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Abstract
We propose a probabilistic model for estimating influences
among speakers from conversation data with multiple people.
In conversations, people tend to mimic their companions’ be-
havior depending on their level of trust. With the proposed
model, we assume that the word use of a speaker depends on the
word use of previous speakers as well as their own earlier word
use and the general word distribution. The influences can be ef-
ficiently estimated by using the expectation maximization (EM)
algorithm. Experiments on two meeting data sets in Japanese
and in English demonstrate the effectiveness of the proposed
method.
Index Terms: conversation analysis, influence, latent variable
model

1. Introduction
In conversations, people tend to mimic such aspects of their
companions’ behavior as postures [1], facial expressions [2],
lexicon [3, 4], syntax [5], and amplitude [6]. This phenomenon
is known in the literature as entrainment, accommodation, adap-
tation, or alignment [7]. Entrainment is said to indicate that
people are trusting, accommodating and empathic [1, 8].

This paper focuses on the entrainment of lexicon in poly-
logue, or how people are influenced by their companions in
terms of word use. The degree to which a person exerts an influ-
ence and is influenced by others varies from speaker to speaker.
A powerful person is likely to be mimicked by others, and a
passive person might often be accommodating to others. The
influences also differ between pairs depending on their level of
trust. For example, Alice might use words spoken by Bob, but
not words spoken by Charlie. The influences therefore have an
asymmetric nature.

We propose a simple probabilistic model for estimating in-
fluences among speakers from conversation data with multiple
people. With the proposed model, we assume that a speaker’s
word use (word distribution) depends on the preceding word
use of other speakers as well as his/her own preceding word use
and the general word distribution. We estimate the strength of
influence for each pair of speakers using the expectation maxi-
mization (EM) algorithm [9].

In recent years, a huge amount of conversation data have
been accumulated due to the improvement of recoding devices
and automatic speech recognition systems, and there has been
great interest in the analysis of conversation. For example, [4]
investigated the correlation between task success and similarity
of word use, and [8] analyzed the relationship between social
game results and word repetition. However, they focused on
dyadic conversations, and did not consider the asymmetric na-
ture of influences. On the other hand, we deal with the conver-
sation of multiple people, in which influence and sensitiveness

are assumed to depend on the pair of speakers. In addition,
since the proposed method is a probabilistic generative model
for conversations, we can efficiently estimate inferences in a
principled statistical framework, and use it for a language model
of the conversation. A number of language models for conver-
sation have been proposed [10, 11]. However, they do not aim
to estimate influences between speakers.

2. Proposed Model
Let w = {w1, · · · , wt, · · · } be a word sequence of a
polylogue, where wt represents the tth word, and let s =
{s1, · · · , st, · · · } be its speaker sequence, where st indicates
the speaker of the tth word. Here, wt ∈ {1, · · · , W} and
st ∈ {1, · · · , M}, where W is the vocabulary size, and M
is the number of participants.

In the proposed model, we assume that a speaker’s word
use depends on the preceding word use of other speakers. The
preceding word use of speaker m at position t can be modeled
as follows:

PC(w|wt−1
t−τ , m)

=

Pt−1
t′=t−τ δ(w, wt′)δ(m, st′) + β

P

w′
Pt−1

t′=t−τ δ(w′, wt′)δ(m, st′) + βW
, (1)

where τ represents the period of the influence, β is a smoothing
parameter, and δ(x, y) is Kronecker’s delta, i.e. δ(x, y) = 1 if
x = y, and 0 otherwise. This probability is proportional to the
number of times word w is used by speaker m in the preceding
period τ . The smoothing parameter β is introduced to avoid the
zero probability problem.

The word use of speaker n at position t is then modeled
by a mixture of the preceding word use of the participants as
follows:

P (w|wt−1
t−τ , n) =

M
X

m=1

λnmPC(w|wt−1
t−τ , m)

+(1 −
X

m

λnm)PG(w), (2)

where λnm represents the influence of speaker m on speaker
n, 0 ≤ λnm ≤ 1, and PG(w) is the general word distribution,
which does not depend on the preceding conversation. The gen-
eral word distribution can be obtained by using other corpora.
Speaker m who influences the word distribution of speaker n is
not observed, and m is a latent variable.

This proposed model is an extension of cache models [12]
for multi-speaker conversations. The cache-based language
model integrates short-term patterns of word use into the word
distribution by means of a cache component. With the proposed



model, we build speaker-specific cache components, and set dif-
ferent influences among pairs of speakers. The proposed model
can be easily extended for n-gram language models by taking a
n-gram sequence as input instead of unigram sequence w.

