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Preface

Scheduling has been a subject of a significant amount of literature in the operations research field
since the early 1950s. The main objective of scheduling is an efficient allocation of shared re-
sources over time to competing activities. Emphasis has been on investigating machine schedul-
ing problems where jobs represent activities and machines represent resources. The problem is
not onlyNP-hard, but also has a well-earned reputation of being one of the most computation-
ally difficult combinatorial optimization problems considered to date. This intractability is one
of the reasons why the problem has been so widely studied. The problem was initially tackled by
“exact methods” such as the branch and bound method (BAB), which is based on the exhaustive
enumeration of a restricted region of solutions containing exact optimal solutions. Exact meth-
ods are theoretically important and have been successfully applied to benchmark problems, but
sometimes they are quite time consuming even for moderate-scale problems.

With a rapid progress in computer technology, it has become even more important to find
practically acceptable solutions by “approximation methods” especially for large-scale prob-
lems within a limited amount of time. Stochastic local search methods are such approximation
methods for combinatorial optimization. They provide robust approaches to obtain high-quality
solutions to problems of realistic sizes in reasonable amount of time. Some of stochastic local
search methods are proposed in analogies with the processes in nature, such as statistical physics
and biological evolution, and others are proposed in the artificial intelligence contexts. They
often work as an iterative master process that guides and modifies the operations of subordinate
heuristics; thus they are also calledmetaheuristics. Metaheuristics have been applied to wide
variety of combinatorial optimization problems with great successes.

The primary focus of this thesis is applications of metaheuristics, especially Genetic Al-
gorithms (GAs), Simulated Annealing (SA) and Tabu Search (TS), to the jobshop scheduling
problem (and the flowshop scheduling problem as its special case) which is among the hardest
combinatorial optimization problems. The author hopes that the research in this dissertation will
help advance in the understanding of this significant field.

November, 2003
Takeshi Yamada

i



Acknowledgements

I wish to express my sincere gratitude to Professor Toshihide Ibaraki of Kyoto University for his
supervising this thesis. He read the manuscript very carefully and made many valuable sugges-
tions and comments, which improved the accuracy and quality of this thesis. I also thank Pro-
fessor Masao Fukushima, Professor Yutaka Takahashi, Professor Hiroyuki Kawano, Professor
Mutsunori Yagiura and Professor Koji Nonobe of Kyoto University for their useful comments.

The research reported in this thesis was supported by Nippon Telegraph and Telephone Cor-
poration (NTT). I am grateful to Professor Seishi Nishikawa, Professor Tsukasa Kawaoka, Dr.
Kohichi Matsuda, Professor Yoh’ichi Tohkura, Professor Kenichiro Ishii, former directors of
NTT Communication Science Laboratories, Dr. Noboru Sugamura and Dr. Shigeru Katagiri,
director and vice director of NTT Communication Science Laboratories, for their warm encour-
agement and for providing me the opportunity to study these interesting subjects.

I am deeply indebted to Professor Ryohei Nakano of Nagoya Institute of Technology. He had
been my supervisor for more than ten years since I first started my research career at NTT fifteen
years ago. This thesis would not have been possible without his support and encouragement. I
am also indebted to Professor Colin Reeves of Coventry University. Some of the work have been
done while I was working with him as a visiting researcher at the university in 1996. I wish to
express my many thanks to Professor Bruce Rosen of University of California. The collaboration
with him while he was visiting NTT in 1994 is very important especially for the early stage of
the work.

I am also grateful to Dr.Ueda and Dr.Saito of NTT Communication Science Laboratories for
their encouragement and long standing friendship.

Finally, I thank my parents for their endless support and encouragement, and my wife Kazumi
to whom I dedicate this work, for everything else.

ii



Contents

1 Introduction 1
1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Job Shop Scheduling Problem 5
2.1 The Problem Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Active Schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Disjunctive Graph Representation. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 DG Distance and Binary Representation. . . . . . . . . . . . . . . . . . . . . . 15
2.5 Block Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.6 The Shifting Bottleneck Heuristic. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 The One-machine Scheduling Problem. . . . . . . . . . . . . . . . . . . . . . . 20
2.8 The Well-known Benchmark Problems. . . . . . . . . . . . . . . . . . . . . . . 25

3 Genetic Algorithms 30
3.1 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.2 A Simple Genetic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.3 The Procedure of a Simple Genetic Algorithm. . . . . . . . . . . . . . . . . . . 33

4 A Simple Genetic Algorithm for the Jobshop Scheduling Problem 35
4.1 Genetic Encoding of a Solution Schedule. . . . . . . . . . . . . . . . . . . . . 35
4.2 Local harmonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
4.3 Global harmonization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.4 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.5 Simple GA for the JSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4.6 The Limitation of the Simple Approach. . . . . . . . . . . . . . . . . . . . . . 40

5 GT-GA: A Genetic Algorithm based on the GT Algorithm 42
5.1 Subsequence Exchange Crossover. . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Precedence Preservative Crossover. . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 GT Crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
5.4 GT-GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
5.5 Computational Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . .48

iii



iv CONTENTS

5.6 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

6 Neighborhood Search 52
6.1 The Concept of the Neighborhood Search. . . . . . . . . . . . . . . . . . . . . 52
6.2 Avoiding Local Optima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
6.3 The Neighborhood Structure for the Jobshop Scheduling Problem. . . . . . . . 54

7 Critical Block Simulated Annealing for the Jobshop Scheduling Problem 57
7.1 Simulated Annealing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
7.2 Critical block Simulated Annealing. . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Reintensification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.4 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.5 Methodology and Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

7.5.1 Random Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
7.5.2 Low Temperature Greedy Search. . . . . . . . . . . . . . . . . . . . . 65

7.6 Performance on Benchmarks Problems. . . . . . . . . . . . . . . . . . . . . . . 67
7.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

8 Critical Block Simulated Annealing with Shifting Bottleneck Heuristics 71
8.1 Active Critical Block Simulated Annealing. . . . . . . . . . . . . . . . . . . . 71
8.2 Active CBSA Enhanced by Shifting Bottleneck. . . . . . . . . . . . . . . . . . 72
8.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

8.3.1 Muth and Thompson’s Benchmark. . . . . . . . . . . . . . . . . . . . . 76
8.3.2 Other Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

8.4 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

9 Scheduling by Genetic Local Search with Multi-Step Crossover Fusion 79
9.1 Multi-step crossover fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
9.2 Scheduling in the reversed order. . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3 MSXF-GA for Job-shop scheduling. . . . . . . . . . . . . . . . . . . . . . . . 83
9.4 Benchmark Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

9.4.1 Muth and Thompson benchmark. . . . . . . . . . . . . . . . . . . . . . 85
9.4.2 The Ten Tough Benchmark Problems. . . . . . . . . . . . . . . . . . . 85

10 Permutation Flowshop Scheduling by Genetic Local Search 89
10.1 The Neighborhood Structure of the FSP. . . . . . . . . . . . . . . . . . . . . . 89
10.2 Representative Neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . .91
10.3 Distance Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
10.4 Landscape analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
10.5 MSXF-GA for PFSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
10.6 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
10.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98



CONTENTS v

11 CsumPermutation Flowshop Scheduling by Genetic Local Search 99
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
11.2 Representative Neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . .99
11.3 Tabu List Style Adaptive Memory. . . . . . . . . . . . . . . . . . . . . . . . .100
11.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
11.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

