
Meta-heuristics: theory & applications
Kluwer academic publishers, MA, USA, 1996, pp. 237–248

Job-Shop Scheduling by Simulated Annealing
Combined with Deterministic Local Search

Takeshi Yamada and Ryohei Nakano
NTT Communication Science Laboratories

2 Hikaridai Seika-cho Soraku-gun Kyoto 619-02 JAPAN
E-mail: {yamada,nakano}@cslab.kecl.ntt.jp

Abstract:
The Job-Shop Scheduling Problem (JSSP) is one of the most difficult NP-hard combina-
torial optimization problems. This paper proposes a new method for solving JSSPs based
on simulated annealing (SA), a stochastic local search, enhanced by shifting bottleneck
(SB), a problem specific deterministic local search. In our method new schedules are gen-
erated by a variant of Giffler and Thompson’s active scheduler with operation permutations
on the critical path. SA selects a new schedule and probabilistically accepts or rejects it.
The modified SB is applied to repair the rejected schedule; the new schedule is accepted
if an improvement is made. Experimental results showed the proposed method found near
optimal schedules for the difficult benchmark problems and outperformed other existing
local search algorithms.

Key Words: Simulated annealing, shifting bottleneck, job-shop scheduling, heuristics,
local search

1. Background
Scheduling is allocating shared resources over time to competing activities. It has been
the subject of a significant amount of literature in the operations research area. Emphasis
has been on investigating machine scheduling problems where jobs represent activities and
machines represent resources; each machine can process at most one job at a time.

The n×m minimum-makespan general job-shop scheduling problem, hereafter referred
to as JSSP, can be described by a set of n jobs that is to be processed on a set of m machines.
Each job has a technological sequence of machines to be processed. Each operation re-
quires the exclusive use of each machine for an uninterrupted duration called processing
time. The time required to complete all jobs is called makespan. The objective when
solving or optimizing this general problem is to determine the processing order of all op-
erations on each machine that minimizes the makespan. The JSSP is not only NP-hard ,
but is extremely difficult to solve optimally. An indication of this is given by the fact that
one 10 × 10 problem formulated by Muth and Thompson (1963) remained unsolved for
over 20 years.

Besides exhaustive search algorithms based on branch and bound methods, several ap-
proximation algorithms have been developed. The most popular ones in practice are based
on priority rules and active schedule generation. Adams, Balas and Zawack (1988) devel-
oped a more sophisticated method called shifting bottleneck (SB) which has been shown
to be very successful. Stochastic approaches such as simulated annealing (SA), genetic
algorithms and tabu search have been recently applied with good success.

This paper proposes a powerful method to solve the JSSP. The method is based on a
combination of critical block simulated annealing (CBSA): a stochastic local search method

1

proposed by Yamada, Rosen and Nakano (1994), and shifting bottleneck: a deterministic
local search method.
CBSA possessed the simplicity and flexibility of SA, worked well for difficult benchmark
problems, and outperformed the existing SA approaches. However more recent approa-
ches perform better than CBSA. In the present method, a modified SB is applied to repair
the rejected schedule of CBSA and the new schedule is accepted if it is improved. By
adding a long jump of SB, the new CBSA can omit many time-consuming transitions to
make its search much more efficient.

2. Neighborhood Structure
2.1. Critical blocks
A JSSP is often described by a disjunctive graph G = (V, C ∪ D), where

• V is a set of nodes representing operations of the jobs together with two special nodes, a
source (0) and a sink ?, representing the beginning and end of the schedule, respectively.

• C is a set of conjunctive arcs representing technological sequences of the operations.
• D is a set of disjunctive arcs representing pairs of operations that must be performed on

the same machines.

