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Abstract

Object matching is an important task for finding the correspondence between

objects in different domains, such as documents in different languages and users

in different databases. In this paper, we propose probabilistic latent variable

models that offer many-to-many matching without correspondence information

or similarity measures between different domains. The proposed model assumes

that there is an infinite number of latent vectors that are shared by all do-

mains, and that each object is generated from one of the latent vectors and a

domain-specific projection. By inferring the latent vector used for generating

each object, objects in different domains are clustered according to the vec-

tors that they share. Thus, we can realize matching between groups of objects

in different domains in an unsupervised manner. We give learning procedures

of the proposed model based on a stochastic EM algorithm. We also derive

learning procedures in a semi-supervised setting, where correspondence infor-

mation for some objects are given. The effectiveness of the proposed models is

demonstrated by experiments on synthetic and real data sets.
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1. Introduction

Object matching is an important task for finding the correspondence between

objects in different domains. Examples of object matching include matching an

image with an annotation [1], an English word with a French word [2], and

user identification in different databases for recommendation [3]. Most object5

matching methods require similarity measures between objects in the different

domains, or paired data that contain correspondence information. When a

similarity measure is given, we can match objects by finding pairs of objects

that maximize the sum of the similarities. When correspondence information is

given, we can obtain a mapping function from one domain to another by using10

supervised learning methods, and then we can calculate the similarities between

objects in different domains.

However, similarity measures and correspondences might not be available.

Defining similarities and generating correspondences incur considerable cost and

time, and they are sometimes unobtainable because of the need to preserve pri-15

vacy. For example, dictionaries between some languages might not exist, and

different online stores cannot share user identification. For these situations, un-

supervised object matching methods have been proposed; they include kernel-

ized sorting [4], least squares object matching [5], matching canonical correlation

analysis [6], and its Bayesian extension [7, 8]. These methods find one-to-one20

matches. However, matching is not necessarily one-to-one in some applications.

For example, when matching English and German documents, multiple English

documents with the similar topic could correspond to multiple German docu-

ments. In image annotation, related annotations ‘tree’, ‘wood’ and ‘forest’ can

be attached to multiple images that look similar to each other. Other limita-25

tions of these methods are that the number of domains is limited to two, and

the numbers of objects in the different domains must be the same. There can be

more than two domains in some applications, for example matching multilingual

documents such as English, French and German, and the number of documents

for each language can be different.30
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In this paper, we propose a probabilistic latent variable model for finding

correspondence between object clusters in multiple domains without correspon-

dence information. We assume that objects in different domains share a hidden

structure, which is represented by an infinite number of latent vectors that are

shared by all domains. Each object is generated from one of the latent vectors35

and a domain-specific linear projection. The latent vectors used for generating

objects are unknown. By assigning a latent vector to each object, we can allo-

cate objects in different domains to common clusters, and find many-to-many

matches. The number of clusters is automatically inferred from the given data

by using a Dirichlet process prior. The proposed model can handle more than40

two domains with different numbers of objects. We infer the proposed model

using a stochastic EM algorithm. The proposed model can ignore arbitrary lin-

ear transformations for different domains by inferring the domain-specific linear

projection, and can find cluster matching in different domains, where similarity

cannot be calculated directly.45

The proposed model assumes a Gaussian distribution for each observed vari-

able, and its mean is determined by a latent vector and a linear projection ma-

trix. It is an extension of probabilistic principle component analysis (PCA) [9]

and factor analysis (FA) [10], which are representative probabilistic latent vari-

able models. With probabilistic PCA and FA, each object is associated with a50

latent vector. On the other hand, with the proposed model, the latent vector

that is assigned to each object is hidden. When the number of domains is one,

and every object is assigned to a cluster that is different from those of other

objects, the proposed model corresponds to probabilistic principle component

analysis.55

The proposed model can be also used in a semi-supervised setting, where

correspondence information for some objects is given [4, 11]. The information

assists matching by incorporating a condition stating that the cluster assign-

ments of the corresponding objects must be the same. We derive learning pro-

cedures for the semi-supervised setting by modifying the learning procedures60

for unsupervised setting.
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This paper is an extended version of [12]. We newly proposed the inference

procedure for a semi-supervised setting, and added derivations and experiments.

The remainder of this paper is organized as follows. In Section 2, we review

related work. In Section 3, we formulate the proposed model and describe its65

efficient learning procedures. We also present the learning procedures for a

semi-supervised setting and for missing data. In Section 4, we demonstrate the

effectiveness of the proposed models with experiments on synthetic and real

data sets. Finally, we present concluding remarks and a discussion of future

work in Section 5.70

2. Related work

2.1. Unsupervised object matching

Unsupervised object matching is a task that involves finding the correspon-

dence between objects in different domains without correspondence information.

For example, kernelized sorting [4] finds the correspondence by permuting a set75

to maximize the dependence between two domains where the Hilbert Schmidt

Independence Criterion (HSIC) is used as the dependence measure. Kernelized

sorting requires the two domains have the same number of objects. Convex

kernelized sorting [13] is a convex formulation of kernelized sorting. Match-

ing canonical correlation analysis (MCCA) [6] is another unsupervised object80

matching method based on a probabilistic model, where bilingual translation

lexicons are learned from two monolingual corpora. MCCA simultaneously finds

latent variables that represent correspondences and latent vectors so that the

latent vectors of corresponding objects exhibit the maximum correlation. [14]

also proposed a method for unsupervised object matching that is related to85

MCCA. These methods assume one-to-one matching of objects. On the other

hand, the proposed model can find many-to-many matching, and is applicable to

objects in more than two domains. Bayesian solution for MCCA (BMCCA) has

been proposed [7, 8]. BMCCA assumes that latent vectors are generated from a

Gaussian distribution, and finds one-to-one matching by inferring a permutation90
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matrix. In contrast, the proposed model assumes that latent vectors are gen-

erated from an infinite Gaussian mixture model [15], and finds many-to-many

matching by inferring cluster assignments.