12 Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem 103
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
12.2 Tabu Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
12.3 Pruning Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
12.4 Pruning Pattern List Approach. . . . . . . . . . . . . . . . . . . . . . . . . . .105
12.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
12.6 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

13 Conclusions 110

A List of Author’s Work 118



List of Figures

2.1 The job sequence matrix{T jk} and the processing time matrix{pjk} for the 3×
3 problem given in Table2.1. T jk = r means thatk-th operation for jobJj is
processed on machineMr for p jk time units. . . . . . . . . . . . . . . . . . . . . 6

2.2 A Gantt chart representation of a solution for the 3× 3 problem given in Ta-
ble 2.1. OperationO31 can be shifted as early as at 5 time unit, as indicated by
dotted lines, without altering the order of operations on any machine, and the
new schedule becomes semi-active.. . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 The solution matrixSrk for the solution given in Figure2.2. Srk = j means that
thek-th operation on machineMr is job Jj. . . . . . . . . . . . . . . . . . . . . . 8

2.4 An example of a permissible left shift, where in the upper picture,O12 can be
shifted to the front ofO32 without delaying any other operations resulted in a
much improved schedule given in the lower picture.. . . . . . . . . . . . . . . . 9

2.5 A snapshot in the middle of scheduling using Giffler and Thompson’s algorithm,
whereO11,O22,O31,O43,O51 andO64 are schedulable.O11 is the earliest com-
pletable operation, andO11 andO31 are in conflict withO11. O31 is selected for
the next operation to be scheduled and thenO11 andO51 must be shifted forward
to avoid overlapping.O31, which is the next operation toO31 in the technological
sequence, now becomes schedulable.. . . . . . . . . . . . . . . . . . . . . . . 12

2.6 A disjunctive graph representation of a 3× 3 problem . . . . . . . . . . . . . . . 13
2.7 The DG distance between two schedules: the distance= 2. . . . . . . . . . . . . 15
2.8 Labeling disjunctive arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.9 An example in which there are three critical blocks is illustrated. The blocksB1,

B2 andB3 are on the critical pathP(S) and are corresponding to the different ma-
chinesMr1, Mr2 andMr3 respectively. The adjacent critical blocks are connected
by a conjunctive arc. The last operation on machineMr3 is not a critical block,
which must contain at least two operations.. . . . . . . . . . . . . . . . . . . . 17

2.10 The condition that no operation in a block inS is processed before the first or
after the last operation of the block inS′ implies that all the operations inBi are
processed prior to those inBj both in S andS′ if i < j, because each adjacent
blocks are connected by a conjunctive arc that cannot be altered. Hence, there
is a pathP(S′) in S′ that contains all the operations onP(S) and the length of
P(S′) is greater than the length ofP(S). . . . . . . . . . . . . . . . . . . . . . . 18

2.11 A Schrage schedule represented by a conjunctive graph. . . . . . . . . . . . . . 22

vi



LIST OF FIGURES vii

3.1 An example of the roulette wheel selection, where the roulette wheel is created
according to the fitness value of each individual shown in the upper left picture. 33

4.1 An optimal schedule for the mt06 (6× 6) problem (makespan= 55) . . . . . . . 37
4.2 A binary representation of a solution schedule using the job-based ordering cor-

responding to the solution given in Figure4.1. The first line corresponds to the
precedence relation betweenJ1 andJ2. The first three digits of the bit-string on
the first line are 110. This corresponds to the fact thatJ1 is processed prior toJ2

on J1’s first and second machinesM3 andM1, but is not prior toJ2 on J1’s third
machineM2 and so on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

4.3 An example of the local harmonization resolving cycles within six operations
O11,O21, . . . ,O61 on the same machineM1 where the arcsO31→O61, O21→O41

andO11→ O61 are reversed in this order and a consistent orderingO41→ O61→
O51→ O11→ O21→ O31 is eventually obtained. . . . . . . . . . . . . . . . . . 39

4.4 An example of global harmonization where a cycleO23→ O22→ O32→ O31→
O33→ O23 is resolved by reversing an arcO22→O32. . . . . . . . . . . . . . . . 39

5.1 The solution given in Figure2.3 is converted to anm-partitioned permutation for
m = 3, where the permutation in thek-th partition corresponds to the processing
order of jobs on machineMk . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

5.2 An example of subsequence exchange crossover (SXX), where each underlined
subsequence pair one fromp0 and the other fromp1 on each machine is identified
as exchangeable and interchanged to generatek0 andk1 . . . . . . . . . . . . . . 44

5.3 A job sequence (permutation with repetition) for a 3× 3 problem defined in
Figure2.1 is decoded to a schedule, which is equivalent to the one in Figure2.3. . 44

5.4 An example of the precedence preservative crossover (PPX), wherek is gener-
ated fromp0 andp1 usingh . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

5.5 GT crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
5.6 The histgram of the best makespans obtained by the GT-GA after 200 generations

among 600 trials for the mt10 problem. . . . . . . . . . . . . . . . . . . . . . . 50
5.7 relationship between various crossover operators. . . . . . . . . . . . . . . . . 51

6.1 AE(S), adjacent exchange neighborhood ofS, consists of schedules obtained
from S by exchanging a pair of adjacent operations within a same critical block.. 55

6.2 CB(S), critical block neighborhood ofS, consists of schedules obtained fromS
by moving an operation in a critical block to the front or the rear of the block.. . 55

7.1 Generated Makespans of 10,000Greedy(mt10) Schedules.. . . . . . . . . . . . 66
7.2 Successive makespan differences between the current and optimal solution of the

mt10 problem, without reintensification (R=0) and with reintensification (R =

3,000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

8.1 The time evolution of CBSA+SB trial for the la27 problem. . . . . . . . . . . . 77



viii LIST OF FIGURES

9.1 A simple 2× 2 problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
9.2 Schedule reversal and activation. . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3 Distribution of solutions generated by an application of (a) MSXF and (b) a

short-term stochastic local search. . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.4 Performance comparison using the la38 15× 15 problem . . . . . . . . . . . . . 87

10.1 A grid graph representation of a solution to a problem of 8 jobs and 6 machines.. 90
10.2 The best move to the next/previous block is selected as a representative.. . . . . 91
10.3 1841 distinct local optima obtained from 2500 short term local search for the

ta011 (20× 10) problem and 2313 distinct local optima for the ta021 (20× 20)
problem are plotted in terms of (a) average distance from other local optima and
(b) distance from global optima (x-axis), against their relative objective function
values (y-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

10.4 The correlation between the precedence-based distance (PREC) and the approx-
imate number of steps (STEPS). . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.5 The correlation between the precedence-based distance (PREC) and the position-
based distance (POSN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

10.6 Navigated local search by MSXF-GA: A new search is started from one of the
parents and while no other good solutions are found, the search ‘navigates’ to-
wards the other parent. In the middle of the search, good solutions would be
eventually found somewhere between the parents. That direction is then pursued
to the top of a hill (or a bottom of the valley, if it is a minimization problem) —
a new local optimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

11.1 Representative neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . .100
11.2 The framework of the proposed method. . . . . . . . . . . . . . . . . . . . . .102

12.1 Whenv = (2,7) is applied toπ, (π(2), π(3)) = (x, y) is stored inT as tabu. Later,
v′ = (1,6) is not allowed to apply toβ because it will restore the previously
banned precedence relation between (x, y). . . . . . . . . . . . . . . . . . . . . .104

