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Thanks to the prevalence of mobile phones and GPS devices, spatio-temporal population data can be obtained
easily. In this paper, we propose a mixture of collective graphical models for estimating people flow from
spatio-temporal population data. The spatio-temporal population data we use as input are the number of
people in each grid cell area over time, which are aggregated information about many individuals; to preserve
privacy, they do not contain trajectories of each individual. Therefore, it is impossible to directly estimate
people flow. To overcome this problem, the proposed model assumes that transition populations are hidden
variables, and estimates the hidden transition populations and transition probabilities simultaneously. The
proposed model can handle changes of people flow over time by segmenting time-of-day points into multiple
clusters, where different clusters have different flow patterns. We develop an efficient variational Bayesian
inference procedure for the collective graphical mixture model. In our experiments, the effectiveness of the
proposed method is demonstrated by using four real-world spatio-temporal population data sets in Tokyo,
Osaka, Nagoya and Beijing.
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1 INTRODUCTION

Analyzing spatio-temporal population data is important in various fields including disaster man-
agement [20], marketing [5], public health [3], and urban planning [24]. For example, population
information is useful for planning the locations of new stores. Census data have long been used
as spatial population data. However, since conducting a census is time-consuming and costly,
census data are not updated frequently; e.g. the US census is conducted every ten years. In recent
years, thanks to the prevalence of mobile phones and global positioning system (GPS) devices,
spatio-temporal population data can be obtained easily. For example, mobile spatial statistics [22]
contain the hourly population in 500 meter grid squares in Japan’s urban areas, which are calculated
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39:2 T. Iwata et al.

from mobile network operational data. Similar data can be obtained from the GPS data of navigation
apps [23], Wi-Fi [13], geotagged tweets ! or photos ? and check-in data of location sharing services
such as foursquare °.

In this paper, we consider the task of estimating people flow from spatio-temporal population data.
The estimated people flow can be used for a wide variety of applications, which include simulating
people movement in the case of a disaster, detecting anomalous people movement, predicting
the future spatial population given the current spatial population, and designing transportation
systems. The spatio-temporal population data we use as input are the populations in each grid
cell over time as shown in Figure 4. The output is the people flow between grid cells over time
as shown in Figure 7. The spatio-temporal population data consist of aggregated information
about many individuals. They are aggregated to preserve privacy or because of the difficulty of
tracking individuals over time. For instance, the mobile spatial statistics [22] are preprocessed
for privacy protection and no one can follow a particular user, which allows the mobile phone
operating company to publish population data calculated based on information about 60 million
mobile phone users. If the trajectories for each individual are given, people flow can be estimated
straightforwardly by counting the number of people who moved between grid cells, i.e. transition
population. However, with aggregated data, it is impossible to directly determine the size of the
transition population.

To overcome this problem of modeling individual behavior given aggregated data, we propose a
mixture of collective graphical models. The proposed model assumes that individuals move according
to transition probabilities that depend on their locations and time points. Since the transition
populations are not given, we treat them as hidden variables. The hidden transition populations
relate to observed populations in each cell; the population at a cell is equal to the sum of transition
populations from the cell, and the population at a cell in the next time point is equal to the sum
of transition populations to the cell. By using these relations that represent flow conservation as
constraints, the hidden transition populations and transition probabilities are inferred simultane-
ously. The proposed model can handle changes of people flow over time by segmenting time-of-day
points into multiple clusters, where different clusters have different transition probabilities. For our
task of modeling people flow, incorporating time information is crucial. For example, people move
from suburbs to the city center to work in the morning, they return to the suburbs from the city
center in the evening after work, and they do not travel so often in the middle of the night. The
proposed model is an extension of the collective graphical models [17, 18] for handling change over
time. Since the proposed model does not use trajectory information, when we have enough amount
of population data that approximate the true population distribution, we can estimate people flow.

We develop an efficient variational Bayesian inference procedure for the proposed model. In
existing literature on collective graphical models, the EM algorithm is used to obtain point estimates
of the parameters [6, 10, 17, 21]. Instead of obtaining point estimates, by estimating distributions of
parameters based on the variational Bayesian framework, we can alleviate overfitting especially
when data are sparse and models are flexible as in the case of mixture models [1].