Manifold alignment is related to the proposed model because they both

find latent vectors of multiple sets in a joint latent space. The unsupervised95

manifold alignment method [16] finds latent vectors of different domains in a

joint latent space in an unsupervised manner. The method first identifies all

possible matches for each example by leveraging its local geometry, and then

finds an embedding in the latent space. The method requires permutations

of the order of the factorial of the size of neighborhoods to match the local100

geometry. Note that the method does not explicitly find correspondences.

There has been some work on improving the learning performance of the

classification task by using labeled objects in different domains without corre-

spondence information. For example, multiple outlook mapping (MOMAP) [17]

improves the performance by matching the moments of the empirical distribu-105

tions for each class of two domains. [18] proposed a transfer learning method

that improves the learning performance by embedding both source and target

domains in a joint latent space when a limited number of target objects are la-

beled. These methods require labeled objects. On the other hand, the proposed

method does not require any labeled objects.110

Consensus clustering [19] tries to find a single clustering from a number of

different clusterings. In the case that a clustering is obtained using data in

each domain, consensus clustering can find many-to-many matching. However,

consensus clustering requires that objects are aligned across domains.

2.2. Latent variable models115

The proposed model, as well as MCCA [6], can be considered as an unsuper-

vised version of probabilistic canonical correlation analysis (CCA) [20]. Prob-

abilistic CCA finds dependences between objects in two domains by projecting

objects into a latent space. It requires correspondence information between dif-

ferent domains since it takes a set of paired objects as input. On the other hand,120
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the proposed model can find dependences in an unsupervised manner without

correspondence information by taking a set of objects for each domain as input.

CCA is being successfully used for a wide variety of applications, such as multi-

label prediction [21, 22], information retrieval [23], and image annotation [24].

The proposed model can be used for these applications when supervised data125

are unavailable.

Mixtures of latent variable models have been also proposed, such as mix-

tures of probabilistic principal component analyzers [25] and mixtures of factor

analyzer [26]. These mixture models assume that each object has its own latent

vector, and different objects can be generated from different projection matrices,130

where the data are obtained from a domain. On the other hand, the proposed

model assumes that different objects can share a latent vector, and all objects

from a domain are generated from a domain-specific projection matrix. Thus,

the proposed model can find many-to-many matching by assigning the same

latent vectors to different objects from multiple domain data.135

The proposed model can be seen as a generalization of the infinite Gaussian

mixture model [15]. When the dimensionality of the latent space is the same as

that of the observed space and the projection matrix is the identity matrix for

all domains, the proposed model corresponds to the infinite Gaussian mixture

model.140

Recently, there have been proposed a number of deep learning methods for

obtaining latent representations of multimodal data, such as multimodal deep

learning [27], multimodal deep Boltzmann machine [28] and deep canonical cor-

relation analysis [29]. These methods utilize deep architectures to model com-

plex nonlinear transformations between latent representations and multimodal145

observations. However, these methods require correspondence information to

learn the transformations, and is unapplicable in an unsupervised setting. We

can use deep learning to obtain latent representations for each domain in pre-

processing, and apply the proposed method to the latent representations for

unsupervised object matching.150
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Table 1: Notation.

Symbol Description

D number of domains

Nd number of objects in the dth domain

Md dimensionality of observed features in the dth domain

K dimensionality of a latent vector

J number of clusters (latent vectors) to which objects are assigned

xdn observation of the nth object in the dth domain, xdn ∈ RMd

zj latent vector for the jth cluster, zj ∈ RK

Wd projection matrix for the dth domain, Wd ∈ RMd×K

θj mixture weight for the jth cluster, θj ≥ 0,
∑∞
j=1 θj = 1

3. Proposed method

3.1. Model

Suppose that we are given objects in D domains X = {Xd}Dd=1, where

Xd = {xdn}Nd
n=1 is a set of objects in the dth domain, and xdn ∈ RMd is the

feature vector of the nth object in the dth domain. Our notation is summarized155

in Table 1. Note that we are unaware of any correspondence between objects

in different domains. The number of objects Nd and the dimensionality Md for

each domain can be different from those of other domains. The task is to match

groups of objects across multiple domains in an unsupervised manner. Figure 1

shows an example of the input (top) and output (bottom) for the proposed160

model with two domains, where the numbers of objects in the first and second

domains are 50 and 60, and the numbers of observation features are 70 and 50,

respectively. The color shows the value of the observation feature. In this case,

the proposed model found five clusters, and the object indices are permutated

so that matched objects are aligned.165

The model proposed for this task is a probabilistic latent variable model.

The proposed model assumes that 1) there is a potentially infinite number of

clusters, and 2)each cluster j has a latent vector zj ∈ RK in a K-dimensional
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Figure 1: Example of the input (top) and output (bottom) for the proposed model with

two domains. The vertical axis represents object indices, and the horizontal axis represents

observation feature indices for each matrix. The object indices of the output are permutated

so that matched objects are aligned.

latent space. Each object xdn in the dth domain is generated depending on

domain-specific projection matrix Wd ∈ RMd×K and latent vector zsdn that is170

selected from a set of latent vectors Z = {zj}∞j=1. Here, sdn ∈ {1, · · · ,∞} is the

latent cluster assignment of object xdn. Objects that use the same latent vector,

or that have the same cluster assignment, are considered to match. Figure 2

shows the relationship between latent vectors and objects in two domains, where

arrows that indicate the corresponding latent vectors for each object are hidden.175

To be precise, the proposed model is an infinite mixture model, where the

probability of object xdn is given by

p(xdn|Z,W ,θ) =

∞∑
j=1

θjN (xdn|Wdzj , α
−1I), (1)

where W = {Wd}Dd=1 is a set of projection matrices, θ = {θj}∞j=1 is a set of
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Figure 2: Relationship between latent vectors and objects in two domains.

mixture weights, θj represents the probability that the jth cluster is chosen, α is

a precision parameter, and N (µ,Σ) denotes a multivariate normal distribution

with mean µ and covariance matrix Σ. In the proposed model, a set of latent

vectors Z is shared among multiple domains, but projection matrixWd depends180

on the domain. The benefit of the proposed model is as follows:

• By sharing the latent vectors, we can assign objects in different domains

to common clusters, and find matchings between clusters.