12.2 The time evolutions of makespans for the ta041 (50 jobs and 10 machines) prob-
lem averaged over 30 tabu search runs with and without the pruning pattern list
(left). The time evolutions for the ta051 (50 jobs and 20 machines) problem av-
eraged over 10 tabu search runs and the computationally equivalent MSXF-GA
runs for comparison (right).. . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

12.3 The time evolutions for the other nine Taillard problems of 50 jobs and 20 ma-
chines (ta052 – ta060) averaged over 10 tabu search runs with (labeled TS+PL)
and without (labeled TS) the pruning pattern list.. . . . . . . . . . . . . . . . .109



List of Tables

2.1 An example of the jobshop scheduling problem with 3 jobs and 3 machines. Each
column represents the technological sequence of machines for each job with the
processing times in parentheses.. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 An example of the one-machine scheduling problem with 7 jobs. . . . . . . . . 22
2.3 Muth and Thompson’s 6× 6 problem (mt06). . . . . . . . . . . . . . . . . . . . 27
2.4 Muth and Thompson’s 10× 10 problem (mt10) . . . . . . . . . . . . . . . . . . 27
2.5 Muth and Thompson’s 20× 5 problem . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 The ten tough benchmark problems (status reported by [1] in 1991). . . . . . . . 29

4.1 Experimental results of the simple GA for mt benchmark problems. . . . . . . . 40

5.1 Experimental results of the GT-GA for mt benchmark problems. . . . . . . . . 49

7.1 Ten Trials using the Simulated Annealing Method (R = 3,000). . . . . . . . . . . 63
7.2 Initial and Last Temperatures. Last temperature is the temperature when an op-

timal makespan was found, or the temperature after 1,000,000 iterations.. . . . . 64
7.3 TenHigh TemperatureRandom Trials.. . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Comparisons between CBSA and AESA.. . . . . . . . . . . . . . . . . . . . . 67
7.5 Ten difficult Benchmark Job Shop Scheduling Problems.. . . . . . . . . . . . . 68
7.6 Performances of the 40 Benchmark Job Shop Scheduling Problems.. . . . . . . 69

8.1 Comparisons between CBSA and CBSA+SB using MT benchmarks. . . . . . . 76
8.2 Results of 10 tough JSPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
8.3 An optimal solution of la27 problem. . . . . . . . . . . . . . . . . . . . . . . . 78

9.1 Performance comparison using the MT benchmark problems. . . . . . . . . . . 85
9.2 Results of the 10 tough problems. . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Performance comparisons with various heuristic methods on the 10 tough problems87

10.1 Results of the Taillard benchmark problems. . . . . . . . . . . . . . . . . . . . 97

11.1 Taillard’s benchmark results (ta001 – ta030). . . . . . . . . . . . . . . . . . . .101
11.2 Taillard’s benchmark results (ta031 – ta040). . . . . . . . . . . . . . . . . . . .102

ix



Chapter 1

Introduction

1.1 Background

In late 1950s, B.Giffler and G.L.Thompson first showed in their paper titled “Algorithms for
solving production scheduling problems” [2] that it is not necessary to search for an optimal
schedule over all possible schedules, but only over a subset of the feasible schedules, called
active schedules. They then proposed the GT algorithm, which is described later in Section2.2,
to iteratively enumerate all active schedules for a given problem. H.Fisher and G.L.Thompson
proposed three well-known benchmark problems known as mt06 (6 jobs 6 machines), mt10 (10
jobs 10 machines) and mt20 (20 jobs 5 machines) [3] in a book titled “Industrial Scheduling”
edited by J.F.Muth and G.L.Thompson in 1963 [4]. The “notorious” mt10 problem has been
unsolved for over 20 years. Their paper is also important in the sense that they first applied a
stochastic approximation method based on priority dispatching rules and active schedules.

As a pioneering work in the jobshop scheduling research, G.H.Brooks and C.R.White first
proposed a branch and bound method, a tree-based exact method to solve the problem optimally,
based on the GT algorithm [5]. E.Balas first pointed out the fact that the adjacent pairwise
exchange of operations on a certain part of the schedule, called “critical path”, of a feasible
schedule will always results in another new feasible schedule [6]. This fact will later play an
important role in metaheuristics context.

A great deal of efforts by Barker and McMahon [7] and then Carlier [8] among others have
contributed the progress of the exact approaches, which are mainly based on the branch and
bound method. They have commonly used the mt benchmark problems (especially the mt10
problem) as a computational challenge to demonstrate the effectiveness of their algorithms, and
the best known solution for the mt10 problem has been improved. Finally in 1985, Carlier
and Pinson succeeded in solving the mt10 problem optimally by a branch and bound algorithm
[8]. Since then, Brucker [9], Martin and Shmoys [10], and Carlier again [11] have improved the
performance of exact approaches. However, the NP-hardness of the problem barriers the efficient
application of exact methods to larger-scale problems.

In addtion to those exact methods, many approximation methods have been developed. Sim-
ulated annealing (SA) is one of the well-known stochastic local search methods, based on an

1



2 Chapter 1. Introduction

analogy with the physical process of annealingl; heating up a solid in a heat bath until it melts,
then cooling it down slowly until it solidifies into a low-energy state results in a pure lattice
structure. Laarhoven et al. proposed a simulated annealing algorithm for the jobshop scheduling
problem, using the pairwise exchange of operations on the critical path proposed by Balas, as
a transition operator [12]. However, very similar idea had already been proposed by Matsuo et
al. [13].

Adams et al. proposed a very powerful method to find reasonably efficient schedules known
as shifting bottleneck heuristic in 1988 [14]. This method, as its name suggests, iteratively
identifies a bottleneck machine and optimize its job sequence. The details of the algorithm are
described in Section2.6. In 1991, Applegate have combined the “shifting bottleneck heuristic”
and a branch and bound method to develop a powerful algorithm and demonstrated that the mt10
problem is no more a computational challenge. Instead, they proposed a new set of benchmark
problems known as the “ten tough benchmarks”, which contained the ten difficult problems in-
cluding seven open problems that were not solved even by their approach [1].

In 1990s, Tabu Search (TS), proposed by Fred Glover [15, 16], has been used by many
researchers including Taillard [17], Dell’Amico, Trubian [18], Nowicki and Smutnicki [19, 20].
TS adopts a deterministic local search, whereby a ‘memory’ is implemented by the recording of
previously-seen solutions. Instead of storing solutions explicitly, this record is often an implicit
one in a sense that it stores the moves, or the modifications of the solution, that have been
made in the recent past of the search, and which are ‘tabu’ or forbidden for a certain number of
iterations. This prevents cycling, and also helps to promote a diversified coverage of the search
space. Taillard also proposed a new benchmark set consisting of 80 jobshop and 120 flowshop
problems known as “Taillard benchmark” [21].

Genetic Algorithms (GAs) model biological processes to optimize highly complex objective
functions. They allow a population composed of many individuals to evolve under specified
selection rules to a state that maximizes the “fitness”. The method was developed by John Hol-
land over the course of the 1960s and 1970s [22], and popularized by one of his students, David
Goldberg who successfully applied a GA to the control of gas-pipeline transmission. He is also
well-known for a book titled “Genetic Algorithms in Search, Optimization, and Machine Learn-
ing” [23].