The processing time for each operation is the weighted value attached to the corresponding
nodes.

conjunctive arc (technological sequences)
disjunctive arc (pair of operations on the same machines)

Oi j : an operation of job i on machine j

Pi j : processing time of Oi j

P32

?

sink

source

(0)

O11 O12 O13

O21 O23 O22

O32 O31 O33

P11 P12 P13

P21 P23 P22

P31 P33

Figure 1: The disjunctive graph G of a 3 × 3 problem

Scheduling is to define ordering between all operations that must be processed on the
same machine, i.e. to fix precedences between these operations. In the disjunctive graph
model, this is done by turning all undirected (disjunctive) arcs into directed ones. The set
of all directed arcs selected from disjunctive arcs is called selection. A selection S defines a
feasible schedule if and only if the resulting directed graph is acyclic. For such a case, S is
called a complete selection. A complete selection and the corresponding feasible schedule
can be used interchangeably and represented by the same symbol S. Makespan is given
by the length of the longest weighted path from source to sink in this graph. This path P
is called critical path and is composed of a sequence of critical operations. A sequence of
consecutive critical operations on the same machine is called a critical block.

2

2.2. Critical block neighborhood
For a JSSP, a neighborhood N(S) of a schedule S can be defined as the set of feasible sched-
ules that can be reached from S by exactly one transition (a single perturbation of S). For
example, a transition operator that exchanges a pair of consecutive operations in a critical
block and forms a neighborhood has been used in Laarhoven, Aarts and Lenstra (1992)
and in Taillard (1994). The transition operator was originally defined by Balas (1969) in
his branch and bound approach. Another very powerful transition operator was used in
Brucker, Jurisch and Sievers (1994) and in Dell’Amico and Trubian (1993). The transi-
tion operator permutes the order of operations in a critical block by moving an operation
to the beginning or end of the critical block, thus forming a CB neighborhood.

A schedule obtained from S by moving an operation within a block to the front of the
block is called a before candidate, and a schedule moving an operation to the rear of the
block is called an after candidate. A set of all before and after candidates N ′C(S) may
contain infeasible schedules. The CB neighborhood is given as:

N C(S) = {S′ ∈ N ′C(S) | S′ is a feasible schedule}.

It has been experimentally shown by Yamada, Rosen and Nakano (1994) that the CB neigh-
borhood is more powerful than the former one.

A schedule’s makespan may often be reduced by shifting an operation to left without
delaying other jobs. When no such shifting can be applied to a schedule, it is called an ac-
tive schedule. An optimal schedule is clearly active so it is safe and efficient to limit search
space to the set of all active schedules. An active schedule is generated by the GT algo-
rithm proposed by Giffler and Thompson (1960). The outline is described in Algorithm
2.1. In the algorithm, the earliest completion time EC(O) of an operation O means its
completion time when processed with highest priority. An active schedule is obtained by
repeating the algorithm until all operations are processed. In step 3 , if all possible choices
are considered, all active schedules will be generated, but the total number will still be very
large.

Algorithm 2.1 GT algorithm
1. Let O∗ be an operation with the minimum among the earliest completion times of un-

scheduled operations and M∗ be the machine which processes O∗:
EC(O∗) = min{EC(O) | O : unscheduled}.

2. Assume j − 1 operations have been processed on M∗. A conflict set C[M∗, j] means a
set of unscheduled operations on M∗ each of whose processing overlaps with O∗.

3. Select an operation O from C[M∗, j] and schedule it as the j -th operation on M∗ with
its completion time equals to EC(O).

As explained above, a before or after candidate is not necessarily executable. In the
following, we propose a new neighborhood similar to CB neighborhood; its element is not
only executable, but also active and close to the original. Let S be an active schedule and
Bk,h,M be a block of S on a machine M , where the front and the rear operations of Bk,h,M are
the k-th and the h-th operations on M respectively. Let Op,M be an operation in Bk,h,M that
is the p-th operation on M . Algorithm 2.2 generates an active schedule SM,p,k (or SM,p,h)
by modifying S such that Op,M at the position p is moved to the position as close to the

3

front position k (or the rear position h) of Bk,h,M as possible. Parts of the algorithm are due
to Dell’Amico and Trubian (1993). The new neighborhood ANC(S) is now defined as a
set of all SM,p,k’s and SM,p,h’s over all critical blocks:

AN C(S) =
⋃

Bk,h,M

{S′ ∈ {SM,p,k}k<p<h ∪ {SM,p,h}k<p<h, S′ 6= S}.