• By employing domain-specific projection matrices, we can handle multiple

domains with different dimensionalities by adjusting the size of the ma-185

trices, and different statistical properties, such as means and covariances,

by inferring the values of the matrices from the given data.

• Given latent vectors, an arbitrary number of objects can be generated

for each domain independently. Therefore, we can handle domains with

different numbers of objects.190

Specifically, the proposed model generates objects in multiple domains X

according to the following process,

1. Draw mixture weights θ ∼ Stick(γ)
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Figure 3: Graphical model representation of the proposed model.

2. Draw a precision parameter α ∼ G(a, b)

3. For each cluster: j = 1, . . . ,∞195

(a) Draw a latent vector zj ∼ N (0, (αr)−1I)

4. For each domain: d = 1, . . . , D

(a) For each object: n = 1, . . . , Nd

i. Draw a cluster assignment sdn ∼ Categorical(θ)

ii. Draw an observation vector xdn ∼ N (Wdzsdn , α
−1I)200

Here, r is a parameter for controlling the precision of latent vectors, and Stick(γ)

is the stick-breaking process [30] that generates mixture weights for a Dirichlet

process with concentration parameter γ. By using a Dirichlet process, we can

automatically find the number of clusters from the given data. Discrete(·) rep-

resents a categorical distribution. G(a, b) represents a Gamma distribution with205

parameters a and b. We assume Gauss-Gamma distribution p(Z, α|a, b, r) =

N (Z|0, (αr)−1I)G(α|a, b) for the prior of latent vectors Z and α because it is

a conjugate prior for a Gaussian p(xdn|zj , α,W ) = N (xdn|Wdzj , α
−1I) and it

enables us to analytically integrate out the latent vectors as shown in Appendix

A. Figure 3 shows a graphical model representation of the proposed model,210

where shaded and unshaded nodes indicate observed and latent variables, re-

spectively.

The joint probability of data X and cluster assignments S = {{sdn}Nd
n=1}Dd=1

is given by

p(X,S|W , a, b, r, γ) = p(S|γ)p(X|S,W , a, b, r). (2)
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By marginalizing out mixture weights θ, the first factor is calculated by

p(S|γ) =
γJ
∏J
j=1(N·j − 1)!

γ(γ + 1) · · · (γ +N − 1)
, (3)

whereN =
∑D
d=1Nd is the total number of objects, N·j represents the number of

objects assigned to cluster j, and J is the number of clusters for which N·j > 0.

By marginalizing out latent vectors Z and precision parameter α, the second

factor of (2) is calculated by

p(X|S,W , a, b, r) = (2π)−
∑

d MdNd
2 r

KJ
2
ba

b′a′
Γ(a′)

Γ(a)

J∏
j=1

|Cj |
1
2 . (4)

Here,

a′ = a+

∑D
d=1MdNd

2
, (5)

b′ = b+
1

2

D∑
d=1

Nd∑
n=1

x>dnxdn −
1

2

J∑
j=1

µ>j C
−1
j µj , (6)

µj = Cj

D∑
d=1

W>
d

∑
n:sdn=j

xdn, (7)

C−1j =

D∑
d=1

NdjW
>
d Wd + rI, (8)

where Ndj is the number of objects assigned to cluster j in domain d. The

posterior for the precision parameter α is given by

p(α|X,S,W , a, b) = G(a′, b′), (9)

and the posterior for the latent vector zj is given by

p(zj |α,X,S,W , r) = N (µj , α
−1Cj). (10)

See Appendix B for the derivation.
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3.2. Learning

We describe the learning procedures for the proposed model based on a215

stochastic EM algorithm, in which collapsed Gibbs sampling of cluster assign-

ments S and the maximum joint likelihood estimation of projection matrices

W are alternately iterated while marginalizing out latent vectors Z, precision

parameter α, and cluster proportions θ. By collapsing, or marginalizing out,

the variables, the time-consuming step of drawing the variables is skipped, and220

the sample autocorrelations are usually reduced [31].

In the E-step, given the current state of all but one latent cluster assignments,

sdn, a new value for sdn is sampled from the following probability,

p(sdn = j|X,S\dn,W , a, b, r, γ) ∝
p(sdn = j,S\dn|γ)

p(S\dn|γ)
·
p(X|sdn = j,S\dn,W , a, b, r)

p(X\dn|S\dn,W , a, b, r)
,

(11)

where \dn represents a value or set excluding the nth object in the dth domain,

and we use the fact that p(sdn = j|X,S\dn,W , a, b, r, γ) does not depend on

p(xdn|W , a, b, r). See Appendix C for the derivation. The first factor is given

by

p(sdn = j,S\dn|γ)

p(S\dn|γ)
=


N·j\dn
N−1+γ for an existing cluster, j ∈ {1, · · · , J}

γ
N−1+γ for a new cluster, j = J + 1,

(12)

using (3). By using (4), the second factor is given by

p(X|sdn = j,S\dn,W , a, b, r)

p(X\dn|S\dn,W , a, b, r)