The major contributions of this paper include the following:

o It is the first attempt to estimate people flow from spatio-temporal population data without
tracking.

e We propose a mixture of collective graphical models for handling behavior change over
time.

Thttp://twitter.com
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Table 1. Notation

Symbol Description

Ny #people at grid cell i at time ¢, N;; > 0

Myij #people who moved from grid cell i to grid cell j at time ¢, My;; > 0
T #time points, t € {1,--- ,T}

I #grid cells, i € {1,--- ,I}

Ji neighbors of grid cell i

S #time-of-day indices

s(t) time-of-day index of time t, s(t) € {1,---,S}

gs sth time-of-day g5 € [0,24]

r(i,J) relative position index of grid cell j from grid cell i

K #clusters

Zs(1) cluster index of time ¢, k € {1,--- ,K}

Okij probability that a person in grid cell i moves to grid cell j during a time-of-day point
that belongs to cluster k, O;; > 0, ¥ ey, Okij = 1

Dk probability that a time-of-day index belongs to cluster k, ¢x > 0, Zszl o =1

Tk time-of-day mean of cluster k, 7; € [0,24]

Nk time-of-day precision of cluster k, nx > 0

O set of transition probabilities at grid cell i during a time-of-day point that belongs to

cluster k, O; = (Okij)jey,
set of population data over time and grid cells, N = (Ny;)"_,) L,

N
M set of transition population data over time and grid cells, M = (((M tij){zl) je] l.)th_ll

e We develop a variational Bayesian inference procedure for collective graphical models.

The paper is organized as follows: In Section 2, we propose collective graphical mixture models for
estimating people flow from spatio-temporal population data, and present its variational Bayesian
inference procedure in Section 3. In Section 4, we demonstrate the effectiveness of the proposed
method by using real spatio-temporal population data obtained in Tokyo, Osaka, Nagoya and
Beijing. In Section 5, we outline related work. Finally, we present concluding remarks and future
work in Section 6.

2 PROPOSED MODEL

Suppose that we have population data over time for each of I grid cells, N = ((N;;)’_,) |, where
Ny; is the number of people in grid cell i at time t. We also have neighbor information for each
grid cell. Let J; € {1,---,I} be the set of neighbor cells of grid cell i, and J; always contains
grid cell i itself, i € J;. We assume that people do not move to its non-neighbor cells, or we can
ignore those people because their size is small. Our task is, given aggregated population data
N = ((Nti){zl)thl, to estimate transition population M = (((Mtij)l.lzl)jejl.)zz‘ll in the time period
of the given aggregated data, where M;;; is the number of people who move from grid cell i to
grid cell j at time . Our notation is summarized in Table 1. We use non-bold typefaces for scalar
variables, and bold typefaces for vector and set variables. The time index ¢ and time-of-day index
s(t) can be different since the given data might be taken at multiple days. Suppose that the tth time
point is Oct 1st 10:00, and ¢’th time point is Oct 3rd 10:00. Since these time points have the same
time-of-day, their time-of-day indices are the same s(t) = s(t’), but t # t'.

We model the probability of people moving to the neighbor grid cells using a mixture of collec-
tive graphical models. With the proposed model, the transition patterns are assumed to change
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depending on the time-of-day, and the time-of-day points are divided into K clusters according to
their transition patterns. Let 0;; be the probability that a person in grid cell i moves to grid cell j
during a time-of-day point that belongs to cluster k. The relationship between observed data N and
transition probability 6;; can be modeled by introducing latent variable My;;, which represents
the number of people who move from grid cell i to grid cell j at time ¢. In particular, when the
time-of-day of t is assigned to cluster k, the probability of transition population M;; = (M) jej,
given the current population Ny; and transition probability Ox; = (0kij)jej, is given by the following
multinomial distribution,

Ni;! Myi;
P(MeilNi, 0xi) = m———— | | O - (1)
tildVti i l—IjEJi Mtij! Jl:][l kij
The population in a cell Ny; and the transition population between cells M; have the following
two relations,

Ny = Z M;ij, (2)
Jeli
which represents the fact that the population at grid cell i is the same as the sum of the transition
populations from grid cell i, and

Ny = Z Myji, (3)
J€li
which represents the population in grid cell i at the next time point is the same as the sum of the
transition populations to grid cell i at the current time point. These relations are used as constraints
in the inference as described in Section 3.