Algorithm 2.2 Modified GT algorithm generating SM,p,k or SM,p,h

1. Same as step 1 of Algorithm 2.1.
2. Same as step 2 of Algorithm 2.1.
3. CASE 1: SM,p,k generation

• If k ≤ j ≤ p and Op,M ∈ C[M∗, j], then select and schedule Op,M .
• Otherwise, select and schedule from C[M∗, j] the earliest operation in S.

CASE 2: SM,p,h generation
• If p ≤ j ≤ h and C[M∗, j] contains an operation other than Op,M , then select and

schedule from C[M∗, j] \ {Op,M} the earliest operation in S.
• If j = h or C[M∗, j] = {Op,M}, then select and schedule Op,M .
• Otherwise, select and schedule from C[M∗, j] the earliest operation in S.

3. Critical Block Simulated Annealing
Critical block simulated annealing (CBSA) proposed by Yamada, Rosen and Nakano (1994)
is a method of searching job shop scheduling space by using simulated annealing with
N C(S) as the neighborhood of a schedule S. CBSA consists of three parts: the main part
is the iteration loop shown in Algorithm 3.1; the warmup is a reverse annealing process
which adaptively determines initial and final temperatures after starting at a sufficiently
low temperature; the reintensification strategy makes the system jump from the current
state to the best one obtained so far if no better solution is found after a large number R of
acceptances (R is called the reintensification frequency). In this paper, CBSA is extended
to use AN C(S) instead of N C(S).

Algorithm 3.1 CBSA main loop
1. Set S = S0, a randomly generated initial schedule with makespan L(S0), the initial step

counter k = 0, and Tk=0 = T0, the initial temperature.
2. Repeat the following steps:

(a) Pick S′ from ANC(S) randomly.
(b) Accept S′ probabilistically according to the Metropolis Criterion, i.e. choose S′ with

probability one if L(S′)≤ L(S), and with
e−(L(S′)−L(S))/Tk otherwise.

(c) If S ′ is accepted, set S = S′.
3. Set k = k +1 and decrease the current temperature Tk according to the annealing sched-

ule.
4. If Tk > Tf , the final temperature, go to step 2; otherwise stop.

In Algorithm 3.1, if the acceptance probabilities are low for all members in ANC(S),
the system will remain trapped in a local minimum S and it will take a long time to move

4

to a new state. The algorithm may stay in S even after all members are selected in step 2a
and evaluated in step 2b. To avoid this, relative acceptance probability P(Si) =
P(Si)/

∑
S j ∈ANC (S) P(Sj) for each Si ∈ AN C(S) will be introduced after all members in

AN C(S) are visited. The member Si in AN C(S) is then randomly selected in proportion to
P(Si), and the system moves unconditionally to Si . This modification is effective because
the neighborhood size is limited. Therefore, Algorithm 3.1 is modified as in Algorithm
3.2.

Algorithm 3.2 Modified version of CBSA main loop
1. Set S = S0, k = 0, and Tk=0 = T0. Set the number of ANC(S) members already visited

n = 0.
2. Repeat the following steps:

(a) Select Si from AN C(S) randomly. Calculate L(Si) and set n = n + 1 if Si is not yet
visited.

(b) Accept Si with probability one if L(Si) ≤ L(S), and with P(Si) = e−(L(Si)−L(S))/Tk

otherwise.
(c) If Si is accepted, then set S = Si , n = 0.

Or if n = N , select S′ from AN C(S) in proportion to the probability
P(S′) = P(S′)/

∑
S j ∈ANC (S) P(Sj), and set S = S′, n = 0.

3. Set k = k + 1 and decrease Tk according to the annealing schedule.
4. If Tk > Tf , go to step 2; otherwise stop.

4. CBSA enhanced by Shifting Bottleneck
Shifting bottleneck (SB) proposed by Adams, Balas and Zawack (1988) is a powerful method
for solving a JSSP. In the method, a one machine scheduling problem (a relaxation of the
original JSSP) is solved for each machine not yet sequenced, and the outcome is used to
find a bottleneck machine, a machine of the longest makespan. Every time a new machine
has been sequenced, the sequence of each previously sequenced machine is subject to re-
optimization. SB consists of two subroutines: the first one (SBI) repeatedly solves one ma-
chine scheduling problems; the second one (SBII) builds a partial enumeration tree where
each path from the root to a leaf is similar to an application of SBI.