= (2π)−
Md
2 r

1
2 I(j>J\dn)

b
′a′\dn
\dn

b
′a′sdn=j

sdn=j

Γ(a′sdn=j)

Γ(a′\dn)

|Cj,sdn=j |
1
2

|Cj\dn|
1
2

, (13)

where subscript sdn = j indicates the value when object xdn is assigned to

cluster j as follows,

a′sdn=j = a′, (14)

12



b′sdn=j = b′\dn +
1

2
x>dnxdn +

1

2
µ>j\dnC

−1
j\dnµj\dn −

1

2
µ>j,sdn=jC

−1
j,sdn=j

µj,sdn=j ,

(15)

µj,sdn=j = Cj,sdn=j(W
>
d xdn +C−1j\dnµj\dn), (16)

C−1j,sdn=j = W>
d Wd +C−1j\dn, (17)

and I(·) is used to denote the indicator function, i.e. I(A) = 1 if A is true,

I(A) = 0 otherwise.

In the M-step, the projection matrices W are estimated by maximizing the

logarithm of the joint likelihood (2). We maximize it by using a gradient-based

numerical optimization method such as the quasi-Newton method [32]. The

gradient of the joint log likelihood is calculated by

∂ log p(X,S|W , a, b, r, γ)

∂Wd

= −Wd

J∑
j=1

NdjCj −
a′

b′

J∑
j=1

(
NdjWdµjµ

>
j −

∑
n:sdn=j

xdnµ
>
j

)
. (18)

We can obtain the projection matrices that maximize the joint likelihood ana-

lytically as follows,

W =

 J∑
j=1

NdjCj +
a′

b′
Ndjµjµ

>
j

−1 a′
b′

J∑
j=1

∑
n:sdn=j

xdnµ
>
j . (19)

In our experiments, we used gradient-based updates since it found better local

optimum solutions by updating parameters gradually.225

Algorithm 1 shows the procedures for inferring the proposed model based

on the stochastic EM algorithm. Here, T is the number of iterations for the

stochastic EM algorithm. For the input, we give the initial number of clusters

J . The cluster assignments S are initialized by randomly selecting an integer

from {1, · · · , J}. The projection matrices W can be initialized by Gaussian230

with zero mean and small variance. By iterating the E- and M-steps, we can

obtain an estimate of the cluster assignments and projection matrices. In all of

the experiments, we used the following hyperparameters: a = b = r = γ = 1.
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Algorithm 1 Learning procedures for the proposed model.

Input: multiple domain data sets X, initial number of clusters J , hyperparam-

eters a, b, r, γ, iteration number T

Output: cluster assignments S, projection matrices W

1: initialize S and W

2: for t = 1, · · · , T do

3: //E-step

4: for d = 1, · · · , D do

5: for n = 1, · · · , Nd do

6: sample sdn using probability p(j|X,S\dn,W , a, b, r, γ) (11) from j =

1, · · · , J + 1

7: if sdn = J + 1 then

8: update the number of clusters J ← J + 1

9: end if

10: end for

11: end for

12: //M-step

13: for d = 1, · · · , D do

14: update Wd using a numerical optimization method using (18)

15: end for

16: end for

We can use cross-validation to select an appropriate dimensionality for latent

space K. H-fold cross-validation is as follows,235

1. The elements of observation matrices X are partitioned into H subsets.

2. For each of H experiments, H−1 subsets are used for inferring the model

while the remaining one is assumed missing. The test likelihood of the

missing part is calculated by using the inferred model.

3. We select the K value that performed the best in terms of the average240

test likelihood over H experiments.

The learning procedure for missing data is described in Section 3.4.
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When we use a regular EM algorithm instead of the stochastic EM algorithm,

latent vectors are not integrated out, and therefore need to be estimated. We

can use Gibbs sampling for inferring projection matrices. However, we learned245

them by maximizing the likelihood since priors, which require additional hyper-

parameters, are not necessary.

3.3. Semi-supervised setting

In some applications, correspondence information on a few pairs of objects

might be available. This correspondence information helps to improve matching

performance. Here, we describe learning procedures for the semi-supervised

setting, where correspondence information between some objects in different

domains is given, based on a stochastic EM algorithm. The task of finding

correspondence in a semi-supervised setting is also called informed sorting [4]

or seed alignment [11]. Let i = (d, n) and i′ = (d′, n′) be a pair of objects for

which one-to-one correspondence is given. Their latent cluster assignments must

be the same because we know that they match. Thus, in the E-step, we sample

the cluster assignments for both of them, i and i′, simultaneously so that they

have the same cluster assignments. New values for the cluster assignments, si

and si′ , are sampled from the following probability,

p(si = si′ = j|X,S\ii′ ,W , a, b, r, γ)

=
p(si = si′ = j,S\ii′ |γ)

p(S\ii′ |γ)
·
p(X|si = si′ = j,S\ii′ ,W , a, b, r)

p(X\ii′ |S\ii′ ,W , a, b, r)
(20)

where \ii′ represents a value or set excluding objects i and i′. The first factor

of the left-hand side is calculated by

p(si = si′ = j,S\ii′ |γ)

p(S\ii′ |γ)
=


N·j\ii′ (N·j\ii′+1)

(N−2+γ)(N−1+γ) for an existing cluster, j ∈ {1, · · · , J}
γ

(N−2+γ)(N−1+γ) for a new cluster, j = J + 1,

(21)
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using (3), and the second factor is given by

p(X|si = si′ = j,S\ii′ ,W , a, b, r)

p(X\ii′ |S\ii′ ,W , a, b, r)

= (2π)−
Md+M

d′
2 r

1
2 I(j>J\ii′ )

b
′a′\ii′
\ii′

b
′a′s

ii′=j

sii′=j

Γ(a′sii′=j)

Γ(a′\ii′)

|Cj,sii′=j |
1
2

|Cj\ii′ |
1
2

, (22)

using (3) and (4). When we are given correspondence information for more than

two objects, we can derive a sampling probability with the same manner using250

(4). For objects without correspondence information, the sampling probability

of the latent cluster assignment is the same as in the unsupervised setting (11).