For the prior distribution of the transition probability, we use the non-symmetric Dirichlet
distribution. With the proposed model, the hyperparameters of the Dirichlet distributions are
shared among different grid cells when the relative positions are the same. Let r(i, ) be the index
of the relative position of grid cell j from grid cell i. Figure 1 shows an example of the relative
position index when the neighbors are its surrounding eight cells with the addition of the cell itself.
Then, the Dirichlet prior for the transition probaiblity is given as follows,

r(di) ear(i,j)—l (4)
Hje],— Nar(i.j) kij '

J€li
where @; = (,(;,j))je, is the Dirichlet hyperparameter, and @; = } ¢y, @(;,j). The parameter o,
represents the prospect of moving in the rth relative position, which is shared by all cells and
all time points, e.g. Z—i is the prior probability of staying at the current point when r(i,i) = 1. By
estimating the Dirichlet hyperparameters & = (1,3, - - ) from the given data, we can robustly
calculate the population flow especially in cells with sparse data by sharing hyperparameters among
different cells.

People flows at temporally close time points are considered to be similar. For example, transition
probabilities at 14:00 are similar to those at 15:00. To model this property, we assume that the
time-of-day points in cluster k are distributed as Gaussian with mean 74 and precision 7, where
precision is the inverse of variance, as follows,

p(Orila;) =

P(GslTiani) = (Z—k)z exp (—U—klgs - Tklz), (5)
T 2

where g; is the sth time-of-day. For example, when observations are given for every 30 minutes,
g1 = 0,9, = 0.5, gag = 23.5, and the total number of time-of-day indices is S = 48. We use continuous
time-of-day g for clustering time-of-day points based on the continuous time-of-day values, and
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(a) name for each grid cell (b) relative position indices from the center grid cell

Fig. 1. (a) name for each grid cell and (b) their relative position indices from the center grid cell “¢”, r(e, ).

cluster3
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Fig. 2. Example of Gaussian distributions over time-of-day. The mean of cluster k is 7, and the precision is
dng.

use time-of-day index s for representing the point to be clustered. Figure 2 shows an example of
Gaussian distributions over time-of-day. By assuming the Gaussian distribution for each cluster, we
can cluster time-of-day points depending on their interval of time-of-day as well as their transition
probabilities.
The proposed model assumes the following generative process for the transition population over
time M = (M) )15
(1) Draw cluster proportions, ¢ ~ Dirichlet(f)
(2) For clusterk = 1to K
(a) Forgridcelli=1toI
(i) Draw transition probability, Oy; ~ Dirichlet(«;)
(b) Draw precision of time-of-day, nx ~ Gamma(a, b)
(c) Draw mean of time-of-day, tx ~ Normal(f,(dni)™!)
(3) For time-of-day indexs =1to S
(a) Draw cluster, z; ~ Discrete(¢)
(b) Draw time-of-day, gs ~ Normal(,,,n;!)
(4) For time pointst =1to T — 1
(a) Forgridcelli=1toI
(i) Draw transition population, M;; ~ Multinomial(6;,, i, Nt:)

Here, ¢ = (dx) ]Ile is cluster proportions, and s(t) represents the index of time-of-day at ¢. We
assume that the transition probability is the same when time-of-day is the same even if their
days are different. We use conjugate priors, i.e. Gaussian-Gamma priors for the Gaussian mean
and precision, and Dirichlet priors for Discrete or multinomial parameters, which enables us to
analytically derive equations for updating model parameters in the variational Bayesian inference.
In particular, the prior of Gaussian mean 7} and precision nj is Gaussian-Gamma distribution
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Fig. 3. Graphical model representation of the proposed mixture of collective graphical models.

Normal(f, (dnx) "!)Gamma(a, b), and the prior of multinomial parameters 0y; and ¢ is Dirichlet
distribution Dirichlet(e;) and Dirichlet(f), respectively, where f, d, a, b, ar; and f are hyperparame-
ters. Given spatio-temporal population N, time-of-day indices s and hyperparameters «, f,a,b,d, f,
the joint probability of transition population M, time-of-day data g = (gs) _f:l’ model parameters
0= ((Bki)le)le, ¢, T = (Tk)le, n= (r]k)f:l, and cluster assignments z = (zs)f=1 is given as
follows,

p(M,g,0,¢,2,7,7|N,s,«, §,a,b,d, f)
= p(MIN, ©,z,s)p(Bla)p(z|$)p(p|f)p(glz, T, mp(zlf,d,n)p(nla,b). (6)

Figure 3 shows a graphical model representation of the proposed model, where the shaded and
unshaded nodes indicate observed and latent variables, respectively. We consider that the time-of-
day index s is observed since it is determined from the time of the population data.