SBI is a constructive method that generates a complete schedule from scratch. Modify-
ing the method is necessary in order to refine a certain complete schedule for improvement.
The BottleRepair shown in Algorithm 4.2 describes an iterative version of the basic SB.
The reoptimization process used here is the same as used in Algorithm 4.1. The basic idea
of BottleRepair comes from the original paper of SB (1988) where the last α noncritical
machines are temporarily removed for the reoptimization.

Algorithm 4.1 SBI
1. Set S = ∅ and make all machines unsequenced.
2. Solve a one machine scheduling problem for each unsequenced machine. Among the

unsequenced machines, find the bottleneck machine and add its schedule to S. Make
the machine sequenced.

3. Reoptimize all sequenced machines in S.
4. Go to step 2 unless S is completed; otherwise stop.

5

As shown in Algorithm 3.2, Si is selected from ANC(S) and is probabilistically ac-
cepted. BottleRepair is applied to Si only when Si is rejected. The resulting schedule Si

∗

is accepted if its makespan is shorter than that of S. To summarize, step 2b-1 as defined
in Algorithm4.3 is added to Algorithm 3.2 just after step 2b.

Algorithm 4.2 BottleRepair: Iterative SB
1. A certain complete schedule S is given. Reset all sequences of all the non-critical ma-

chines (machines which do not include any part of critical path in S) and make the ma-
chines unsequenced.

2. Reoptimize all sequenced machines.
3. Solve a one machine scheduling problem for each unsequenced machine. The machines

are ranked by the makespans. The next two steps are applied in the descending order of
rank.

4. Solve a one machine scheduling problem and add its schedule to S. Make the machine
sequenced.

5. Reoptimize all the sequenced machines.

BottleRepair gives a systematic way to inspect the schedule’s critical path and per-
mutes operations again and again by repeatedly solving one machine problems in a de-
terministic manner. If it generates an improved schedule S′ from S, the critical path of S′

becomes different from S and the difference is much greater than that between S and its
CBSA neighbor. On the other hand, CBSA gives a stochastic more focused local search
around the current critical path. The proposed integration of CBSA and SB is expected
to have the synergistic effect as: SB gives a long jump to CBSA so that it can omit many
time-consuming inferior transitions and CBSA adds stochastic perturbations to SB so that
it can escape from the local minima.

Algorithm 4.3 SB enhancement for CBSA
2b-1 If Si is rejected, apply BottleRepair to Si and generate Si

∗.
Accept Si

∗ and set Si = Si
∗ if L(Si

∗) < L(S).

5. Experimental Results
5.1. Muth and Thompson’s Benchmark
A 10×10 problem (mt10) and 20×5 problem (mt20) formulated by Muth and Thompson
(1963) (MT benchmarks) are well known benchmark JSSPs. CBSA with and without SB
modification was evaluated using these problems. Table 1 shows the results of 20 trials
with different random number seeds on a SUN SPARC station 10. All programs are written
in the C language.

Results for the mt10 problem using CBSA without SB show that the optimal solutions
of L = 930 were found in 11 trials. The average cpu time was 3 min. 10 sec., and the
fastest was 1 min. 21 sec. Although the solutions of L = 930 were found in only half
of the trials, the cpu time in successful runs were satisfactorily short. If the temperature
is more slowly lowered, though it takes longer, the rate of finding optimal solutions will
become higher as in Yamada, Rosen and Nakano (1994). CBSA without SB could not find

6

Table 1: Comparisons between CBSA and CBSA+SB using MT benchmarks

CBSA (R = 6, 000) CBSA+SBProb n × m
best mean std BT best mean std BT

mt10 10 × 10 930 933.65 4.04 190 930 932.45 3.01 786
mt20 20 × 5 1178 1179.45 1.94 235 1165 1165.00 0.00 449
std: standard deviation
BT: average cpu time (sec.) to find the best solution

any optimal solution for mt20 problem. In most cases, solutions of L = 1178 were found
instead of the optimal L = 1165.