GAs have been used successfully in various fields of computer science, including machine
learning, control theory and combinatorial optimization. GAs can be uniquely characterized by
their population-based search strategies and their operators: mutation, selection and crossover.
Nakano and Yamada were among the first who applied a conventional GA that uses binary rep-
resentation of solutions, to the jobshop scheduling problem [24]. Yamada and Nakano [25]
proposed a GA that uses problem-specific representation of solutions with crossover and muta-
tion, which are based on the GT algorithm. The details of these approaches are described later in
Chapters4 and 5.

Ulder and others first proposed Genetic Local Search (GLS), which is a hybridization of
GAs and local search [26]. In this framework, each individual, or search agent, performs local
search independently, while crossover is performed occasionally to the solutions of two selected
individuals and a new solution is produced, which is then used as an initial solution for the
subsequent local search performed by an offspring. In this context, the embedded local search is a
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main search engine to effectively improve solutions and crossover provides information exchange
between individuals who are performing independent local search in parallel.

1.2 Outline of the Thesis

This thesis is devoted to jobshop and flowshop scheduling by metaheuristics, especially by Ge-
netic Algorithms, Simulated Annealing and Tabu Search. In Chapter2, besic concepts and nota-
tions of the jobshop scheduling problem are described such as the semi-active and active sched-
ules, the disjunctive graph representation and critical path and blocks. The main focus throughout
this thesis is theminimum-makespanproblem, in which makespan, maximum completion time
of all the operations, is used as an objective function to be minimized. This is denoted asCmax.
The sum of completion times of all operations, denoted asCsum, is also considered as an alter-
native objective function of the flowshop scheduling problem. The GT (Giffler & Thompson’s)
algorithm for generating active schedules and the well-known shifting bottleneck heuristic that
generates moderately good schedules by repeatedly solving one-machine scheduling problems
are also reviewed as well as some well-known benchmark problems.

In Chapter3, Genetic Algorithms are reviewed with a major emphasis on conventional binary
models for combinatorial optimization, in which a solution is encoded into a binary string of fixed
length and binary genetic operators, such as one-point, two-point and uniform crossover and bit-
flip mutation, are used. In Chapter4, a conventional GA using a binary representation is applied
to the jobshop scheduling problem. By converting a solution of the problem into a bit-string,
conventional GAs can be applied without major modification.

In Chapter5, a more advanced GA approach is described as the GT-GA method, which in-
volves a non-binary representation of a solution schedule and domain knowledge, namely, active
schedules and the GT algorithm. GT-GA method consists of GT crossover and GT mutation
that are defined as simple modifications of the GT algorithm. One of the advantages of the GA
is its robustness over a wide range of problems with no requirement of domain specific adapta-
tions. From this point of view, the conventional GA approach with binary encoding and binary
crossover that is obviously domain independent is reasonable. However, it is often more de-
sireble to directly incorporate problem specific knowledge such as the GT algorithm into GA,
resulting the GT-GA method, from the performance point of view.

In Chapter6, the concept of neighborhood search is described as a widely used local search
technique to solve combinatorial optimization problems and is extended to include metaheuris-
tics. Especially, it is shown that Simulated Annealing (SA) and Tabu Search (TS) can be con-
sidered as advanced meta strategies for neighorhood search to avoid local optima. An efficient
neighborhood for the jobshop scheduling problem, called Critical Block (CB) neighborhood, that
is defined based on the critical path and blocks, is also described.

In Chapter7, a SA method for the jobshop scheduling problem that utilizes the CB neigh-
borhood is described, and then in Chapter8, it is further extended by incorporating the shift-
ing bottleneck heuristic, which can be regarded as a problem specific deterministic local search
method.

In Chapter9, it is shown that Genetic Algorithms (GAs) can be reagarded as a variant of
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neighorhood search, that is called Genetic Local Search (GLS), and an approach called Multi-
Step Crossover Fusion (MSXF) method is proposed. In the MSXF method, one of the parent
solutions is used as an initial point of the new local search, while the other is used to define an
orientation for the search. In other words, it is a local search that traces out a path from one
solution to another. The MSXF is applied to the jobshop scheduling problem in Chapter9 and
applied to theCmax andCsum flowshop scheduling problems in Chapter10 and in Chapter11
respectively.

In Chapter12, a TS method with a data structure called the Pruning Pattern List (PPL) for the
Cmax flowshop scheduling problem is described. A pruning pattern is constructed from a solution
of the flowshop scheduling problem represented by a permutation of jobs numbers by replacing
some of its job numbers by a wild card. A list of pruning patterns generated from good schedules
collected in the course of a search process is used to inhibit the search to visit already searched
and no longer interesting region again and again and it is embedded into a TS method.

Finally, in Chapter13, the study in this thesis is summerized and the future directions are
suggested.



Chapter 2

The Job Shop Scheduling Problem

Scheduling is the allocation of shared resources over time to competing activities. It is conve-
nient to adopt manufacturing terminology, wherejobsrepresent activities andmachinesrepresent
resources, while the range of application areas for scheduling theory is not limited to computers
and manufacturing but includes transportation, services, etc. In this chapter, we restrict our at-
tention to deterministic jobshop scheduling, where all the data that define a problem instance are
known in advance.

2.1 The Problem Description

Then×m minimum-makespangeneral jobshop scheduling problem, designated by the symbols
n/m/G/Cmax and hereafter referred to as the JSP, can be described by a set ofn jobs {Ji}1≤ j≤n

which is to be processed on a set ofmmachines{Mr}1≤r≤m. The problem can be characterized as
follows:

1. Each job must be processed on each machine in the order given in a pre-defined techno-
logical sequence of machines.

2. Each machine can process only one job at a time.

3. The processing of jobJj on machineMr is called theoperationOjr .

4. OperationOjr requires the exclusive use ofMr for an uninterrupted durationpjr , its pro-
cessing time; the preemption is not allowed.

5. The starting time and the completion time of an operationOjr is denoted assjr andcjr

respectively. Ascheduleis a set of completion times for each operation{cjr }1≤ j≤n,1≤r≤m that
satisfies above constraints.

6. The time required to complete all the jobs is called themakespan, which is denoted as
Cmax. By definition,Cmax = max1≤ j≤n,1≤r≤mcjr .

5
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The problem is “general”, hence the symbolG is used, in the sense that the technological se-
quence of machines can be different for each job as implied in the first condition and that the
order of jobs to be processed on a machine can be also different for each machine. The pre-
defined technological sequence of each job can be given collectively as a matrix{T jk} in which
T jk = r corresponds to thek-th operationOjr of job Ji on machineMr . The objective of optimiz-
ing the problem is to find a schedule that minimizesCmax.

An example of a 3×3 JSP is given in Table2.1. The data include the technological sequence
of machines for each job with the processing times in parentheses. In the table, operations
for job 1, for example, are processed in the order ofO11 → O12 → O13; i.e., job 1 is first
processed on machine 1 with its processing time 3, and then processed on machine 2 with its
processing time 3, and then processed on machine 3 with its processing time 3. The problem
is equivalently represented by the job sequence matrix{T jk} and processing time matrix{pjk} as
given in Figure2.1.

Table 2.1:An example of the jobshop scheduling problem with 3 jobs and 3 ma-
chines. Each column represents the technological sequence of machines for each
job with the processing times in parentheses.

job machine (processing time)
1 1 (3) 2 (3) 3 (3)
2 1 (2) 3 (3) 2 (4)
3 2 (3) 1 (2) 3 (1)

{T jk} =

∣∣∣∣∣∣∣∣

1 2 3
1 3 2
2 1 3

∣∣∣∣∣∣∣∣
, {pjk} =

∣∣∣∣∣∣∣∣

3 3 3
2 3 4
3 2 1

∣∣∣∣∣∣∣∣

Figure 2.1:The job sequence matrix{T jk} and the processing time matrix{pjk} for
the 3× 3 problem given in Table2.1. T jk = r means thatk-th operation for jobJ j is
processed on machineMr for p jk time units.

