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Abstract

The basic concepts of the ECO framework
for implicit speciation were introduced in
an earlier note. In this paper the ECO
framework is further investigated in the NP-
complete domain of Job Shop Scheduling
(JSS). The performance of a GA running un-
der the ECO framework shows significant im-
provement compared to the same GA run-
ning without the ECO framework on sev-
eral JSS benchmark problems (10x10, 20x5,
15x20, 10x15, 10x20, and 15x15). Since the
ECO framework virtually does not increase
the computation overhead, it is suggested
that until full control over convergence is
achieved for genetic algorithms (and evolu-
tionary computation in general), running a
GA under the ECO framework is a ‘money
saver’ which can improve performance signif-
icantly.

1 THE ECO PARADIGM REVISIT

The most fundamental difference between stan-
dard GA models and the ECO framework is the
range of genetic interaction among population mem-
bers. By and large, in standard GAs popula-
tion members are processed globally and are in-
distinguishable during the mating and replacement
phases. This results in a centralized genetic dynam-
ics, and the implications of global interactions in re-
lation to convergence are well understood since the
early GA simulations [Cavicchio, 1970, De Jong, 1975,
Goldberg and Richardson, 1987, Mauldin, 1984]. This
lack of control is partly the reason for the many
attempts to introduce into GAs better control over
convergence through specialized operators and paral-
lelism. The original ECO model was presented in an
early note together with first results which suggested
that local genetic interactions introduce improved ro-
bustness into the GA simulation [Davidor, 1991]. In
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this section the ECO principles for implicit specia-
tion are represented and contrasted against centralized
models.

1.1 THE GENETIC OPERATORS
TURNED LOCAL

The ECO model requires local genetic interactions.
Therefore, reproduction, recombination, and selection
have to be changed from global to local mechanisms.
This section discusses these necessary changes to turn
the genetic operators local.

In the ECO framework population members are held
on a 2-dimensional grid and result in an eight imme-
diate grid/population member neighborhood. Genetic
interactions are determined locally according to grid
position and immediate local population. Each grid
node contains one and only one population member.
For isomorphic considerations, the opposite edges of
the grid are connected together and form the surface
of a torus.

1.1.1 Reproduction

The ECO reproduction is a type of steady
state reproduction [Whitley, 1988, Syswerda, 1989,
Syswerda, 1991]. At each reproduction cycle, a grid el-
ement 1, j is selected at random. The population mem-
ber which occupies this 7, j’th node is defined as the
first parent, and together with its immediate adjacent
(in grid terms) 8 population members form the local
and temporarily active sub-population [Davidor, 1991,
Davidor, in press].

The average fitness of this 9 member sub-population is
calculated (first parent + 8 neighbours). The fitness
of the first parent in the i, ;’th node relative to the
average fitness of the 9-member sub-population deter-
mines how many offspring are going to be produced
in the current reproduction cycle. For example, if the
relative fitness of a given first parent is 1.4, then this
first parent will reproduce at least one offspring, and
another one with probability 0.4, while a relative fit-
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ness of 0.5 means a probability 0.5 for one offspring
and a probability 0.5 for no offspring at all.

1.1.2 Mating

After determining how many offspring the first parent
will help produce, a second parent is selected with re-
placement probabilistically relative to fitness from the
sub-population, excluding the first parent, for each off-
spring produced.

Please note that the type of crossover mechanism,
whether it is a two point, uniform, or other prob-
lem specific crossover, is not mentioned as well as
the representation format etc. as it is not relevant
to the implementation of the ECO environment. By
thus defining the choice of parents one is free to use
whatever crossover, mutation, and other genetic mech-
anisms one wishes.

1.1.3 Replacement

After producing the offspring and calculating their fit-
ness, each offspring is introduced into the grid by se-
lecting at random a grid node from the 9 grid member
environment. The population member in the selected
node and the offspring are in conflict due to limited
habitat resources (as only one population member is
allowed at each grid node). The conflict is resolved by
retaining the best out of the two solutions (such as in
ranking or elitism).

