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Abstract ; ,

This paper proposes a novel method for solving job-shop problems based on Genetic
Algorithms (GAs). In this method, each individual represents a solution which is derived
directly from operation completion times rather than being coded in a binary string. Ap-
plying crossover based on Giffler & Thompson’s algorithm for generating active schedules
to any two individuals (parents) which are active schedules results in new active schedules
(offspring) which inherit the parents’ characteristics.

Experiments showed that the proposed method can produce optimal solutions for the
difficult Muth & Thompson’s 10x 10 benchmark and good solutions for randomly gener-
ated 2020 problems.

1. INTRODUCTION

Job-shop problems are among the hardest combinatorial optimization problems and
they have been the subject of a significant amount of literature in the operations research
area [11, 2, 9, 3, 1, 5]. The algorithms primarily used to solve job-shop problems are
the branch and bound methods and the performance of existing algorithms has been
evaluated using widely known benchmarks [11]. The main historical progress in solution
quality will be shown later with the experimental results.

When solving job-shop problems using GAs, it is difficult to code solutlons in binary and
define a crossover operator because the resulting binary strings after crossover are not
always feasible solutions to the target problems. This situation is similar to that encoun-
tered by Whitley e al.[14] in the Traveling Salesmen Problems, but more complicated.

In a previous paper by the authors, a binary-coding GA method was proposed to solve
job-shop problems by focusing attention on each job pair and its processing order. Good so-
lutions were obtained comparable to those obtained using the branch and bound methods
[12].

In this paper, a new method, called GA/GT, has been developed which uses more direct
codings and a new crossover operator based on the classic Giffler & Thompson’s algorithm
for generating active schedules.

Applying this method to Muth & Thompson’s difficult 10x 10 benchmark, optimal so-
lutions have been obtained. Moreover, applying the method to several larger problems
which were randomly generated with no known optimal solutions, very good solutions,
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if not optimal, when compared w1th randomly generated active schedules, have been
obtained. ‘

2. JOB-SHOP PROBLEMS

The nXxm (minimum-makespan) job-shop problem is as follows [13]. A set of n jobs
{Ji}1<i<n is to be processed on a set of m machines {M, }1<r<m. The processing of job J;
on machine M, is the operation O;;, where i € {1,...,m} indicates the position of the
operation in the technological sequence of the job. Operation O;; , requires the exclusive
use of M, for an uninterrupted duration p;;,, its processing time. The time required

to complete all the jobs is the makespan S,,,,. The objective is to determine the set of ‘
completion times for each operation {c; i }1<j<n, <ir<m, Which minimizes ..

Table 1
A 66 job-shop problem _
Job Operation routing (processing time)

1 3(1) 1(3) 2(6) 4(7) - 6(3) 5(6)
2 2(8) 3(5) 5(10) 6(10) 1(10) 4(4)
3 3(5) 4(4) - 6(8) 1(9) 2(1) 5(7)
4 2(5) 15) 3(5) 4(3) - 58 6(9)
5 3(9) 2(3) 5(5) 6(4) 1(3) 4(1)
6

2(3) 4(3) 6(9) 1(10) . 5(4) 3(1)
Reprinted from reference [11], pp. 226. ‘ '

Data for a 6x6 job-shop problem taken from reference [11] is given in Table 1. The
data includes the routing of each job through each machine and the processing time for
each operation (in the parentheses). Note that, given the routing matrix, an operation is
uniquely defined by its job number j and either its sequence index ¢ or its machine index
r, 80 either ¢ or r can be omitted like O;; or O; ,

There are several ways to represent solutlons to job-shop problems The follomng are
the three mam expressions:

A. Specify the set of completion times for each operation. (Gantt chart)

B. Specify the order of the operations on each machine.

C. Specify the order of the operations for each pair of operations on each machine.
(disjunctive graph)

For expression A, one of the optimal solutions to the data in Table 1 is given in Table

2 (matrix of {¢;;}). The visual version of Table 2 shown in Figure 1 is called the Gantt

chart. In Figure 1, the vertical axis indicates jobs although it usually indicates machines.

Each schedule is represented uniquely by A, but not by B, because each operation can
be postponed arbitrarily.

IThis index convention is used for all variables.
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Figure 1. Gantt chart of a solution to the 6x6 job-shop problem

Table 2
- Optimal solution to the 6x6 job-shop problem
Job “Completion times
1 1 4 22 37 45 55
2 8 13 23 38 48 52
3 6 10 18 27 28 49
4 13 18 27 30 38 54
5 22 25 30 42 51 53
6 16 19 28 38 42 43

The schedule which is represented uniquely by B is called a semiactive schedule, i.e., one
in which no operation can be started earlier without altering the machining sequences.
With regards to optimization, the acceptable solution must be semiactive.

