Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Paper
Tomoharu Iwata, Atsutoshi Kumagai, "Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation," arXiv:2312.07952, 2023
arxiv
Codes
code_meta_quantile.tar.gz
Usage
-
Download NA_NORM_6190_Bioclim_ASCII.7z from https://sites.ualberta.ca/~ahamann/data/climatena.html, which contains data of 27 Bioclimate variables (1961-1990 normal period)
-
Decompress NA_NORM_6190_Bioclim_ASCII.7z in data/NA_NORM_6190_Bioclim_ASCII/
% cd data/NA_NORM_6190_Bioclim_ASCII/
% 7za x NA_NORM_6190_Bioclim_ASCII.7z #decompress data
-
Preprocess data for AHM
% cd ../..
% python crt_data_spatial.py 100 #generate data for each region/attribute
% python crt_traintest_spatial.py #generate data for meta-learning
-
Run meta-learning
% python train_meta_quantile.py --fn data/NA/I1l0.12v0.04t0.04o1/AHM/i0.npz --n_hiddens 32,32 --n_spt 10 --n_qry 30 --n_dataset 0 --epoch 1000 --method 1
options:
-
method: calibrate or not (0:no calibration, 1:calibration)
-
n_spt: number of instances in a support set
-
n_qry: number of instances in a query set
-
n_dataset: number of tasks for training
-
n_hiddens: number of hidden units
-
epoch: number of epochs
The codes were checked with Python 3.7 and Pytorch 1.9.
License
LICENSE