3 INFERENCE

We present a variational Bayesian inference procedure for the proposed collective graphical mixture
model. The observed variables are spatio-temporal population N and time-of-day data g. The
unknown variables are transition probabilities ©, cluster assignments z, cluster proportions ¢,
time mean 7, time precision 7, transition populations M, and transition hyperparameters a. We
approximate the posterior distributions of all unknown variables except for M and . We obtain a
point estimate of M and & by maximizing the lower bound of the log marginal likelihood since
approximate posterior distributions of M and & cannot be analytically obtained.
We approximate the following true posterior distributions

p(0,¢,z,7,nIM,N,g,s, @, B,a,b,d, f), (7)
by using the mean-field family

K 1 S K
90,9270 = [ || [a@ra@) | [aG) | | atzene). (8)
k=1 i=1 s=1 k=1

which are called variational distributions. The following lower bound of the log marginal likelihood
is obtained by applying Jensen’s inequality,

logp(MIN,s, e, f,a,b.d, ) > E[log p(M|N,©,z,s)] + E[log p(©|a)] + E[log p(z|¢)]
+E[log p(¢1B)] + E[log p(glz,7,n)] + E[log p(z|f.d.n)] + E[log p(nla,b)]
+ H[q(®)] + H[q(¢)] + H[q(z)] + H[q(7)] + H[q(n)] = F, )
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where E[ f] represents the expectation of f with variational distributions g, and H[q] represents
the entropy of gq. The complete form of the lower bound is described in Appendix A.

We iteratively optimize each of the variational distributions and unknown variables while keeping
the others fixed by maximizing the lower bound (9). Since we use conjugate priors, the variational
distributions to be estimated have the same form as their priors as follows,

q(0x;) = Dirichlet(a},), (10)
q(¢) = Dirichlet(f"), (11)
q(zx) = Normal(f, (dinx) ™), (12)
q(nx) = Gamma(a;, by), (13)

where a;; = (a,’dj)jeji, and ' = (,Bk)K . Let

qgsk = q(z5 = k), (14)

be the variational probability that the cluster assignment of time-of-day s is k. Its update equation
is given by

log gsk o< W(B;) — W(B) + Z D My ¥(ay,) - ¥(a,)]

i=1 jeJ;
“W(a)) - = logh) E (g, — 1) (15)
+ — [E— —
2k zogkzd’ zb’ k2o
where ¥(-) is the digamma function defined by ¥(x) = %, A = el % kip and f’ = Zle By
The update equations of unknown parameters in the variational dlstr1but10ns (10)-(13) are given by
T-1
Api; = Ar(ij) + Z qs(t)kMeijs (16)
=1
s
Bi=B+ a5k (17)
s=1
s
di=d+ ) g (18)
s=1
s
f=d7Mdf + ) qogs), (19)
s=1
S +1
a,=a+ M’ (20)
2
s
b 1 d .,
bp=b+y Z 9sk(9s = F)* + S (L = )" (21)
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We obtain a point estimate of transition populations M by maximizing the lower bound (9). In
the lower bound, only the first term E[log p(M|N, ©,z,s)] (30) depends on M, whose approximation
is given by

E[log p(MIN, ©,z,s)] =fZq(@)q(z)logp(MIN,G),z,s)dG)

T-1 1 K
OCZ Z (_lothij!"'Mtijqu(t)k[qj(a/;ij)_qj(d]/ci)])
=1 i=1 jeJ; k=1
T-1 I
Z Mtlj - Mttj lothzj + Mttj Z QS(t)k (ak,]) \y(ak,)] =1, (22)
t=1 i=1 jeJ; k=1

where log N;;! is omitted from the second line since it does not depend on M, and Stirling’s
approximation, log M! ~ M log M — M, is used at the third line as in [17]. The constraints (2) and (3)
might not hold in real-world data because errors in sensing are inevitable and populations would
be modified to preserve privacy. We incorporate them as soft constraints, and try to minimize the
squared difference between the left- and right-hand sides in each of (2) and (3). Then, the objective
function to be maximized becomes as follows,