3. Inference
We estimate the influences λnm based on maximum posterior
(MAP) estimation. For simplicity, we rewrite the proposed
word distribution in (2) as follows:

P (w|wt−1
t−τ , n) =

M
X

m=0

λnmPC(w|wt−1
t−τ , m), (3)

where we set PC(w|wt−1
t−τ , m = 0) ≡ PG(w), λn0 ≡ 1 −

PM
m=1 λnm, in which λnm ≥ 0 and

PM
m=0 λnm = 1. With

this notation, the logarithm of the posterior probability of pa-
rameters given the conversation data {wT

t=1, s
T
t=1}, which is to

be maximized, is calculated as follows,

L ∝
T
X

t=1

log

M
X

m=0

λstmPC(wt|wt−1
t−τ , m) +

M
X

n=1

log P (λn|α),

(4)
where T is the current position, and the second term represents
the prior probability for parameters λn = {λnm}M

m=0. We use
the following Dirichlet prior with hyperparameter α:

log P (λn|α) =

M
X

m=0

α log λnm, (5)

because it is conjugate to multinomial parameters λn. The in-
ference is made more robust by introducing the priors.

We can efficiently maximize the posterior (4) by using the
EM algorithm [9]. The conditional expectation of the complete-
data log likelihood with priors is represented as follows:

Q =

T
X

t=1

M
X

m=0

P (m|t) log λstmPC(wt|wt−1
t−τ , m)

+

M
X

n=1

M
X

m=0

α log λnm, (6)

where P (m|t) is the probability that the tth word is influenced
by speaker m. In the E-step, we compute the probability ac-
cording to the Bayes rule:

P (m|t) =
λstmPC(wt|wt−1

t−τ , m)
PM

m′=0 λstm′PC(wt|wt−1
t−τ , m′)

. (7)

In the M-step, we obtain the next estimate of influences λn by
maximizing Q w.r.t. λn subject to

PM
m=0 λnm = 1:

λnm =

PT
t=1 δ(n, st)P (m|t) + α

PM
m′=0

PT
t=1 δ(n, st)P (m′|t) + α(M + 1)

. (8)

Note that the speaker dependent preceding word distribution
PC(wt|wt−1

t−τ , m) can be calculated by (1) independent of esti-
mating parameters Λ = {λn}M

n=1. The general word distribu-
tion PC(wt|wt−1

t−τ , m = 0) is assumed to be given in advance.
By iterating the E-step and the M-step until convergence, we
obtain a local optimum solution for influences Λ.

Table 1: Summary of NTT and RT07 meeting data sets.
#session #speakers #utterance #vocabulary

min max min max
NTT 6 4 4 560 918 2,098
RT07 8 4 6 337 749 3,113

4. Experimental Results
We evaluated the proposed method using the following two real
meeting transcription data sets: NTT in Japanese [13] and RT07
in English [14]. Table 1 shows a summary of the NTT and
RT07 data sets, and includes the number of sessions, vocabulary
size, and the minimum and maximum number of speakers and
utterances for a session. With the proposed model, we used
α = 1 and β = 10−8 for the hyperparameters, and modeled
the preceding word use by using all preceding utterances in the
session, or τ = ∞. The general word distribution PG(w) is
learned by using other sessions in each data set.

We estimated the influences between speakers using the
proposed model. Figure 1 shows the result. Each node rep-
resents a speaker, and the width of the arrow represents the
strength of the influence, where only influences with λnm ≥
0.1 are shown. The self influence is generally strong, which in-
dicates that the word use depends strongly on the speaker’s own
preceding word use. This is an intuitive result. There are also
many influences between speakers. Some speakers are influen-
tial, e.g. speaker 1 in Session 7 in RT07, and some speakers
are sensitive to other speakers, e.g. speaker 2 in Session 6 in
RT07. Most of the influences are asymmetric. This result indi-
cates that it is important to model the direction of the influences.
In all the NTT sessions, speaker 4 was appointed chairperson,
and therefore, speaker 4 was influential and not sensitive. The
result obtained with the proposed model reveals the influential
and non-sensitive characteristics of speaker 4 as shown in Fig-
ure 1 (a), where there are more than three arrows from speaker
4 in five out of six sessions, and there is no arrow pointing to
speaker 4 from others in all the sessions. In this way, the pro-
posed model can use conversation data to analyze the influences
between speakers.

For a quantitative evaluation, we compared the following
six models:

• CC has a common cache that is shared by all speakers,
and a common parameter that control the influence of
the common cache. The word distribution is described
as follows:

P (w|wt−1
t−τ , n) = λPC(w|wt−1

t−τ )+(1−λ)PG(w), (9)

where

PC(w|wt−1
t−τ ) =

Pt−1
t′=t−τ δ(w, wt′) + β

P

w′
Pt−1

t′=t−τ δ(w′, wt′) + βW
,

(10)
is the common cache. This is the same as the standard
cache language model.

• OC has the speaker’s own caches, and a common pa-
rameter that controls the influence of the speaker’s own
cache. The word distribution is as follows:

P (w|wt−1
t−τ , n) = λPC(w|wt−1

t−τ , n) + (1 − λ)PG(w).
(11)

This model assumes that the word use depends only on
the speaker’s own preceding word use.



1

3 4

21

3 4

2 1

3 4

21

3 4

2 1

3 4

21

3 4

2 1

3 4

21

3 4

2 1

3 4

21

3 4

2 1

3 4

21

3 4

2

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6
(a) NTT

1

3 4

21

3 4

2 1

3 4

21

3 4

2 1

3 4

21

3 4

2

1
2

3
4

5

6 1

2

3 4

5
1

3 4

21

3 4

2

Session 1 Session 2 Session 3 Session 6 Session 7 Session 8
(b) RT07

Figure 1: Estimated influences by the proposed model in some sessions.