The results for the mt10 problem using CBSA with SB modification show that the
number of trials finding optimum solutions increased slightly, but the average cpu time
increased about four times. This fact indicates that CBSA without SB is powerful enough
to solve mt10 problem. On the other hand, all 20 trials with SB modification for mt20
problem found the optimal solutions of L = 1165 in an average cpu time of 7 min. 29
sec., and 1 min. 22 sec. was the best time. The effect of SB enhancement is obvious from
this problem. Reintensification did not work well because the optimal or near optimal so-
lutions were obtained at an early stage of the search.

5.2. Other Benchmarks
Results in the previous section indicate that if CBSA without SB can solve a problem
skillfully, applying CBSA+SB has no advantage. However, if CBSA fails to work well,
CBSA+SB may improve solution quality and compensate for the extra cpu time needed
with SB enhancement. A set of benchmark problems has been established to evaluate dif-
ferent algorithms for JSSPs. Table 2 shows the makespan performances of CBSA+SB
and various other algorithms for the ten difficult benchmark JSSPs. All experiments of
CBSA+SB runs were done on a HP 730 (HP 730 is about 1.5 times faster than SUN SPARC
station 10).

The LB column indicates the theoretical lower bound of the problem if the optimal
makespan is unknown. The CBSA+SB column indicates the best makespans found from
ten trials. Each trial used a reintensification frequency of R = 1, 000 and ran for three
hours or until the known optimal makespan or lower bound was found. The column head-
ings Aart, Matt, Appl and Tail indicate the best performances of those in Aarts et al. (1994),
Mattfeld, Kopfer and Bierwirth (1994), Applegate and Cook (1991) and Taillard (1994)
respectively.

7

Table 2: Results of 10 tough JSSPs

CBSA+SBProb n×m LB
best mean std. BT

Aart Matt Appl Tail

abz7 20×15 654 665 671.0 3.92 7814 668 672 668 665
abz8 20×15 635 675 680.0 3.13 8775 670 683 687 676
abz9 20×15 656 686 698.6 7.42 8749 691 703 707 691
la21 15×10 1040 1046 1049.3 3.32 361 1053 1053 1053 1047
la24 15×10 – 935 939.2 1.99 6226 935 938 935
la25 20×10 – 977 979.3 1.62 4117 983 977 977
la27 20×10 1235 1235 1242.4 6.15 7805 1249 1236 1269 1240
la29 20×10 1120 1154 1162.4 7.10 5434 1185 1184 1195 1170
la38 15×15 1184 1198 1206.8 4.53 3479 1208 1201 1209 1202
la40 15×15 – 1228 1230.2 2.32 3331 1225 1228 1222

1235

1285

1335

1385

1435

1485

1535

1585

1635

0 2 4 6 8

L = 1235

L = 1291

Initial Schedule: L = 1665

T = 0.0

T = 6.24

T = 17.19

Temperature (T)

Makespan (L)

M
ak

es
pa

n

L = 1269
CPU time ×103

Figure 2: The time evolution of CBSA+SB trial for the la27 problem

Figure 2 shows the time evolution of the makespan (L) and temperature (T) of the best
trial of CBSA+SB for the la27 problem. The abscissa shows the cpu time in seconds, and
the solid and dotted lines show the makespan and the temperature respectively. Starting
from the makespan value L = 1665, it rapidly decreases to L = 1291 during the first
warmup interval. After twelve times of reintensification, it finally reached the optimal
value L = 1235. In this experiment, 56059 schedules were generated and 8850 sched-
ules accepted. About 25% of the accepted schedules were accepted by BottleRepair to
add CBSA long jumps and the rest served as stochastic perturbations to BottleRepair. The
oscillatory behavior is due to reintensification.

Although CBSA+SB outperformed other methods most of the cases in Table 2, the
required computational time is much longer. For example, Vaessens, Aarts and Lenstra
(1994) reported that Applegate’s method in the Appl colum found a schedule of L = 1269
in 604.2 sec. on SUN SPARC station ELC which is about 10 times slower than HP 730.