T 1 I T-1 1
_L—_ZZ”\]n ZMnjlz_%ZZth+1,i_ZMtﬁ|2’ (23)
t=1 i=1 j€Ji t=1 i=1 J€Ji

where the second and third terms in the left-hand side correspond to the soft constraints of (2)
and (3), respectively, and 1 > 0 is a hyperparameter for controlling the penalty for violating
the constraints. Since integer programming problems require a prohibitively large amount of
computational time, we allow integer-valued variable M to take any real value, which enables us to
maximize the objective function efficiently. We maximize the objective function L’ with respect to
M by using the quasi-Newton method [9] with non-negative bound constraint M > 0. The gradient
of the objective function L’ is given by

oL’
OM;ij

K
= —log Myij + )" Gl ¥(ay;;) = ¥(@p)] + AN = D Muij) + ANpewi = D M),
k=1 Jj€li J€li
(24)
The objective function L’ is convex with respect to M since the first and third terms in (22) are
linear, the second term in (22), M;;; log M, is convex, and the second and third terms in (23) are
convex quadratic functions. Therefore, the global optimum solution for M is obtained when the
other parameters are fixed. Note that M, can be optimized in parallel since the objective function
L’ is decomposed into the sum of T — 1 terms each of which contains only the transition population
at t, M;.
We estimate the transition hyperparameters & by maximizing the lower bound (9) using the
fixed-point iteration method described in [12]. The update rule is given by
bt Sict Zjeg, W (i) = n[¥ay,) — ¥ar)]
Ur < A ox ol — - —, (25)
et Zi=1 jey, Lr(i.)) = n)[¥(ay,) — ¥(a)]
where I(A) is the indicator function, i.e. I(A) = 1 is A is true and I(A) = 0 otherwise.
We can obtain a local optimum for the model parameters. Algorithm 1 summarizes the varia-
tional Bayesian inference procedure for the proposed collective graphical mixture model. The end
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ALGORITHM 1: Variational Bayesian inference procedure for the proposed collective graphical mixture
model.

Input: spatio-temporal population data N, neighbor information (J;)1_, the number of clusters K,
hyperparameters a,b, f,d, f, A

Output: parameters of variational distributions ((akl)l I)k v B, (fk)k o (d] )k » (a

i=1’

CARERCATN
((gsk) k=1) o> transition population M, transition hyperparameters o

initialize ((qg)K le, M, a;

k=t)
repeat

updatea by(l(y)fork =1toK,i=1tol,j€];

update ﬁk by (17) fork =1to K;

update d; by (18) for k = 1to K;

update f; by (19) for k = 1to K;

update aj_by (20) for k = 1to K;

update b; by (21) for k = 1to K;

update g by (15)fors =1to S,k = 1to K;

update M by maximizing (24);

update a; by (25) for all relative position indices;
until;

condition can be based on the number of iterations, or the convergence of the following value

T 1 1 T 1 1
F=2% 3TN = > Myl = > Z D INwi = Y Mgl (26)
t=1 i=1 jeli t=1 i=1 Jj€li

which is the sum of the lower bound of the log marginal likelihood (9) and soft constraints that
are used in (24). In the experiments, we fixed the hyperparameters as follows: 8 = 107%,a = 1,b =
1,f = 12,d = 1. It is impossible to tune optimal soft constraint parameter A for estimating flow,
since our task is unsupervised and any people flow data are not given. Therefore, 1 is set by using
the predictive performance of the population of the next time point in the training data for each
data set and for each number of clusters.

The computational complexity for an iteration with the proposed method is O(TIJK); it increases
linearly with respect to the number of time points T, the number of grid cells I, the number
of neighbors J, and the number of clusters K. Note that it does not depend on the population
size 3.1, 31_, Ny; since by using the framework of collective graphical models and continuous
approximation of population M, we only deal with the sufficient statistics instead of individual
behavior data. Therefore, the proposed method is applicable to large quantities of population data.