Instead of minimizing the makespanCmax, other objectives such as minimizing the sum of
the completion times of all the operationsCsum (Csum =

∑
1≤ j≤n,1≤r≤m cjr ) can also be considered

and is designated by the symbolsn/m/G/Csum.
The Gantt chart is a convenient way of visually representing a solution of the JSP. The Gantt

chart shows time units at the abscissa and machine numbers at the axis of ordinate. An example
of a solution for the 3× 3 problem in Table2.1 is given in Figure2.2. In the figure, each square
box represents an operationOjr with its left edge placed atsjr as itsx coordinate and with its
horizontal length representing processing timepjr . The makespan of this schedule isCmax = 19
time unit.
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A schedule is calledsemi-activewhen no operation can be started earlier without altering the
operation sequences on any machine. OperationO31 in Figure2.2, for example, can be started as
early as at 5 time unit, as indicated by dotted lines, without altering the order of operations on any
machine, and the new schedule is semi-active. By definition, a semi-active schedule is uniquely
obtained by specifying the operation sequences for all machines. In other words, an semi-active
schedule is represented by am× n matrix S = {Srk} whereSrk = j corresponds that thek-th
operation onMr is job J j. Figure2.3shows the matrix representation of a solution for the 3× 3
problem in Table2.1. In the figure, operations on machine 2, for example, are processed in the
order ofO23→ O22→ O12. Given a matrixS = {Srk}, it is straightforward to obtain an associated
semi-active schedule. Each operationO has two predecessor operations: job predecessor and
machine predecessor. Thejob predecessorof O, denoted byPJ(O), is the direct predecessor of
O in the technological sequence. Themachine predecessorof O, denoted byPM(O), is the direct
predecessor ofO in the solution matrix. For example, if we have a problem as given in Table2.1,
we havePJ(O12) = O11 and if the solution is given as in Figure2.3, thenPM(O12) = O22. An
operationO is scheduled at time unit 0 if it has no job and no machine predecessors. If only one
of job and machine predecessors exists, thenO is scheduled immediately when the predecessor
is completed. Otherwise it is scheduled when both job and machine predecessors are completed
such that: s(O) = max{c(PJ(O)), c(PM(O))}, wheres(O) and c(O) are the starting time and
completion time of operationO respectively. The solution given in Figure2.3corresponds to the
Gannt chart representation given in Figure2.2except thatO31 is started at 5 time unit.

Throughout this thesis, we assume that a schedule is always semi-active if not stated oth-
erwise. By this formulation, jobshop scheduling can be interpreted as defining the ordering
between all operations that must be processed on the same machine, i.e., to fix precedences be-
tween these operations. In short, the jobshop scheduling problem is formulated as an ordering
problem.

As a special case, when the technological sequence of machines is the same for all jobs
and the order in which each machine processes the jobs is also same for all machines, then a
schedule is uniquely represented by a permutation of jobs. This simplified problem is called the
permutation flowshop scheduling problem and it is designated by the symbolsn/m/P/Cmax (or
n/m/P/Csumwhen the objective is minimizingCsum).

2.2 Active Schedules

The makespan of a semi-active schedule may often be reduced by shifting an operation to the left
without delaying other jobs. Consider a semi-active scheduleS and two operationsOjr andOkr

in S that use the same machineMr . If Okr is processed prior toOjr and the machineMr has an
idle period longer thanp jr before processingOkr, then reassignment is possible so that operation
Ojr is processed prior toOkr without delaying any other operations. Such reassignment is called
a permissible left shiftand a schedule with no more permissible left shifts is called anactive
schedule. Figure2.4shows an example of permissible left shift. The schedule in the upper picture
of Figure2.4is identical to the one given in Figure2.3butO31 which is started at 5 time unit and
its makespan= 19. On machineM2 in the schedule,O12, the operation of jobJ1, can be shifted to
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M1
O21O11 O31

M2 O22 O12

M3
O23 O33O13

time0 2 4 6 8 10 12 14 16 18

O32

Figure 2.2:A Gantt chart representation of a solution for the 3× 3 problem given
in Table2.1. OperationO31 can be shifted as early as at 5 time unit, as indicated by
dotted lines, without altering the order of operations on any machine, and the new
schedule becomes semi-active.

{Srk} =

∣∣∣∣∣∣∣∣

1 2 3
3 2 1
2 1 3

∣∣∣∣∣∣∣∣

Figure 2.3: The solution matrixSrk for the solution given in Figure2.2. Srk = j
means that thek-th operation on machineMr is job Jj.
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the front ofO32, the operation ofJ3, without delaying any other operations. OperationO13 is then
shifted to the point immediately after the completion of its job and machine predecessorsO12 and
O23. O33 on machine 3 is also shifted. The resulting schedule with improved makespan= 12 is
shown in the lower picture of Figure2.4. Because there always exists an optimal schedule that is
active, it should be safe and efficient to restrict the search space to the set of all active schedules.

time0 2 4 6 8 10 12

M1
O21O11 O31

M2 O22 O12

M3
O23 O33O13

time0 2 4 6 8 10 12 14 16 18

O32

M1
O21O11 O31

M2 O22O12

M3
O23 O33O13

O32

Figure 2.4:An example of a permissible left shift, where in the upper picture,O12

can be shifted to the front ofO32 without delaying any other operations resulted in a
much improved schedule given in the lower picture.

An active schedule can be generated by using theGT algorithmproposed by Giffler and
Thompson [2]. The algorithm is described in Algorithm2.2.1. In the algorithm, the following
notations are used:

• As in the previous section, an operationO has job and machine predecessors. The job
predecessor denoted byPJ(O) is the direct predecessor ofO in the technological sequence.
The definition of the machine predecessorPM(O) is slightly modified and defined as the
last scheduled operation on the machine, that is, an operation with the largest completion
time among already scheduled operations on the same machine asO.

• An operationO that is not yet scheduled is calledschedulablewhen both its job predecessor
PJ(O) and machine predecessorPM(O), if they exist, have already been scheduled. The
set of all schedulable operations is denoted asG.

• Theearliest starting timeES(O) of O is defined as the maximum of the completion times
of PJ(O) andPM(O): ES(O) := max{c(PJ(O)), c(PM(O))}, wherec(O) is the completion
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time of O. Theearliest completion timeEC(O) is defined asES(O) plus its processing
time p(O).

• Theearliest completable operationO?r in D with its machineMr , is an operation whose
earliest completion timeEC(O?r) is the smallest inD (break ties arbitrarily) :

O?r = arg min{EC(O) | O ∈ D}. (2.1)

• Given an earliest completable operationO?r and if there arei −1 operations that have
already been scheduled onMr , a conflict setC[Mr , i] is a set of candidate operations for
the next (i.e.i-th) processing onMr defined as:

C[Mr , i] = {Okr ∈ D | ES(Okr) < EC(O?r)}. (2.2)

Note thatO?r ∈ C[Mr , i].