Consider a semiactive schedule and two operations O;,» and Oy , in it which share the
same machine M,. If Oy , is processed prior to O; , and the machine M, has an idle
period longer than p; . before processing Oy ,, reassigning is possible so that operation
O, is processed prior to Oy, ,. Such reassigning is called permissible left shift. A schedule
having the property that no operation can be processed earlier by permissible left shift is
called an active schedule [6]. Optimal solutions are active schedules.

3. GIFFLER & THOMPSON’S ALGORITHM

Giffler & Thompson developed an algorithm to generate any one, or all, active sched-
ule(s) (GT algorithm) [6].

The GT algorithm is briefly reviewed in this section. Notations are the same as in
Section 1. v

Consider scheduling each operation in a temporal order. A set C of all the earliest
operations in technological sequence among the operations which are not yet scheduled
is defined (which is called cut). The earliest (possible) completion time EC;; is calculated
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~ for each operation O;; € C. ,
(A1) Find O;s ;« .+ which has a mlmmuszC inC: ECjs j» = mm{ECJ, | Oj; € C}

Specify G: a set of operatlons which consists of Oy, € C sharing the same machine N
M.« with Oj«;« ,+ and the processing of O;;,+ and O;s .« overlaps. G is called a
conflict set.

(A2) Choose one of the operatlons 0j,i, from G, and schedule Oj, ;, according to EC;

sils sils®

(A3) Update C' and ECs.

Repeat Step (A1) ~ Step (A3), until all operations are scheduled, and then an active
schedule is obtained.

In Step (A2), if all possﬂale choices are considered, active schedules are generated for
all® .

Operation with minimum earliest completion time (EC)
Update Cutand ECs

Cut
Job 1 Conflict
Job
Job¥ [ p pEanacine o ==machine 4=
h ch 3
Job 4 \n&\{{?\x\ . '\\ n{a\\{n e\&
PEm f Operation
Job § - inaching chosen zﬁ E>
Job 6 _____l_machine — machine 4=

Figure 2. Giffler & Thompson’s algorithm

4. THE NEW METHOD: GA/GT

4.1. Representation ‘ »

In most GAs, each individual is a binary string in which a solution of the target op-
timization problem is coded. In our method, each individual psn represents an active
schedule directly using elements {psn;;,.} of operation completion times according to
expression A (i.e., psn;;, = ¢ji,).

2Ties are broken randomly.
3But the amount is still very large.
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The makespan S,;, of the schedule represented by the individual psn is calculated as
follows:

Spm=maz{psnii |[1<j<mi=m)

4.2. GA/GT crossover
* Crossover is an operation which generates new 1nd1v1duals from two old individuals.
The algorithm describes how to generate a new individual, say a k:d, from two old indi-
viduals, say mom and dad.

¥ Mom is chosen

~ Cut of Kid

Confhct

Operation chosen

0s,,r*

Figure 3. GA/GT crossover

(C1) Do Step (A1) of the GT algorithm, obtain C, EC's and G.
(C2) Choose one of the ope’rations to be 'scheduled next from G as follows:-

(a) generate a random number ¢ € [0,1) and compare it with R, €[0,1) which is
a predefined constant called the mutation rate.

if (e < R,) then choose any operation O;, ;, from G (utation occurs).
(b) otherwise select either mom or dad with an equal probab1hty 1/2.
Mom is assumed to be selected.

Find an operation O;, ;, which was scheduled earliest in mom among all the

operations in G5:

s)ts

momy;, ;. = min{mom;; | 0;; € G} ' @)
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(c) schedule Oy, ;, according to EC}, ;,, then set kid;, ;, = EC;, ;.. .
(C3) Update C and ECs.

By repeating Step (C1) ~ Step (C3) until all operations are scheduled the new individual
kid is obtained.

In actual GA runs, these steps were applied twice to a pair of mom and dad, to obtain
two new individuals, say k:dl and kid2.

In order to keep the fittest individual so far existing in the current population (elitism),
~mom’ and dad’: individuals for the next generation, are selected from mom, dad, kidl and
" kid2 as follows:

Let mom' be the best one among mom, dad, kidl and kid2.

Let dad’ be the kid which was not selected as mom' or the better kid if neither was
selected previously.

4.3. Other operators :

Evaluation is straightforward because of the way each individual is represented in
Section 4.1 (Equation (1)).

The selection scheme and scaling method* used are standard as used in reference [8]
because this study focuses on the crossover effect.

Note that mutation is built into Step (C2-a) in the crossover .