The transition probability at grid cell i at time ¢ is estimated using estimated «, ; and g« by

’
Zs() i
-7 9
2;(,)1’

9tij =

(27)

where Z5(;) = argmaxy gy« is the estimated cluster assignment of time t. The expected number of

people who move from grid cell i to grid cell j at time ¢ is calculated by 0, iN¢i. Then, the population
of the next time point given the current population N; is predicted by

Nt+l,i = Z étithi» (28)

J€Ji
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since the sum of the transition population to i is equal to the population at i at the next timestep.

4 EXPERIMENTS
4.1 Data

We evaluated the proposed method using real-world spatio-temporal population data sets obtained
in Tokyo, Osaka, Nagoya and Beijing. Figure 4 shows examples of gridded population at 0:00, 6:00,
12:00 and 18:00 on a day in Tokyo, Osaka, Nagoya and Beijing data. With all of the data sets, grid
cells are square, and the neighbors are its surrounding eight cells with the addition of the cell itself.
For the grid cells at corners or edges, the outside cells are removed from their neighbor sets.

The original data of the Tokyo, Osaka and Nagoya data sets * contained latitude and longitude
information for each person obtained every five minutes that were interpolated using railway and
road information [15] from geotagged tweets. We created gridded spatio-temporal population data,
where the time interval was 30 minutes, the size of each grid cell was 10km X 10km, and there were
16 X 14 grid cells. The Tokyo data consisted of data on July 1st, July 7th, October 7th, October 13th,
December 16th, and December 22nd of 2013, where the numbers of people were 6,432, 9,166, 6,822,
10,134, 6,646 and 10,338, respectively. The Osaka data consisted of data on August 8th, August 11th,
September 16th, September 22th, December 24th, and December 29nd of 2013, where the number
of people were 2,256, 3,034, 2,999, 3,569, 2,487 and 3,480 respectively. The Nagoya data consisted of
data on July 22th, July 28th, September 16th, September 22th, December 24th, and December 29nd
of 2013, where the numbers of people were 929, 1,332, 1,148, 1,460, 975 and 1,570, respectively.

The Beijing data consist of population in Beijing from 3rd February to 7th of 2008, which were
obtained from T-Drive trajectory data [25, 26], which contained trajectories of 10,357 taxies. We
created gridded spatio-temporal population data and with 15-minute time intervals, 2km X 2km
size grid, and 20 X 16 grid cells in total. The length of the area was 40km in the north-south direction,
and 32km in the east-west direction.

We used the data sets whose original data contain trajectories of twitter users or taxies so that
we can evaluate the people flow estimation performance. We did not use trajectory information for
the estimation.

4.2 Results

We evaluated the proposed variational Bayesian collective graphical mixture model (VCGMM)
in terms of the estimation performance of the people flow. For comparing methods, we used the
following four methods: CGM, ICGM, VCGM and STAY. The CGM is a collective graphical model
obtained by a maximum likelihood estimation with the same soft constraints with the proposed
model, where the transition probability for each grid cell is fixed over time. The ICGM is the
inhomogeneous transition probability CGM, which assumes that the transition probability for each
grid cell is different across different time points. The VCGM is a collective graphical model obtained
with a variational Bayesian inference. When there is one mixture, the proposed method corresponds
to the VCGM. CGM and VCGM assume that people flows do not change over time, while VCGMM
and ICGM assume that they change over time. The STAY method predicts the population at the
next time point from the current population; it assumes that all people do not move, and stay in
their current cells. With the proposed VCGMM, we used ten clusters.

4SNS-based People Flow Data, Nightley, Inc., Shibasaki & Sekimoto Laboratory, the University of Tokyo, Micro Geo Data
Forum, People Flow project, and Center for Spatial Information Science at the University of Tokyo, http://nightley.jp/
archives/1954
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0:00

(d) Beijing

Fig. 4. Spatio-temporal population data (a) in Tokyo on July 1st 2013, (b) in Osaka August 8th 2013, (c) in
Nagoya on July 22th 2013, and (d) in Beijing on February 3rd 2008. Darker colors represent higher population
densities in each grid cell.
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Table 2. Normalized absolute errors when predicting people flow averaged over all time points.