The essence of GT algorithm is scheduling operations while avoiding an idle period that
is long enough to allow a permissible left shift. For this purpose, one has to carefully select
the next operation that does not introduce such a long idle period among the set of schedulable
operationsD. Hence the conflict setC[Mr , i] ⊂ D is maintained. As long as the next operation is
selected from the conflict set, an idle period is kept sufficiently short and the resulting schedule
is guaranteed to be active.

An active schedule is obtained by repeating Algorithm2.2.1until all operations are sched-
uled. In Step4, instead of choosing one operation randomly, if all possible choices are consid-
ered, all active schedules will be generated, but the total number will still be very large. Practi-
cally, random choice is replaced by the application of so-calledpriority dispatching rules[27],
which are the most popular and simplest heuristics for solving the JSP. For example, a rule called
SOT(shortest operation time) orSPT(shortest processing time) selects an operation with the
shortest processing time from the conflict set, a rule calledMWKR(most work remaining) se-
lects an operation associated with the job with the longest total processing time remaining, a rule
calledFCFS(first come first serve rule) selects the first available operation among operations on
the same machine. Dorndorf and Pesch [28] proposed a priority rule-based GA for the JSP using
twelve such priority dispatching rules.

In the notations above, if the definition of the conflict setC[Mr , i] is simplified asC[Mr , i] =

Gr , then the generated schedule is an semi-active schedule. Otherwise, if the definition of
C[Mr , i] is altered asC[Mr , i] = {Okr ∈ Gr | ES(Okr) < ES(O?r)}, then the generated sched-
ule is called anon-delayschedule. Unlike active schedules, an optimal schedule is not always a
non-delay schedule.

Figure2.5 shows how the GT algorithm works. The figure shows a snapshot in the middle
of scheduling where operationsO11,O22,O31,O43,O51 andO64 are schedulable and constituteG.
The earliest completable operation is identified asO11, which results inG1 = {O11,O31,O51}.
In G1, only O11 andO31 satisfy the inequality in (2.2), thereforeC[M1, i] = {O11,O31}. If O31

is selected fromC[M1, i], then O11 andO51 are shifted forward according to Step6 in Algo-
rithm 2.2.1.
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Algorithm 2.2.1 (GT algorithm)
A scheduling problem represented by{T jk}, the technological sequence matrix, and{pjk}, the
processing time matrix is given as an input.

1. Initialize G as a set of operations that are first in the technological sequence; i.e.,G =

{O1T11,O2T21, . . . ,O2Tn1}. For each operationO ∈ G, setES(O) := 0 andEC(O) := p(O).

2. Find the earliest completable operationO∗r ∈ G by (2.1) with machineMr . A subset ofG
that consists of operations processed on machineMr is denoted asGr .

3. Calculate the conflict setC[Mr , i] ⊂ Gr by (2.2), wherei−1 is the number of operations
already scheduled onMr .

4. Select one of operations inC[Mr , i] randomly. Let the selected operation beOkr.

5. ScheduleOkr as thei-th operation onMr ; i.e. Sri := k, with its starting and completion
times equal toES(Okr) andEC(Okr) respectively:s(Okr) = ES(Okr), c(Okr) = E(COkr).

6. For all Ojr ∈ Gr \ {Okr}, UpdateES(Ojr ) as

ES(Ojr ) := max{ES(O jr ),EC(Okr)} andEC(Ojr ) asEC(Okr) := ES(Okr) + p(Okr).

7. RemoveOkr from G (and therefore fromGr), and add an operationOks that is the next to
Okr in the technological sequence toG if such Oks exits; i.e., if r = Tki and i < m, then
s := Tki+1 andG := (G \ {Okr}) ∪ {Oks}.
CalculateES(Oks) andEC(Oks) as:

ES(Oks) := max{EC(Okr),EC(PM(Oks))} andEC(Oks) := ES(Oks) + p(Oks) respectively.

8. Repeat from Step1 to Step7 until all operations are scheduled.

9. Output the solution matrix{Srk} as the active schedule obtained with the set of starting and
completion times{s(O jr )} and{c(O jr )} respectively wherej = Srk.



12 Chapter 2. The Job Shop Scheduling Problem

G1

G

selected



O11 O11

O22

C[M1,i]

O22

O32

O43 O43

O64 O64

O31 O31

O51 O51

Figure 2.5:A snapshot in the middle of scheduling using Giffler and Thompson’s
algorithm, whereO11,O22,O31,O43,O51 andO64 are schedulable.O11 is the earliest
completable operation, andO11 andO31 are in conflict withO11. O31 is selected for
the next operation to be scheduled and thenO11 andO51 must be shifted forward
to avoid overlapping.O31, which is the next operation toO31 in the technological
sequence, now becomes schedulable.
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2.3 Disjunctive Graph Representation

The Gantt chart representation and the matrix representation described in the previous section
are simple and straightforward to identify a schedule. However it is not obvious to see whether
the resulting schedule is feasible or not: i.e., whether the job sequence on each machine does not
contradict with the pre-defined technological sequence of machines. A more informative problem
formulation based on a graph representation is first introduced by Roy and Sussman [29]. In this
section, we review a graph representation for the JSP using disjunctive graph formulation. The
following descriptions and notations are due to Adams et. al. [14].

The JSP can be described by a disjunctive graphG = (V,C ∪ D), where

• V is a set of nodes representing operations of the jobs together with two special nodes, a
source(0) and asink?, representing the beginning and end of the schedule, respectively.

• C is a set of conjunctive arcs representing technological sequences of machines for each
job.

• D =
⋃m

r=1 Dr , whereDr is a set of disjunctive arcs representing pairs of operations that
must be performed on the same machineMr .

The processing time for each operation is the weighted valuepv attached to the corresponding
nodev, and for the special nodes,p0 = p∗ = 0. Figure2.6shows a disjunctive graph representa-
tion of the problem given in Table2.1.

O11 O12 O13

O21 O22O23

O31O32

p  = 312

33O

13p  = 3

31p  = 232p  = 3 33p  = 1

21
p  = 4

22p  = 2

11p  = 3

23p  = 3

*

sinksource

conjunctive arc (technological sequences)
disjunctive arc  (pair of operations on the same machine)

Oij : an operation of job i on machine j
: processing time of Op ij ij

0

Figure 2.6:A disjunctive graph representation of a 3× 3 problem

Let sv be the starting time of an operation corresponding to nodev. By using the disjunctive
graph notation, the jobshop scheduling problem can be formulated as a mathematical program-
ming model as follows:

minimize: s∗
subject to: sw − sv ≥ pv, (v,w) ∈ C,

sv ≥ 0, v ∈ V,
sw − sv ≥ pv ∨ sv − sw ≥ pw, (v,w) ∈ Dr ,1 ≤ r ≤ m.

(2.3)
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The formulaA ∨ B means that eitherA or B is to be satisfied (but not both), thus it is called
disjunctive constraint. Note that∗ is the dummy sink node that has a zero processing time. This
means thats∗ is equal to the completion time of the very last operation of the schedule, which
is therefore equal toCmax. The first inequality in (2.3) ensures that when there is a conjunctive
arc from a nodev to a nodew, w must wait at leastpv time period afterv is started, thus the pre-
defined technological sequence of machines for each job is not violated. The second condition is
equivalent tos0 ≥ 0. According to the third constraints, when there is a disjunctive arc between a
nodev and a nodew, one has to select eitherv to be processed prior tow (andw waits for at least
pv time period) or the other way around. This avoids any pair of operations on the same machine
to overlap in time. In the disjunctive graph, the selection corresponds to fixing the undirected
(disjunctive) arc into a directed one.