4.4. Inheritance of characteristics _

Let us examine the GA/GT crossover in more detail. For ease of explanation, only
the case R, = 0 (no mutation) is considered. According to expression B in Section 2,
a schedule is the specification of the order of all operations on each machine. Because
G consists of the operations on a machine M, ., Step (C2-b) in Section 4.2 defines how
to specify the order of operations on machine M, .. If mom is chosen with a probability
1/2, Step (C2-b) makes the scheduling order of operations in G (on M*) in kid as close
to that in mom as possible, because among all operations in G, the operation which was
scheduled earliest in mom is also scheduled earliest in kid (Equation (2)).

In special cases, in Step (C2-b), if mom is chosen all the time, kid becomes equal to
mom.

5. EXPERIMENTAL RESULTS

5.1. Muth & Thompson’s benchmarks
Muth & Thompson’s benchmarks consist of three problems: 6x6, 10x10 and 20x5.
For more than 25 years, researchers in operations research have tested their algorithms
on these problems, solutions have gradually improved, and now optimal solutions have
been obtained. The historical progress in branch and bound methods® together with the

“We have to convert minimization problem to maximization problem.
SHowever Adams’ method is an approximation method.
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Table 3

Muth & Thompson’s benchmark
Papers - 6x6 10x10 - 20x5

- Balas (1969) 55 1177 1231
McMahon (1975) 55 972 ' 1165
Barker (1985) 55 960 1303
Adams (1988) .. ....55 930 1178
Carlier (1989) : 55 2930 1165
Nakano (1991) 55 , 965 1215
Yamada (1992) 55 930 1184
Optimal —... 930 1165

Lower Bound 52 880 ' 1164

authors’ best previous and current results are shown in Table 8. The lower bounds are
taken from Carlier’s paper [5].

The 6x6 problem is relatively easy: solutions with a makespan of 55 are always ob-
tained quickly even with a small population.

For the 10x 10 problem, Carlier et al. [5] first found a schedule with a makespan of 930
and proved its optimality. According to them, the practical complexity of this problem
is due to a gap of 15 percent between the initial lower bound and the optimal schedule
value. Optimal schedules with a makespan of 930 were found four times among 600 trials
using the proposed method which does not use lower bound information (Figure 4). One
trial requires about 10 minutes on a Sparc Station 2 and the programs are written in C
language.

To put it simply, the branch and bound method (BAB) consists of two operations: a
branch operation and a bound operation. The classic GT algorithm is often used as the
branch operation to solve job-shop problems using BAB [4]. :

The bound operation is the pruning and selection of one node according to the lower
bound after node generation by the branch operation. But the larger the problem, the
larger the gap between the initial lower bound and optimal solutions, which means bound-
ing is less effective. In such cases, an approximation method like the GA/GT method in
this paper can be an effective alternative.

5.2. Larger problems ;

Four 20x20 problems were generated with processing times randomly drawn from a
uniform distribution on the interval [10,50], and the GA/GT method was applied to these
problems. This resulted in very good solutions if not optimal, when compared with the
randomly generated 400,000 active schedules for each problem. The results are shown in
Table 4. A histogram of the results of problem No.1 in Table 4 is shown in Figure 5.

5.3. GA/GT crossover effect '

In the GA/GT crossover, if the algorithm is modified so that a new individual is created
by only using the mutation from one individual, an asexual recombination operator is
defined. To clarify the efficiency of the GA/GT crossover, the results of the (sexual)
GA/GT method were compared with those of the asexual method.
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Figure 4. Distribution of solutions (10x 10 problem)

Table 4
GA/GT v.s Random Samplings
20x20 problems Random GA/GT
No. Average Best Average Best

1 1356.8 1126 979 967
2 1318.6 1104 953 945
3 1313.5 1107 957 951
4

1414.3 1202 1060 1052

The changes in the best values in the population for each generation during the ex-
periments for problem No.1 are shown in Figure 6. Solid lines indicate 10 runs with
crossover and mutation (R, = 0.01) and dotted lines indicate 10 runs with mutation only
(R, = 0.1). Notice that without crossover, it takes more time to get a good solution than
with crossover, and the best solutions obtained vary widely for each run.

6. CONCLUSION

A method solving minimum-makespan job-shop problems using a Genetic Algorithm
based on Giffler & Thompson’s algorithm (GA/GT method) was investigated. Experiments
showed that the proposed approach generates good solutions for problems whose size the
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branch and bound approach can treat, and also larger problems.

Because the proposed method can beinterpreted as a combination of GAs and the branch
operation of BAB, this approach suggests new potential GA applications to combinatorial
optimization problems where BAB is the algorithm primarily used for solutions.

Currently, the rate of obtaining optimal solutionsis still small, so further improvements
to the algorithm are required, for example, integrating an alternative selection scheme
[7], or combining it with local search heuristics [10].
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