VCGMM ICGM VCGM CGM STAY

Tokyo 0.167 0.176 0.208 0.208 0.192
Osaka 0.250 0.265 0.280 0.280 0.272
Nagoya 0.250 0.281 0.292 0.291 0.269
Beijing 0.470 0.500 0.479 0.479 0.532

For a evaluation measurement, we used the following normalized absolute error on people flow,
1 T-1 *
i=1 Lit=1 Zjej,- |M”-j - Mtijl
I T-1
Z i=1 Z =1 Nti
where M, is the true number of transition people who moved from grid cell i to the jth neighbor at
time ¢, and My is its estimation. The true number of transition people, which is the test data, was

) (29)

obtained from the original data that contain individual trajectories. Note that for estimation we used
population data for each grid cell and each time points, but did not use transition population data
between grid cells. Table 2 shows the error of VCGMM, ICGM, VCGM, CGM and STAY methods.
The proposed method, VCGMM, achieved the lowest error, which implies its effectiveness on people
flow estimation. Since the ICGM estimates the transition probability using only the data at that
time point, its performance was worse than the proposed method. The errors by the VCGM and
CGM were almost the same. The VCGM and CGM were better than the STAY with the Beijing data,
but worse with the Tokyo, Osaka and Nagoya data. It is because that many people stay in the same
cell with the Tokyo, Osaka and Nagoya data, and many people move to different cells with the
Beijing data, which is reasonable since the Beijing data is taxi trajectories. The proposed method
achieved the best performance in both types of data by flexibly changing flows depending on time
points.

Figure 5 shows the normalized absolute errors with different numbers of clusters with the
proposed VCGMM. As the number of clusters increased, the error decreased. This result indicates
the importance of using multiple people flow patterns. The error became relatively steady after
seven, three and three with the Tokyo, Osaka and Nagoya data, respectively, and the VCGMM did
not overfit the training data even with many clusters.

Figure 6 shows the estimated cluster proportions g provided by the VCGMM with ten clusters.
For each time-of-day index, only one cluster proportion was estimated as nearly one, and the
other cluster proportions were estimated as nearly zero. Consecutive time points were assigned
to the same cluster. Nine, seven, six and nine clusters were used with the Tokyo, Osaka, Nagoya
and Beijing data sets, respectively. With the variational Bayesian inference, the proportions for
unnecessary clusters become zero, and the proportions for necessary clusters become non-zero,
which helps to avoid overfitting.

Figure 7 shows people flows estimated by the proposed method. With the Tokyo data, From 0:00
to 6:00, there were few flows; this is reasonable since most people are sleeping at home at this time.
From 8:30 to 11:00, people move to the center of Tokyo from the suburbs for work. There were still
flows to the city center from 14:30 to 15:00. From 18:30 to 23:00, flows from the city center to the
suburbs were estimated since at that time people return home from their offices. With the Osaka
data, similar temporal flow patterns were extracted. With the Nagoya data, flows to the city center
were discovered in the day time. Since its population size was smaller than that of the Tokyo and
Osaka data, estimated flows were not clear. With the Beijing data, the proposed method estimated
that people move to the center in the morning.
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Fig. 5. Normalized absolute errors with different numbers of the clusters with the proposed VCGMM.

5 RELATED WORK

Great interest is being shown in developing methods to analyze people trajectories for a wide
variety of applications, such as disaster management [19, 20], marketing [5], public health [2, 3],
urban planning [14, 24, 27], traffic forecasting [8], traffic anomaly detection [11], transportation
system management [4], and travel route recommendation [7]. These methods require the tra-
jectories of individuals. However, because such trajectories are private information, or because
tracking individuals is difficult, only aggregated population data might be available as mobile spatial
statistics [22]. The proposed method can estimate people flows using aggregated data without
trajectory data, and it would make existing trajectory data mining methods applicable even when
trajectory data are unavailable.

Collective graphical models have been proposed and used for modeling contingency tables [18],
bird migration [16], and infection [6], but have not been applied to population data. The proposed
model is based on collective flow diffusion models [6]. We extend the collective flow diffusion
models to mixture models for handling changes in flow patterns over time. To our knowledge,
the proposed model is the first mixture model consisting of collective graphical models. To infer
hidden variables in collective graphical models, several algorithms have been proposed, such as
Markov chain Monte Carlo (MCMC) [18], maximum a posteriori (MAP) [17], the expectation
propagation with Gaussian approximation [10], and the belief propagation [21]. The variational
Bayesian inference procedure presented in this paper is applicable not only to a mixture of collective
graphical models, but also to other collective graphical models.