The M-step is the same as that in the unsupervised setting, and we can update

projection matrices using gradient-based optimization with (18).

3.4. Missing data255

Since the proposed model is a probabilistic generative model, it can han-

dle missing data, where some observation features are missing. Let hdn =

(hdnm)Md
m=1 be a vector indicating observed indices, where hdnm = 1 if xdnm is

observed, hdnm = 0 otherwise, and Mdn is the number of observed values for

object xdn. The posterior parameters are calculated as follows,

a′ = a+

∑D
d=1

∑Nd

n=1Mdn

2
, (23)

b′ = b+
1

2

D∑
d=1

Nd∑
n=1

(hdn ◦ xdn)>(hdn ◦ xdn)− 1

2

J∑
j=1

µ>j C
−1
j µj , (24)

µj = Cj

D∑
d=1

W>
d

∑
n:sdn=j

hdn ◦ xdn, (25)

C−1j =

D∑
d=1

W>
d

( ∑
n:sdn=j

diag(hdn)
)
Wd + rI, (26)

where ◦ represents the Hadamard product, or element-wise product, and diag(hdn)

returns a diagonal matrix whose diagonal elements are hdn1, . . . , hdnMd
. For
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learning with missing data, we use (23) – (26) instead of (5) – (8) for calculat-

ing the sampling probability (11) in the E-step. In the M-step, the following

gradient is used for optimizing projection matrices,

∂ log p(X,S|W , a, b, r, γ)

∂Wd

= −Wd

J∑
j=1

NdjCj −
a′

b′

J∑
j=1

(
NdjWdµjµ

>
j −

∑
n:sdn=j

(hdn ◦ xdn)µ>j

)
, (27)

instead of (18).

4. Experiments

4.1. Matchin rotated handwritten digits

First, we demonstrate the proposed model described in Section 3 using a toy

data set with three domains, which is created using handwritten digits from the260

MNIST database [33]. The first domain contains original handwritten digits,

where each image is downsampled to 16×16 pixels. We synthesize objects for the

second and third domains by rotating handwritten digits by 90 and 180 degrees,

clockwise, respectively. Thus, we obtain three-domain objects that share a latent

space. The number of objects in each domain is 200 for all domains. We would265

like to match the rotated digits in different domains without information about

rotation or correspondence.

Figure 4 shows some examples of the clusters discovered by the proposed

model with K = 5. The proposed model successfully clustered objects, the

same digit with rotation. In each domain, similar objects are clustered. Across270

different domains, dissimilar objects can be clustered. For example, objects in

cluster ‘6’ in the first domain are more dissimilar to those in the third domain

than objects in cluster ‘9’ in the first domain. By using domain-dependent pro-

jection matrices, the proposed model finds clusters of objects across different

domains that have similar latent features and that might have different obser-275

vation features. When we use standard clustering methods such as k-means and

Gaussian mixtures for the data that are constructed by combining data in all

domains, ‘6’ is never clustered with ‘6’ with 180 degree rotation.
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Cluster ‘1’

Cluster ‘4’

Cluster ‘6’

Cluster ‘7’

Cluster ‘9’

(a) Domain 1 (b) Domain 2 (c) Domain 3

Figure 4: Examples of clusters discovered by the proposed model with rotated handwritten

data sets with three domains. Each row represents a cluster, and three objects are shown for

each domain.

We can map the observation features to different domains through the latent

space by using the inferred projection matrices. Observation feature vector x in280

domain d can be mapped into the latent space by ẑ = (W>
d Wd)

−1W>
d x, where

we used the pseudo-inverse of projection matrix Wd. The latent vector z can

be mapped into domain d′ by x̂d′ = Wd′ ẑ. Thus, the projection matrix that

maps from domain d to domain d′ is Wd′(W
>
d Wd)

−1W>
d . Figure 5 shows the

images mapped to the three domains by the projection matrices. The original285

image comes from the first domain. The mapped images to second and third

domains are rotated images of the first domain by 90 and 180 degrees clockwise,

respectively, which are consistent with the procedure used to synthesize the data

set. This result indicates that we can infer the projection matrices properly,
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original image mapped images

Domain 1 Domain 2 Domain 3

Figure 5: Mapping images to different domains. The left figure shows the original image, and

the right figures show images mapped to the first, second and third domains.

and that the proposed model can map to different domains in an unsupervised290

fashion by using the shared latent space.

4.2. Data

Next, we evaluated the proposed model quantitatively by using three syn-

thetic and five real-world data sets. The statistics of the seven data sets are

shown in Table 2. There are two domains for all data sets. Synth3, Synth5, and295

Synth10 are synthetic data sets with different true dimensionalities of the latent

space K∗ = 3, 5 and 10, respectively. We generated the synthetic data sets using

the following procedure. First, we sampled latent vectors zj for j = 1, · · · , J∗

from aK∗-dimensional normal distribution with mean 0 and covariance I. Next,

we generated projection matrices Wd for d = 1, 2, where each element is drawn300

from a normal distribution with mean 0 and variance 1. Finally, we generated

N/J∗ objects for each cluster j using a normal distribution with mean Wdzj

and covariance α−1I, and obtained N objects in total for each domain d = 1, 2.

