Meta-learning for heterogeneous treatment effect estimation with closed-form solvers
Paper
Tomoharu Iwata, Yoichi Chikahara, "Meta-learning for heterogeneous treatment effect estimation with closed-form solvers," arXiv:2305.11353, 2023
arxiv
Codes
meta_cate_code.tar.gz
Usage
-
Generate datasets by setting (ii) in Curth and van der Schaar (2021).
% python crt_data_curth.py 10000 100 1
-
Estimate pseudo-CATEs.
% python estimate_tau.py --fn data/synth_curth_s10000t100I1/i0.npz --out data/synth_curth_s10000t100I1/i0tau
-
Run meta-learning.
% python train_meta_cate.py --fn data/synth_curth_s10000t100I1/i0tau.npz --method 0 --second_method 2 --n_spt0 3 --n_spt1 3 --GP 0 --epoch 5000
options:
-
method: loss function for task-shared parameters (0:CATE loss, 1:regerssion loss)
-
second_method: base lernaer (0:RA, 1:PA, 2:DR, 3:plugin)
-
n_spt0: number of untreated instances in a support set
-
n_spt1: number of treated instances in a support set
-
GP: GP or linear layer for task-specific last layers (0:Linear, 1:GP)
-
epoch: number of epochs
The codes were checked with Python 3.7 and Pytorch 1.9.
License
LICENSE