The CGMs in [10, 17, 18, 21] consider noisy observations, where a noise model, such as the Pois-
sion distribution, is assumed. The proposed model does not consider noise models for observations.
However, by using the soft constraints for flow conservation, the proposed model can handle noisy
observations, where flow is not strictly preserved.
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Fig. 6. Estimated cluster proportions g provided by the proposed method. White represents probability
one, and black represents zero. The cluster index is sorted by the start time point.

6 CONCLUSION

We have proposed a mixture of collective graphical models for estimating people flows from
spatio-temporal population data, and developed a variational Bayesian inference procedure for the
proposed model. We confirmed experimentally that our proposed method can estimate flow that
changes over time, and predict the population at the next time point more precisely than existing
methods.

Although our results are encouraging, our framework can be further improved in a number of
ways. Firstly, we plan to incorporate the spatial correlation of flows by using location dependent
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(a) Tokyo

0:00-6:30 8:30-10:30 11:00-16:00 16:30-20:00
(b) Osaka

9:00-16:30 17:00-18:00
(c) Nagoya
8 %
e ’
= P
0:00-7:45 8:30-12:45 13:00-16:45 14:30-21:15
(d) Beijing

Fig. 7. Estimated people flows for each time-of-day cluster obtained with the proposed method using the (a)
Tokyo, (b) Osaka, (c) Nagoya and (d) Beijing data. When an estimated transition probability is higher than a
threshold, an arrow is drawn in that direction.
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mixture models as we did to incorporate time correlation in this paper. Secondly, we would like
to extend the proposed model to use information about day of week. Thirdly, we will study the
effectiveness of the proposed method with different grid sizes, time intervals and neighborhood
settings. Finally, it is important to develop a method for selecting neighbors that are appropriate
for the given data.
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A VARIATIONAL LOWER BOUND

In this appendix, we give the the lower bound of the log marginal likelihood (9). The first term is
given by

E[log p(MIN,G),z, s)]

t=1 i=1 Jj€li Jj€li k=

where we used the following expected value of the log of a multinomial parameter under a Dirichlet
distribution,

Eq(a;,)[log bkij] = ¥ay;;) — ¥ay,). (1)

By using the above equation, the second, third and fourth terms become

I
Ellogp(©la)] = Z(log 1Y arap) = D log Mt )

k=1 i=1 J€li Jjeli
b (@i — DI¥,) = H@)l), (52)
Jj€Ji
S K ~
Ellogp(zIg)] = ), > a5k [¥(B}) — (B, (33)
s=1 k=1
K -
Eflogp(¢lf)] = log I(BK) — Klog I(B) + ( Z ¥(BL) = ¥(B)]. (34)
k=1
The fifth, sixth and seventh terms are given by
K a S T
Ellog plgle. 7. = 5 Y (Tel¥(a}) ~ logby] - = - o £ - fi7) - 3 log2n, (39)
k=1 k s=1
Eflog p(z|f,d, )] = li(‘l’(a’)—lo b +lo i—i—da;‘(f’—f)z) (36)
gp n 2 £ k g k g 2T d;( b;c k >
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K a / K a
E[logp(nla,b)] = —KlogI(a) + Kalogb + (a — 1) Z(‘If(—k log —) - Z —k (37)
k=1 2 k=
where we used the following expected value of a positive parameter under a Gamma dlstribution,
Eq(yo[logni] = ¥(ay) — log b;.. (38)

The eighth term is the entropy of the Dirichlet distribution, and is given by,

H[q(®)] = ZZ(Zlograku ~logT(@'ki) = Y. (ahy; = D[agy) — H@w)]).  (9)

k=1 i=1 jeJ; J€Ji
The ninth term is the entropy of the discrete distribution, and is

s
- Z qsk 1og gk (40)
s=1
The tenth term is the entropy of the Dirichlet distribution, and is
K
Hlq(¢)] = Y (6} ~ log I(f" Z(ﬂk AR )] (41)
k=1

The eleventh term is the entropy of the Gaussian dlstrlbutlon, and is

K K
K 1 ’ 1 ’ ’
Hg(r)] = - (log2x + 1) - - ; logd;, ~ - ;(\y(ak) —logh}). (42)
The twelfth term is the entropy of the Gamma distribution, and is
K
Hlg(n)] = ) llogNay) — (a; — 1)¥(a}) — log by + ai]. (43)
k=1
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