To summarize, jobshop scheduling is to define the ordering between all operations that must
be processed on the same machine, as described in the previous section. This corresponds to the
third constraints in (2.3), and this is done by fixing all undirected (disjunctive) arcs into directed
ones: thus the disjunctive graph is turned into a conjunctive graph. Aselectionis defined as a set
of directed arcs selected from the set of disjunctive arcsD. By definition, a selection iscomplete
if all the disjunctions inD are selected. It isconsistentif the resulting directed graph is acyclic.
When a complete selection is consistent, one can define a unique and consistent ordering of
operations on the same machine, namely a solution matrix{Srk} and this matrix corresponds to a
feasible (semi-active) schedule. Hence a consistent complete selection, the obtained conjunctive
graph, and the corresponding (semi-active) schedule are all identified and represented by the
same symbolS without confusion. Given a selection, a path starting from a nodev to any
destination nodew is defined by following directed arcs fromv to w (if they exist), and the length
of the path is defined as the sum of the weights of all the nodes on the path includingv andw.
It is clear that the makespanCmax of a scheduleS is given by the length of the longest weighted
path from source to sink in the graph of the corresponding complete selection. This pathP (not
necessarily unique) is called acritical pathand is composed of a sequence ofcritical operations.

By using the disjunctive graph model, we can easily show a well-known fact known as fea-
sibility property for adjacent exchanges of operations on a critical path: any exchange of two
adjacent operations on a critical path will never lead to an infeasible schedule. Based on this
fact, Laarhoven et al. have proposed a simulated annealing algorithm using the pairwise ex-
change of operations on the critical path as a transition operator [12]. Taillard has proposed a
Tabu Search method by using the same transition operator [17].

Theorem 1 (feasibility for adjacent exchange)Let S be a consistent complete selection and
P(S) be a critical path inS. Consider a pair of adjacent critical operations(u, v) on a same
machine onP(S), i.e.,there is an arc selected fromu to v. Then a complete selectionSuv ob-
tained fromS by reversing the direction of the arc betweenu andv is always acyclic (thus the
corresponding schedule is always feasible).

Proof: Assume the contrary, then the exchange introduces a cycle inSuv. This means that there
is a pathPu,v from u to v in Suv, and thisPu,v also exists inS. P(S) can be represented as
P(S) = (0, . . . , t,u, v,w, . . . , ∗) and (0, . . . , t,Pu,v,w, . . . , ∗) is also a path from source to sink in
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S but clearly longer thanP(S). This contradicts the assumption of the theorem thatP(S) is a
critical path ofS. �

2.4 DG Distance and Binary Representation

The distance between two schedulesS andT can be measured by the number of differences in
the processing order of operations on each machine [24]. In other words, it can be calculated
by counting the directed (originally disjunctive) arcs whose directions are different betweenS
andT. We call this distance thedisjunctive graph(DG) distance. Figure2.7 shows the DG
distance between two schedules. The two directed arcs marked by thick lines in scheduleT have
directions that differ from those of scheduleS, and therefore the DG distance betweenS andT
is 2.



O11 O12 O13

O21 O22O23

O31O32 33O

*0

S O11 O12 O13

O21 O22O23

O31O32 33O

*0

T

Figure 2.7:The DG distance between two schedules: the distance= 2.

As described in the previous section, a (semi-active) schedule is obtained by turning all undi-
rected disjunctive arcs into directed ones. Therefore, by labeling each directed (originally) dis-
junctive arc of a schedule as 0 or 1 according to its direction, and rearrange them as a one dimen-
sional vector, a schedule can be represented by a binary string of lengthmn(n− 1)/2. Figure2.8
shows a labeling example, where an arc connectingOi j andOk j (i < k) is labeled as 1 if the arc is
directed fromOi j to Ok j (soOi j is processed prior toOk j) or 0, otherwise. It should be noted that
the DG distance between schedules and the Hamming distance between the corresponding bi-
nary strings can be identified through this binary mapping. Nakano and Yamada have proposed a
simple Genetic Algorithm based on this binary coding and using standard genetic operators [24].

O11 O12 O13

O21 O22O23

O31O32 33O

*0
00

00
00

11

11

11

11

11
11

Figure 2.8:Labeling disjunctive arcs

By using the notion of DG distance, the following so calledconnectivity propertyfor adjacent
exchanges on the critical path can be derived easily from Theorem1 as follows:
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Theorem 2 (connectivity for adjacent exchange)Let S andP(S) be an arbitrarily schedule
and its critical path, then it is possible to construct a finite sequence of adjacent exchange on the
critical path that will lead to an optimal schedule.

Proof: Let S∗ be an optimal schedule. BecauseS is not optimal,Cmax(S) > Cmax(S∗), and the
DG distance, denoted byd, betweenS andS∗ is d(S,S∗) > 0. Moreover, there is at least one pair
of consecutive critical operations (u, v) in S such that (u, v) is processed inS in this order but in
S∗, v is processed prior tou. This is true because if such pair does not exist, then the critical path
P(S) in S exists also inS∗ as a path and this means thatCmax(S) < Cmax(S∗) which contradicts
the assumption thatS∗ is optimal. Reverse the direction of (u, v) and obtainSuv. Theorem1
guarantees thatSuv is feasible. It is clear thatd(Suv,S∗) = d(S,S∗) − 1, i.e.,Suv is closer toS∗

thanS by one step. ReplaceS by Suv and repeat this process at mostd(S,S∗) times until there is
no such (u, v), thenS becomes identical withS∗, or at least the critical paths ofS andS∗ become
identical, thereforeCmax(S) = Cmax(S∗) and soS is optimal. �

2.5 Block Property

As described in the previous section, an operation on a critical path is called a critical operation.
A sequence of more than one consecutive critical operations on the same machine is called a
critical block. More formally, letS be a feasible schedule associated with a disjunctive graph
G(S) = G(V,C ∪ D) with all the disjunctive arcs inD being directed. LetP(S) be a critical path
in G(S) andL(S) be the length of this critical path, which is equal to the makespan. A sequence
of successive nodes inP is called acritical blockor justblock if the following two properties are
satisfied:

1. The sequence contains at least two nodes,

2. The sequence represents a maximal number of operations to be processed on the same
machine.

The j-th block on the critical path is denoted byBj. Figure2.9 shows an example of critical
blocks on a critical path. The following so-calledblock propertygives us crucial information
in improving a current schedule by simple modifications and thus forms a basis for many of the
jobshop scheduling solvers [30].

Theorem 3 (Block property) Let S, P(S), L(S) be a complete selection, its critical path, and
the length of the critical path respectively. If there exists another complete selectionS′ such that
L(S′) < L(S), then at least one operation of some blockB of G(S) has to be processed inS′

before the first or after the last operation ofB.