8

Table 3: An optimal solution of la27 problem

m Job sequences on each machine
1 18 9 4 2 11 3 12 8 10 7 13 15 20 1 6 19 5 14 17 16
2 14 9 8 12 3 17 15 4 10 13 6 7 11 19 1 2 18 16 20 5
3 11 14 3 19 10 4 9 5 6 2 16 17 13 15 7 20 18 12 8 1
4 6 11 10 1 19 3 8 13 15 18 2 12 14 17 4 7 9 16 20 5
5 12 3 5 6 20 13 11 8 1 17 9 19 7 14 2 16 18 15 10 4
6 19 18 11 8 14 7 3 16 2 17 1 10 9 5 13 6 20 4 12 15
7 17 2 13 15 9 8 19 7 6 20 10 18 14 16 5 4 3 1 11 12
8 2 12 16 14 11 10 3 5 19 20 6 7 13 17 8 18 15 1 4 9
9 18 12 3 14 11 10 16 8 19 13 4 6 15 2 17 20 1 9 7 5

10 13 20 18 9 4 5 11 6 3 8 2 19 10 14 1 17 7 15 16 12
m: machine

This is because each CBSA+SB experiment includes a lot of unsuccessful BottleRepair
trials. But this gap can be filled to some extent by the fact that in the same experiment,
CBSA+SB passed a point L = 1269 in 164 sec.

6. Conclusion
The proposed method CBSA+SB is an improved CBSA enhanced by integrating with a
problem specific method called shifting bottleneck. The performance of CBSA+SB was
evaluated using difficult benchmark problems. The results show that for eight problems
of ten difficult benchmark problems, CBSA+SB could find schedules better than or equal
to the best schedules published so far in the literature, when enough computational time is
given. A new solution of L = 1235 was found for the la27 problem; it is optimal because
the value equals the theoretical lower bound. Further research is necessary to reduce the
computational time.

7. References
E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra and N.L.J. Ulder, A computational study

of local search algorithms for job shop scheduling, ORSA J. on Comput., 6 (1994) 118.
J. Adams, E. Balas and D. Zawack, The Shifting Bottleneck Procedure for Job Shop

Scheduling, Mgmt. Sci., 34 (1988) 391.
D. Applegate and W. Cook, A Computational Study of the Job-Shop Scheduling Problem,

ORSA J. on Comput., 3 (1991) 149.
E. Balas, Machine sequencing via disjunctive graphs: an implicit enumeration algorithm,

Oper. Res., 17 (1969) 941.
P. Brucker, B. Jurisch and B. Sievers, A Branch & Bound Algorithm for the Job-Shop

Scheduling Problem, Discrete Applied Mathematics, 49 (1994) 107.
D.C. Mattfeld, H. Kopfer, and C. Bierwirth, Control of Parallel population dynamics by

social-like behavior of ga-individuals, In: Proc. of PPSN 3rd (Springer-Verlag, 1994)
p. 16.

M. Dell’Amico and M. Trubian, Applying tabu search to the job-shop scheduling problem,
Annals of Oper. Res., 41 (1993) 231.

9

B. Giffler and G.L. Thompson, Algorithms for solving production scheduling problems.
Oper. Res., 8 (1960) 487.

P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra, Job Shop Scheduling by Simulated
Annealing, Oper. Res., 40 (1992) 113.

J.F. Muth and G.L. Thompson, Industrial Scheduling, (Prentice-Hall, New Jersey, 1963).
E.D. Taillard, Parallel taboo search techniques for the job-shop scheduling problem, ORSA

J. on Comput., 6 (1994) 108.
R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra, Job shop scheduling by local search,

Tech. rept., COSOR 94-05, Eindhoven University of Technology, Dpt. of Math. and
CS, NL (1994).

T. Yamada, B.E. Rosen and R. Nakano, A Simulated Annealing Approach to Job Shop
Scheduling using Critical Block Transition Operators, In: Proc. of IEEE ICNN (IEEE,
Florida, 1994).

10

