variables with degrees at most µ, the number of
all possible sign patterns is at most (8eγµ/ν)ν . By applying this theorem to our case, we obtain∣∣{(sgn(u(fNθ (π1),π1)− s1), . . . , sgn(u(fNθ (πD),πD)− sD)

)
: θ ∈ Wq

}∣∣
≤
(

8eD

(
M + 2K

2K

)
(M + 2K + 2)(2K + 1)(L+ 2)

W

)W
.

Let a1 = 2e(U + 2NK) and a2 = 8e
(
M+2K

2K

)
(M + 2K + 2)(2K + 1)(L+ 2) for simplicity. Summing up over q ∈ [Q],

we have ∣∣{(sgn(u(fNθ (π1),π1)− s1), . . . , sgn(u(fNθ (πD),πD)− sD)
)

: θ ∈ RW
}∣∣

≤ 2L+1

(
a1D

W

)(L+1)W (
a2D

W

)W
.

By definition of the pseudo-dimension, the largest possible D with 2D ≤ 2L+1
(
a1D
W

)(L+1)W (a2D
W

)W
serves as an upper

bound on Pdim(FuN). Taking logarithms on both sides, we obtain

D log 2 ≤ (L+ 1) log 2 + (L+ 1)W log

(
a1D

W

)
+W log

(
a2D

W

)
≤ (L+ 1) log 2 + (L+ 1)W

(
D

3(L+ 1)W
+ log

(
3a1(L+ 1)

e

))
+W

(
D

3W
+ log

(
3a2
e

))
=

2

3
D + (L+ 1) log 2 + (L+ 1)W log

(
3a1(L+ 1)

e

)
+W log

(
3a2
e

)
,

where the second inequality follows from log z ≤ z
λ + log λ

e for any z > 0 and λ > 0 (Cheng et al., 2024, Lemma B.1).
Since log 2 > 2/3, the above inequality implies

Pdim(FuN) . (L+ 1) log 2 + (L+ 1)W log

(
3a1(L+ 1)

e

)
+W log

(
3a2
e

)
= O (WL log(U +NK) +WK log(LMK)) ,

completing the proof.

C. Additional Related Work
Column generation (Desaulniers et al., 2006) is an iterative method for solving LPs: starting from an LP with a small
number of variables, it iteratively selects relevant variables until the optimality is confirmed via the LP duality. Column
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generation repetitively solves reduced-size LPs for solving an original LP instance. On the other hand, our method finds an
appropriate projection matrix by a single forwarding pass of our neural-network-based model, and the resulting reduced-size
LP is solved only once. Since column generation is an LP solver, our method can be used to accelerate column generation
by benefiting from data of past LPs. Exploring the collaboration of the algorithmic (like column generation) and data-driven
(like ours) approaches to reducing LP sizes will be an exciting future direction.

Mixed integer linear programming (MILP) instance generation approaches (Geng et al., 2023; Liu et al., 2024; Wang et al.,
2024) generate optimization problem instances. The generated instances can be used for training machine learning-based
solvers, tuning hyperparameters of solvers, or evaluating solvers. On the other hand, our method transforms a given
optimization problem instance to another reduced-size instance to efficiently solve the given instance. That is, MILP instance
generation approaches do not transform a given instance, while our purpose is to solve given instances efficiently. Potentially,
(MI)LP instance generation techniques can be used for synthesizing training LPs.

D. Experiments
D.1. Implementation

In our method, we used four PELP layers with residual connection and layer normalization (Ba et al., 2016), and H(`) = 32.
A three-layered fully-connected neural network with 32 hidden units was used in the projection generator. The leaky rectified
linear unit was used for activation functions. The softmax function is applied to the outputs of the projection generator to
obtain non-negative projection matrices normalized for each reduced variable. Non-negativity constraints x ≥ 0 were not
explicitly used for the input of our model since recovered solution Py∗ is always non-negative when projection matrix P is
non-negative and solution y∗ to the projected LP is non-negative. For the objective function in Eq. (8), we used the objective
ratio that is the optimal objective value of the projected LP divided by the optimal value of the original LP. We optimized
using Adam (Kingma & Ba, 2015) with a batch of eight LP instances, and learning rate 10−3. The maximum number of
training epochs was 500, and the validation data were used for early stopping. PyTorch (Paszke et al., 2019) was used for
implementation. As LP solvers, we used Gurobi 12.0.0 (Gurobi Optimization, LLC, 2024) in the training phase, and SCIP
Optimization Suite 9.2.0 (Bolusani et al., 2024) in the test phase. For evaluating computational time, we used a PC with
Xeon Gold 5222 3.80GHz CPU, NVIDIA GeForce RTX2080Ti GPU, and 512GB memory.

In computed projection matrices by PCA, negative values were replaced by zero to obtain non-negative projection matrices.
SharedP, FCNN, and Direct were trained using the same procedures as our method. In FCNN, a three-layered fully-
connected neural network with 32 hidden units was used. In Direct, the architecture of the neural network was the same as
that of our method, where the projection generator was used to generate each element of a solution. In Direct, the objective
function to be minimized was the mean squared error from the optimal solution xd to the original LP, ‖ x∗d − xd ‖2, where
xd is the estimated solution. In addition, the regularization term, |max(Adxd − bd, 0)|+ |max(−xd, 0)|, was added to
penalize the violation of linear inequality and non-negativity constraints.

D.2. Results

Figure 7 shows the objective ratio by our method with different numbers of training LPs. Generally, as the number of
training LPs increased, the performance improved as expected. The objective ratio was high even with a relatively small
number of training LPs. Additional results are provided in Appendix D.2.

Figure 8 shows the result on GROW7, an LP from the Netlib repository (Browne et al., 1995), which is a collection of
software for scientific computing. We generated LP instances from GROW7 by multiplying all the LP parameters (in the
objective function and constraints) with uniform random values ranging from 0.75 to 1.25 and permuting the variables
and constraints. Our method achieved better objective ratios compared to the other methods, and its computational time is
significantly shorter than that of solving the original LPs (Full).

Figure 9 shows the objective ratio when our method is not trained. Without training, our method did not perform well. This
result demonstrates the importance of our proposed training procedures.
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(a) Packing (b) MaxFlow (c) MinCostFlow

Figure 7. Average test objective ratio by our method with different numbers of training LPs.

Figure 8. Average test objective ratio (left) and computational time in seconds for solving an LP (right) with different reduced dimension
K on GROW7.

(a) Packing (b) MaxFlow (c) MinCostFlow

Figure 9. Average test objective ratio with different reduced dimension K by our method with and without training.
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