2 JOB SHOP SCHEDULING

The n x m (minimum-makespan) job-shop scheduling
problems are defined as follows. n jobs have to be
processed on m machines. The processing of a job
on a machine is called an operation. The processing
order of operations for each job and their processing
times are given. The objective is to determine the

- operating sequences of the machines so as to minimize -

total processing time called the makespan.

Job-shop problems are known to be NP-hard whose
solution space topology is usually very rugged
and multi-modal. We have selected a good GA
model for solving job-shop problems, the GA/GT
model [Yamada and Nakano, 1992], and optimized
its parameters so as to achieve the best perfor-
mance [Nakano et al]. After obtaining optimal perfor-
mance this algorithm was run under the ECO frame-
work to investigate whether the ECO’s improved con-
trol over the convergence will improve the overall per-
formance. In the following section we briefly describe
the original GA that was used to solve JSS problems.

2.1 GA/GT Algorithm

GT crossover is a genetic recombination operator spe-
cialized for the job-shop problem. It can be viewed as
a simple scheduling algorithm which produces a new
schedule by using two parent schedules po,p; based
on the idea of Giffier and Thompson’s active schedule
generation [Giffler and Thompson, 1969].

Though a detailed description of the GA/GT algo-
rithm is given in [Yamada and Nakano, 1992], a brief
outline of the algorithm is given below:

1. Let 0* be an operation with the smallest comple-
tion time among all unscheduled operations.

2. Let G be a conflict set obtained by Giffler and
Thompson method [Giffler and Thompson, 1969].
G is a set of operations which overlap their pro-
cessing with o* on the machine on which o* is
processed. Let M; denote the machine.

3. The next operation to be scheduled on M; is se-
lected from G. Let’s assume it to be the j’th oper-
ation on M;. Choose one of the schedules {po, 1}
according to the value of H;;. Here H is a random
bit matrix of size m x n. If py is chosen, then the
operation from G which is selected is that that
has the earliest starting time on pg among G.

4. Repeat these steps until all operations are sched-
uled.

In Step 3, mutation can be defined by modifying the
arbitration criterion so that not the earliest but the
k’th earliest opération is selected with small probabil-
ity. The larger k is, the smaller the probability.

By applying GT crossover twice to the same pair of
the schedules using the same bit matrix H, two new
schedules are obtained, but the second schedule is con-
structed by switching the roles of pq, p;.

3 RESULTS

The effect of the ECO framework simulation on
performance is studied with several JSS bench-
marks.  We begin with two moderately difficult
problems, the 10x10 [Muth and Thompson, 1963] and
20x5 [Muth and Thompson, 1963] problems for which
the global optimum is known. For these two problems
we present a comparison study between running the
GA/GT algorithm with and without the ECO frame-
work. In all experiments the GA running under the
ECO framework superseded the non-ECO simulation.

We also present results of a hybrid algorithm combin-
ing the GA/GT with a local search running under the
ECO framework. This algorithm is applied to seven
very difficult JSS problems for which only the latest
best solution is known. The seven problems are the
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abz7, abz8, and abz9 15x20, la21 10x15, la27 and 1a29
10x20, and 1a38 15x15 [Applegate and Cook, 1991].
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Figure 1: 200 experiments summary of a 10x10 JSS
problem with population size 2025. The GA/GT al-
gorithm (top), and the same algorithm running under
the ECO simulation framework (bottom) (45x45 grld
size for the ECO simulation).

3.1 The 10x10 problem

The GA/GT optimal population size for the 10x10 JSS
problem is around 2000 (details of the optimal popu-
lation size for GA/GT can be found in an unpublished
manuscript [Nakano et al]). Figure 1 summarizes the
results of 200 independent experiments running the

GA/GT simulation alone and under the ECO frame-

work (summarized in Table 1).