• IC has individual caches for each speaker, and a com-
mon parameter that controls the influence of the speaker
dependent caches. The word distribution is as follows:

P (w|wt−1
t−τ , n) =

M
X

m=1

λmPC(w|wt−1
t−τ , m)

+(1 −
M
X

m=1

λm)PG(w), (12)

where λm represents the influence of speaker m on
all speakers including speaker m himself/herself. This
model assumes that the strength of the influence depends
on the speaker, but the sensitivity does not differ among
speakers.

• CI has a common cache, and individual parameters that
control the influence of the common cache for each
speaker as follows:

P (w|wt−1
t−τ , n) = λnPC(w|wt−1

t−τ ) + (1 − λn)PG(w).
(13)

This model assumes that the word use depends on all
speakers’ word use and the degree of dependence differs
among speakers.

• OI has the speaker’s own caches, and individual parame-
ters that control the influence depending on the speakers
as follows:

P (w|wt−1
t−τ , n) = λnPC(w|wt−1

t−τ , u)+(1−λn)PG(w).
(14)

• II has individual caches for each speaker, and individual
influence parameters. This is our proposed model in (2).

The first letter of a method’s name C/O/I represents com-
mon/own/individual caches, respectively, and the second let-
ter of the method’s name C/I represents common/individual pa-
rameters, respectively. Only the proposed model (II) takes the
asymmetricity of influences into account. With all the models,
we used α = 1, β = 10−8 and τ = ∞.

In each session, we used data until the jth utterance as
training data to learn the parameters, and used words after the
(j + 1)th utterance as test data. We evaluated the performance
of each model using the perplexity of held-out words:

exp

 

−
PJ

i=j+1

PKi
k=1 log P (wik|wj

1, si)
PJ

i=j+1 Ki

!

, (15)

Table 2: Average perplexities for each session.
(a) NTT

session# CC OC IC CI OI II
1 259.2 251.4 256.5 259.4 249.9 247.7
2 279.1 263.2 280.0 278.9 264.7 261.4
3 297.1 287.7 298.9 298.3 288.1 284.4
4 321.3 307.9 314.9 320.8 309.7 294.4
5 332.8 322.6 328.1 332.5 320.3 313.8
6 274.4 260.9 277.7 275.9 267.5 254.9

average 294.0 282.3 292.7 294.3 283.4 276.1

(b) RT07
session# CC OC IC CI OI II

1 395.7 411.8 396.7 397.1 412.7 395.6
2 304.3 308.5 308.6 301.6 309.4 296.1
3 322.6 330.6 324.4 322.9 333.6 313.2
4 373.0 386.1 369.0 377.2 390.7 368.7
5 300.5 301.9 299.9 303.2 304.4 293.4
6 342.5 343.7 368.2 350.4 352.3 340.4
7 340.6 350.7 345.4 355.8 357.4 332.3
8 340.7 346.7 345.7 344.9 357.9 340.3

average 340.0 347.5 344.8 344.1 352.3 335.0

where J is the number of utterances in the session, Ki is the
number of words in the ith utterance, wik is the kth word in
the ith utterance, wj

1 is a set of words until the jth utterances,
and si is the speaker of the ith utterance. A lower perplexity
represents higher predictive performance.

Table 2 shows the average perplexities for the NTT and
RT07 data sets, in which the number of training utterances
ranges from j = 10 to j = 300. The proposed model achieved
the lowest perplexities in all sessions. This result indicates that
it is important to estimate the asymmetric influences between
speakers, which only the proposed model considers. Figure 2
shows the perplexities with different numbers of training ut-
terances for some sessions. Generally speaking, the perplex-
ity decreased as the number of training utterances increased
because the estimation accuracy of the influences and preced-
ing word use improves. In some sessions, for example Ses-
sion 3 in the NTT data set, the perplexity increased because of
the change of topics. Except when the number of training ut-
terances was small, the perplexity of the proposed model (II)
steadily achieved the lowest perplexities.
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Figure 2: Perplexities with different numbers of training utterances for some sessions. The horizontal axis represents the number of
training utterances.

The average computational time for learning parameters in
the proposed model with 300 training utterances was 0.01 and
0.02 seconds for the NTT and RT07 data sets, respectively. The
proposed model is very efficient, and it can be used in real time
applications [13].

5. Conclusion
We have proposed a probabilistic model for learning influences
from conversation data with multiple speakers. We have con-
firmed experimentally that the proposed model can extract in-
fluences between speakers and learn conversation’s word use.

Although our results have been encouraging to date, our
model can be further improved in a number of ways. First, we
would like to estimate influences using other behaviors, such
as nonverbal speech acts, posture and eye movement, as well
as word use. Second, the proposed model can be extended by
modeling the dynamics of influences although in this paper we
assume that the influences do not change over time. Third, we
must determine the period of the influence automatically. Fi-
nally, we would like to evaluate the proposed model in an auto-
matic speech recognition system.
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