Iris, Glass, Wine and MNIST, the real-world data sets, were obtained from

LIBSVM multi-class data sets [34], and generated objects in two domains by305

randomly splitting the features into two parts for each data set as [4, 13] did for

their experiments. Because there is no overlapping feature, we cannot calculate

similarities between objects in different domains. Iris, Glass, Wine and MNIST

were artificially splitted into two domains. On the other hand, Wiki data was a

real-world two domain data set, which consisted of Wikipedia documents writ-310

ten in English and German. For each language, we sampled 150 documents
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Table 2: Statistics of the data sets: the number of objects N , the dimensionality of the objects

Md, and the true number of clusters J∗, and the true dimensionality of latent space K∗.

N1/N2 M1 M2 J∗ K∗

Synth3 200 50 50 5 3

Synth5 200 50 50 5 5

Synth10 200 50 50 5 10

Iris 150 2 2 3 N/A

Glass 214 4 5 7 N/A

Wine 178 6 7 3 N/A

MNIST 200 392 392 10 N/A

Wiki 150 1000 1000 5 N/A

that were categorized in ‘Nobel laureates in Physics’, ‘Nobel laureates in Chem-

istry’, ‘American basketball players’, ‘American composers’, and ‘English foot-

ballers’. We selected these categories since since they contained enough number

of documents, they were related to each other (‘Nobel laureates in Physics’ and315

‘Nobel laureates in Chemistry’, ‘American basketball players’ and ‘American

composers’, ‘American basketball players’ and ‘English footballers’), and their

topics seemed to be interpretable. We used 1,000 most frequently occurring

words as features for each language to reduce computational time, where the

frequencies were computed by all documents that were categorized in the five320

categories. With the real-world data sets, we used class labels as true clusters.

4.3. Comparing methods

For the proposed method, we used the dimensionality of the latent space,

K = 5, for all data sets. To alleviate the local optimum problem, we ran the

learning procedure five times with different initial conditions, and selected the325

result that achieved the highest likelihood. The number of iterations was 100.

For comparison, we used k-means (KM), convex kernelized sorting (CKS) [13],

and their combinations (KM-CKS and CKS-KM) as described below. The KM

method is widely used for clustering. Although KM is not a many-to-many
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matching method, we included KM as a baseline method to evaluate the case330

when only objects in the same domain are clustered. The CKS method is an

unsupervised object matching method. It directly finds correspondence between

objects, and does not cluster objects in the same domain. We used the CKS code

provided by the authors1, where we used their default setting and the maximum

number of iterations was 10,000. With KM-CKS, first we discovered clusters by335

applying KM to each domain individually, and then found the correspondence

between clusters in two domains by using CKS. We used the mean vector of each

cluster as the input for cluster matching by CKS. With CKS-KM, after matching

objects using CKS, we combined matched objects in two domains into a vector,

and estimated clusters using KM. We employed CKS for comparison since it340

achieves higher performance than kernelized sorting and matching canonical

correlation analysis [13, 11]. With KM, KM-CKS and CKS-KM, we used the

number of clusters estimated by the proposed model. For comparison with

object matching based methods (CKS, CKS-KM), we used data sets that had

the same numbers of objects in the two domains N1 = N2 for each data set.345

4.4. Evaluation measurment

For the evaluation measurement, we used the adjusted Rand index [35],

which quantifies the similarity between inferred clusters and true clusters. It

takes a value from −1 to 1; 0 represents random clustering. A higher value

indicates better clustering performance. The adjusted Rand index becomes350

high when object pairs that belong to one true cluster are assigned to one

inferred cluster simultaneously, and when object pairs that belong to different

true clusters are assigned to different inferred clusters. Here, we use object pairs

across all domains including the same domain. Even if no objects are correctly

matched across different domains, the adjusted Rand index can be positive if355

clusters are correctly found within each domain. If objects are matched, they

are considered assigned to the same cluster. Therefore, we can calculate the

1http://astro.temple.edu/~tua95067/CKS_code.zip
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Table 3: Average adjusted Rand index and its standard deviation. Values in bold typeface

are significantly better from those in normal typeface as indicated by a paired t-test.

Proposed KM KM-CKS CKS CKS-KM

Synth3 0.875± 0.101 0.525± 0.014 0.589± 0.117 0.014± 0.005 0.699± 0.135

Synth5 0.893± 0.126 0.548± 0.029 0.583± 0.198 0.006± 0.007 0.571± 0.182

Synth10 0.827± 0.145 0.556± 0.026 0.553± 0.165 0.009± 0.006 0.678± 0.170

Iris 0.383± 0.189 0.224± 0.091 0.254± 0.154 0.003± 0.002 0.207± 0.089

Glass 0.160± 0.020 0.050± 0.008 0.052± 0.011 0.001± 0.001 0.047± 0.010

Wine 0.222± 0.111 0.125± 0.025 0.142± 0.046 0.001± 0.001 0.107± 0.038

MNIST 0.085± 0.016 0.030± 0.007 0.037± 0.008 0.008± 0.005 0.041± 0.016

Wiki 0.222± 0.048 0.152± 0.024 0.199± 0.062 0.013± 0.003 0.207± 0.061

adjusted Rand index of CKS although it is likely to be low because all objects

in the same domain are assigned to different clusters. The adjusted Rand index

for KM is calculated by assuming that any clusters across different domains do360

not match. The adjusted Rand index measures how well objects with the same

label in different domains are assigned to the same cluster as well as measuring

the clustering performance within each domain. For the real data sets, we

assume that the category label of each object is its true cluster assignment.

4.5. Results365

Table 3 shows the adjusted Rand index for the seven data sets, which were

averaged over ten experiments for each data set. For all data sets, the proposed

model achieved the highest adjusted Rand index. This result indicates that the

proposed model can infer matching clusters by assuming a shared latent space.