Since the effectiveness of the ECO framework depends
on the size of the grid, another experiment is presented
which includes a smaller population size of 1024 which

results in a 32x32 grid size (Figure 2, and summarized

in Table 1).
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Figure 2: 200 experlments summary of a 10x10 JSS
problem with population size 1024. The GA/ GT al-
gorithm (top), and the same algorithm running under
the ECO simulation framework (bottom) (32x32 grid
size for the ECO simulation).
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2025

Population Size 1024
GA/GT 975(15) | 986(16)
GA/GT with ECO | 963(14) [-970(14)

Table 1: 200 experiments summary of the off-line
performance of the GA/GT and GA/GT under the
ECO simulation for the 10x10 JSS problem (variance
is given in parentheses).
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Figure 3: 200 experiments summary of a 20x5 JSS
problem with population size 5041. The GA/GT al-
gorithm (top), and the same algorithm running under
the ECO simulation framework (bottom) (71x71 grid
size for the ECO simulation). '
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Figure 4: 200 experiments summary of a 20x5 JSS
problem with population size 2025. The GA/GT al-
gorithm (top), and the same algorithm running under
the ECO simulation framework (bottom) (45x45 grid
size for the ECO simulation).

3.2 The 20x5 problem

P

The 20x5 JSS problem is a more difficult one than
the 10x10 problem discussed in the previous sec-
tion. Its optimal population size for the GA/GT algo-
rithm is around 5000 (details of the optimal popula-
tion size for GA/GT can be found in an unpublished
manuscript [Nakano et al]). Figure 3 summarizes the
results of 200 independent experiments running the
GA/GT algorithm alone, and under the ECO frame-

work.

Figure 4 presents another set of experiments which use
a smaller population size 2025. A summary of the two
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comparison studies is presented in Table 2.

Population Size 5041 2025
GA/GT 1236(19) | 1244(19)
GA/GT with ECO [ 1213(16) 1229(20)

Table 2: 200 experiments summary of the off-line per-
formance of the GA/GT and GA/GT under the ECO
simulation for the 20x5 JSS problem (variance is given
in parentheses). ‘

3.3 Harder JSS problems

Moderately difficult JSS problems such as 10x10 and
20x5 are not the reason why so much effort is invested
in developing special GA models for scheduling be-
cause other operation research techniques can handle
such complexity well. The real challenge for GAs are
really hard problems where OR techniques fail to solve
the problem well. That is why we applied the GA tech-
nology to harder JSS problems. Unfortunately, GA
models thus far, including the GA/GT algorithm, also
had substantial difficulties escaping local optimum in
harder JSS. With the encouraging results of the ECO
simulation framework on moderate problems, we at-
tempted to investigate the strength of the technique
on harder problems.

Preliminary results obtained with a hybrid GA/GT
+ local search algorithm running under the ECO
framework suggest that this combination of mecha-
nisms is able to improve the known best of seven
very difficult JSS problems (the abz7, abz8, and abz9
15x20, 1a21 10x15, 1a27 and la29 10x20, and la38
15x15 [Applegate and Cook, 1991]). For example, this
combined algorithm located better solutions than the
best known solutions reported in OR literature. In
fact, it improved the known best of all the above men-
tioned problems, a performance that was not possible
with the GA/GT algorithm alone. It is premature
to report comprehensive analysis of the performance
of this algorithm at this stage, but a thorough anal-
ysis of this hybrid algorithm running under the ECO
framework is under way. '

4 CONCLUSIONS

The ECO framework discussed in this paper presents
a new synthesis of the conventional genetic operators.
In the ECO framework all operators are based on local
interaction in a 2D grid topology. This new interac-
tion arrangement results in a rapid local convergence
while maintaining both global diversity and specia-
tion as an emergent property of the simulation. Fur-
therinore, this improved control over convergence is
achieved with almost virtually no additional compu-
tation overhead. In applying the ECO framework to

JSS problems significantly improved robustness is ob-
tained. This increased robustness translates into sig-
nificantly improved on-line and off-line performance.

Sections 3.1 and 3.2 demonstrated the improved con-
vergence of the ECO framework can offer to global
GAs in the domain of JSS. Because there is virtually
no additional computation cost incurred when apply-
ing the ECO framework, the robustness advantage of
the ECO framework is clear.

There are only few parameters to set when applying
the ECO framework, and their setting is not very sen-
sitive. For example (and assuming a serial architec-
ture), small changes in the grid dimension, type of
mutation probabilities and scaling function used, re-
sult in minute differences. Nonetheless, too small a
grid and the local genetic interaction degenerate into
a global one. If a too large a grid is taken, each grid
node does not have enough genetic interaction with
its environment to make the most of the local genetic
pool. However, between these two extremes there are
many values which result in good performance.
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