KM-CKS achieved higher performance than KM by matching clusters in a post-370

processing step. With KM-CKS, since clusters are inferred individually for each

domain, the estimated clusters might be different in different domains. On the

other hand, since the proposed model infers clusters in all domains simultane-

ously, it more successfully found shared clusters than KM-CKS as shown by its

higher adjusted Rand index. The adjusted Rand index obtained with the CKS375

method was low, because it does not cluster objects. By clustering the result
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of CKS, CKS-KM improved the cluster matching performance. However, it

did not outperform the proposed model, because errors that accumulate in the

object matching process by CKS cannot be corrected in the clustering process

with k-means. The better performance of the proposed model with fixed hyper-380

parameters a = b = r = γ = 1 for all data sets indicates that the performance

is not sensitive to hyperparameter setting.

The performance with the synthetic data by the proposed model was better

than that with the real-world data since the synthetic data are generated by

the generative process of the proposed model. Because the generative process,385

where observations are generated by linear projections of latent vectors, is simple

compared with the real-world data, the performance with the synthetic data by

the baselines was also better than the performance with the real-world data.

With the Wiki data, although the proposed method achieved the best adjusted

Rand index, it was not significantly better than KM-CKS and CKS-KM. This390

might be because the word frequency feature does not match with Gaussian

noise which is the assumption of the proposed method. Another reason would

be that linear projections is not appropriate for the Wiki data.

Figure 6 shows the adjusted Rand index for the Synth5 data set achieved by

the proposed model with different latent dimensionalities. The value was highest395

when the latent dimensionality of the model was the same as the true latent

dimensionality K = K∗ = 5. The proposed model with K 6= K∗ also performed

better than the other methods. This result indicates that the proposed model

is robust to the latent dimensionality setting.

Figure 7 shows the adjusted Rand index for the Synth5 data set with differ-400

ent numbers of domains, D. The proposed model can handle data with more

than two domains. For kernelized sorting based methods (KM-CKS, CKS-KM

and CKS), we used one of the domains as a pivot for handling more than two

domains. In particular, with these methods, we found matching across multi-

ple domains by matching clusters/objects between the Dth domain and each405

of the other D − 1 domains, and then combined the results. In general, the

adjusted Rand index decreases as the number of domains increases, since the
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Figure 6: Adjusted Rand index achieved by the proposed model with different latent dimen-

sionalities K for the Synth5 data set whose true latent dimensionality is K∗ = 5.

number of possible combinations of cluster matching increases. However, the

proposed method consistently achieved the highest performance regardless of

domain number.410

The proposed model assumes that cluster proportions are shared by different

domains. We evaluated the performance of the proposed model with synthetic

data, in which cluster proportions were different across two domains. Each

clusters contains 50 objects except for cluster1 of domain1, where we changed

the number of objects from 10 to 100. The number of true clusters was J∗ = 5,415

the latent dimensionality was K∗ = 5, and the dimensionality of the objects was

M1 = M2 = 50. Figure 8 shows the adjusted Rand index. Note that CKS and

CKS-KM are unapplicable since they require that different domains contain the

same number of objects. The proposed model achieved the best performance

even with data with different cluster proportions. When the number of objects420

in cluster1 of domain1 was 50, the adjusted Rand index of the proposed model

was highest, since the common cluster proportions were the same across different

domains with this data set.

The computational time of the proposed model for learning the Synth5 data

set was 22 seconds with 100 learning iterations when using a computer with425
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Figure 7: Adjusted Rand index for the Synth5 data set with different numbers of domains,

D.

3.20GHz CPU. The computational complexity of each E-step is O(NJK3),

where N is the total number of objects, J is the number of clusters, and K

is the latent dimensionality. It increases linearly with the number of objects

N because we need to perform sampling for each object. Cluster assignment

is sampled from J + 1 clusters, in which we calculate the probability for each430

of the J + 1 clusters. Therefore, the complexity increases linearly with the

number of clusters J . The complexity of calculating each sampling probabil-

ity is dominated by the O(K3) computation of inverse C−1j . Figure 9 shows

the experimental computation time of the proposed model including E- and M-

steps. The computation time linearly increases with the number of objects as435

shown in Figure 9(a). The dimensionality of the observation and latent spaces,

and the true number of clusters do not strongly impact the computation time

(Figure 9(b,c,d)). Because this experiment used small latent dimensionality, it

might not alter the total computation time. The computation time increases

superlinearly with the number of domains (Figure 9(e)). The time increases440

because the number of parameters in the projection matrices increases linearly

with the number of domains, and the total number of objects is also increased.
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Figure 8: Adjusted Rand index for the synthetic data with different cluster proportions across

different domains.

4.6. Semi-supervised setting

Figure 10 shows the average adjusted Rand index achieved by the proposed

model with semi-supervised setting over ten experiments, where different ob-445

jects were labeled for each experiment. Here, we used the seven data sets shown

in Table 2. For each data set, we randomly selected pairs of objects to be

labeled according to the labeled object rate, which is the horizontal axis of Fig-

ure 10, and correspondence information to the different domain for the selected

objects were attached. The performance increases as the rate of labeled objects450

increases. With some data sets (e.g. Synth5, Synth10 and Wine), the addition

of just a few labeled objects drastically increases the adjusted Rand index. This

result indicates that these data sets can be appropriately modeled by the linear

projection of latent vectors, and the proposed model can utilize correspondence

information for a small number of objects for finding many-to-many matching.455

Because the true latent dimensionality of the Synth5 data was the same with

the model used in this experiment, the adjusted Rand index became one with

additional labeled data. With the Synth3 data, the performance was not im-

proved well since the proposed model overfit to the data due to its high latent

dimensionality.460
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Figure 9: Computation time in seconds with different settings. The original data set is Synth5,

where the number of objects in each domain Nd = 200, the number of features in a domain

Md = 50, the latent dimensionality K = 5, the true number of clusters J∗ = 5 and the number

of domains D = 2. Each figure shows the results with data sets when just one of the settings

is changed. The plot shows the average computational time over 100 experiments, and the

bar shows the standard deviation.

5. Conclusion

We proposed a generative model approach for finding many-to-many match-

ing based on probabilistic latent variable models. In experiments, we confirmed

that the proposed model can perform much better than conventional methods

based on object matching, clustering and their combinations. Advantages of the465

proposed model over the existing methods are that it can find many-to-many

matching, and can handle multiple domains with different numbers of objects

with no prior knowledge. Because the proposed approach uses probabilistic gen-

erative models, we can extend it in a probabilistically principled manner, and

use it, for example, to handle missing data, integration with other probabilistic470

models, and generalization to exponential family distributions.

Although our results have been encouraging as a first step towards unsuper-
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Figure 10: Average adjusted Rand index and its standard deviation achieved by the proposed

model in a semi-supervised setting with different rates of labeled objects.

vised many-to-many object matching, we must extend our approach in a number

of directions. First, we would like to extend the proposed model to other types

of data, such as time series and graph data. Second, we can relax the assump-475

tion that the observations are linear with respect to their latent vectors by using

nonlinear matrix factorization techniques [36]. Third, we need some techniques

for automatically inferring the latent dimensionality, such as automatic rele-

vance determination [37]. Finally, we would like to use the proposed method

for other applications, which include image annotation [1], cross domain rec-480

ommendation [3], multi-lingual corpus analysis [38, 39], machine translation [6],
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and bioinformatics [40].

Appendix A. Derivation of (4)

We give the derivation of the likelihood (4), in which latent vectors Z and

precision parameter α are analytically integrated out.

p(X|S,W , a, b, r)

=

∫ ∫ D∏
d=1

Nd∏
n=1

N (xdn|Wdzsdn , α
−1I)G(α|a, b)

J∏
j=1

N (zj |0, (ar)−1I)dZdα

=

∫ ∫ D∏
d=1

Nd∏
n=1

( α
2π

)Md/2

exp(−α
2
‖ xdn −Wdzsdn ‖2)

J∏
j=1

(αr
2π

)K/2
exp(−αr

2
‖ zj ‖2)

× 1

Γ(a)
baαa−1 exp(−bα)dZdα

=
ba

Γ(a)

∫ ∫ ( α
2π

)∑
dMdNd/2 (αr

2π

)KJ/2
exp

−α
2

 J∑
j=1

(zj − µj)>Cj(zj − µj)

 dZ

× exp

−α
1

2

D∑
d=1

Nd∑
n=1

x>dnxdn −
1

2

J∑
j=1

µ>j Cjµj + b

αa−1dα

= (2π)−
∑

d MdNd
2 r

KJ
2

ba

Γ(a)

J∏
j=1

|Cj |
1
2

∫
exp(−b′α)αa

′−1dα

= (2π)−
∑

d MdNd
2 r

KJ
2
ba

b′a′
Γ(a′)

Γ(a)

J∏
j=1

|Cj |
1
2 . (A.1)

In the third equation, factors related to Z are grouped together. In the fourth

equation, we integrated out Z using∫
exp

(
−1

2
(x− µ)>C(x− µ)

)
dx = (2π)M/2|C| 12 , (A.2)

which is the normalization constant of M -dimensional Gaussian distribution.

Similarly, α is integrated out by using the following the normalization constant

of Gamma distribution in the sixth equation∫
αa−1 exp(−bα)dα =

Γ(a)

ba
. (A.3)
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Appendix B. Derivation of (9) and (10)

We give here the derivation of posteriors of α (9) and zj (10).

p(α|X,S,W , a, b)

J∏
j=1

p(zj |α,X,S,W , r)

∝ p(X|α,Z,S,W , a, b, r)p(α|a, b)
J∏
j=1

p(zj |α, r)

=

D∏
d=1

Nd∏
n=1

N (xdn|Wdzsdn , α
−1I)G(α|a, b)

J∏
j=1

N (zj |0, (ar)−1I)

=

D∏
d=1

Nd∏
n=1

( α
2π

)Md/2

exp(−α
2
‖ xdn −Wdzsdn ‖2)

1

Γ(a)
baαa−1 exp(−bα)

×
J∏
j=1

(αr
2π

)K/2
exp(−αr

2
‖ zj ‖2)

∝ αa
′−1 exp(−b′α)

J∏
j=1

|Cj |−
1
2 exp

(
−α

2
(zj − µj)>Cj(zj − µj)

)

∝ G(a′, b′)

J∏
j=1

N (µj , α
−1Cj), (B.1)

where we used Bayes’ rule.485

Appendix C. Derivation of (11)

We give here the derivation of the E-step (11) for learning based on a stochas-

tic EM algorithm.

p(sdn = j|X,S\dn,W , a, b, r, γ)

=
p(sdn = j,S\dn,X|W , a, b, r, γ)

p(S\dn,xdn,X\dn|W , a, b, r, γ)

=
p(sdn = j,S\dn|γ)p(X|sdn = j,S\dn,W , a, b, r, γ)

p(S\dn|γ)p(X\dn|S\dnW , a, b, r, γ)p(xdn|W , a, b, r)

∝
p(sdn = j,S\dn|γ)

p(S\dn|γ)
·
p(X|sdn = j,S\dn,W , a, b, r)

p(X\dn|S\dn,W , a, b, r)
, (C.1)

where p(xdn|W , a, b, r) does not depend on p(sdn = j|X,S\dn,W , a, b, r, γ).
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