Proof: Assume the contrary thatL(S′) < L(S) and that there is no operation that satisfies the
conclusion of the theorem; i.e.,there is no operation of any block ofS that is processed before
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*0
B1 B2 B3

S

Mr1
Mr2

Mr3
Mr4

Figure 2.9:An example in which there are three critical blocks is illustrated. The
blocks B1, B2 and B3 are on the critical pathP(S) and are corresponding to the
different machinesMr1, Mr2 and Mr3 respectively. The adjacent critical blocks are
connected by a conjunctive arc. The last operation on machineMr3 is not a critical
block, which must contain at least two operations.

the first or after the last operation of the corresponding block.Then, there is a pathP(S′) from
source to sink inS′ that contains all the operations onP(S):

{P(S′)} ⊃ {P(S)} (2.4)

where{P(S)} denotes a set of all nodes onP(S) (See Figure2.10). Let l(P) be the length ofP,
then from (2.4) we have:

l(P(S′)) ≥ L(S) (2.5)

The definition of the critical path indicates:

L(S′) ≥ l(P(S′)) (2.6)

From (2.5) and (2.6), we have:

L(S′) ≥ L(S) (2.7)

This contradicts the assumption of the theorem. �
The theorem gives us an important criterion about how to improve a current schedule. Namely,

if we wish to improve a scheduleS, then either one of the following two situations must happen:

1. At least one operation in one blockB, that is not the first one inB, has to be processed
beforeall the other operations inB.

2. At least one operation in one blockB, that is not the last one inB, has to be processedafter
all the other operations inB.

Let S be a complete selection, A critical pathP(S) in G(S) defines critical blocksB1, . . . , Bk.
Roughly speaking, thebefore-candidatesBB

j is defined as a set of all but the first operations inBj

andafter-candidatesBA
j a set of all but the last operations inBj. More precisely, the first and the
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*0
B1

S

B2 B3

'

Figure 2.10:The condition that no operation in a block inS is processed before the
first or after the last operation of the block inS′ implies that all the operations inBi

are processed prior to those inBj both inS andS′ if i < j, because each adjacent
blocks are connected by a conjunctive arc that cannot be altered. Hence, there is a
pathP(S′) in S′ that contains all the operations onP(S) and the length ofP(S′) is
greater than the length ofP(S).

last blocksB1 andBk need special treatment. If the first operationu1
1 of the first blockB1 is also

the very first operation of the critical pathP(S), then we setBB
1 as empty. Likewise, if the last

operationuk
mk

of the last blockBk is also the very last operation of the critical pathP(S), then we
setBA

k as empty.

BB
j =

{ ∅ if j = 1 andu1
1 is the first inP(S)

Bj \ {uj
1} otherwise.

(2.8)

BA
j =

{ ∅ if j = k anduk
mk

is the last inP(S)
Bj \ {uj

mj } otherwise.
(2.9)

whereuj
1 anduj

mj are the first and the last operations inBj. Note thatBj contains at least two
operations, and soBB

j ∪ BA
j is always non-empty.

Brucker et al. have proposed an efficient branch and bound method based on the block
property [9]. It is natural to consider generating a new schedule by moving an operation inBB

j

(or BA
j ) to the front (or rear) ofBj aiming for possible improvements. The adjacent exchange of

critical operations discussed in the end of Section2.3 is a special case of this kind of transition.
Many metaheuristics approaches have been proposed based on this transition operators [18, 19].
Note that unlike the simpler adjacent exchange of critical operations, in which the feasibility is
guaranteed by Theorem1, applying this transition may result in an infeasible schedule.

2.6 The Shifting Bottleneck Heuristic

The shifting bottleneck heuristic (SB) proposed by Adams, Balas and Zawack [14] is one of
the most powerful heuristic methods for the jobshop scheduling problem. Assume we have a
partial schedule or corresponding selectionSp, in which only some of the machines are already
scheduled and the ordering of operations on those machines has been determined and fully fixed.
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For this partial schedule, a critical path is defined exactly the same way as in the complete case;
the longest path from source to sink in the graph of the corresponding selectionSp. Hence the
makespanL(Sp) is also defined as the length of the critical path.

Given a partial scheduleSp, then we focus on a machineMk not yet scheduled. When we
schedule operations on machineMk, we have to take into accounts the constraints imposed by
the already scheduled operations on other machines. For example, assume that we have a prob-
lem given in Figure2.6 as a disjunctive graph, and that operations on machineM1 andM3 are
scheduled and their starting and completion times are fixed. Then, operationO12 for job J1 on
machineM2, which is not yet scheduled, has to be started at least after the completion ofO11

and ended before the start ofO13. In short we have to start and complete the processing ofO12

within a given limited time interval. Similar constraints are imposed toO22 andO32 as well, and
we have to determine the order ofO12, O22 andO32 on machineM2 such that these constraints
are not violated.

In general, we definehead and tail for each unscheduled operation. Leti be an operation
on machineMk not yet scheduled. Operationi can be identified as a nodei in the graph corre-
sponding to selectionSp. Let r i be the length of the longest path from source to the nodei: i.e.,
r i = L(0, i), whereL(i, j) is the length of the longest path from nodei to node j. r i is called the
release timeor theheadof operationi. In a similar fashion, letqi be the length of the longest
path fromi to the sink minus processing time ofi, i.e.,qi = L(i, ∗)− pi, wherepi is the processing
time of i. qi is called thetail of operationi. Thedue datedi is defined asdi = L(0, ∗) − qi. Note
thatL(0, ∗) is the makespan ofSp.

When the headr i, tail qi and the processing timepi, summarized as{r i , pi ,qi} are given for
each operationi on a machineMk, and letC as a set of operations on machineMk, we have a one
machine scheduling problem formulated as a mathematical programming model as follows:

minimize the makespan: maxi∈C{si + pi + qi}
subject to: si ≥ r i (i ∈ C)
and the disjunctive constraints:sj − si ≥ pi ∨ si − sj ≥ pj (i, j ∈ C)

(2.10)

Starting from a partial scheduleSp, which is initially set as empty, we solve a one-machine
scheduling problem for each machine not yet scheduled to optimality, and find a bottleneck
machine: a machine with the longest one-machine makespan. The algorithm to solve the one-
machine scheduling problem will be described in the next section. The bottleneck machine is
regarded as scheduled andSp is updated using the job sequence on the bottleneck machine ob-
tained above. Every time a new machine has been scheduled, the job sequence on each previously
scheduled machine is subject to reoptimization. The original SB consists of two subroutines: the
first one (SBI) repeatedly solves one-machine scheduling problems; the second one (SBII) builds
a partial enumeration tree where each path from the root to a leaf is similar to an application of
SBI.
The rough outline of SBI can be summarized as follows:

1. For each of unscheduled machines, solve the one-machine scheduling problem and obtain
the best makespan and corresponding job sequence.
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2. Identify the most bottleneck machine which has the longest one-machine makespan ob-
tained above.

3. Make the most bottleneck machine scheduled using the job sequence obtained above.

4. Reoptimize all the scheduled machines.

5. Repeat the above until all the machines are scheduled.

The more complete SBI algorithm is given in Algorithm2.6.1.
Instead of considering the most bottleneck machine in Step3 of Algorithm 2.6.1, if we con-

sider the n-th highest bottleneck machines and apply the remaining steps of SBI for each bottle-
neck candidate, we have SBII.

2.7 The One-machine Scheduling Problem

In the SBI heuristic, we have to repeatedly solve the one-machine scheduling problem. Although
the problem isNP-hard, Carlier has developed an efficient branch and bound method [31]. In this
section, we focus on the one-machine problem and describe the algorithm proposed by Carlier.
In the one-machine case, each job has only one operation, so an operation and corresponding job
is identified. Furthermore, a simplified notation is used to identify job number and corresponding
job; i.e., we just say “jobi” instead of saying “operationOi of job Ji ”. The disjunctive graph of
the problem is defined just as a special case of the jobshop scheduling problem. A schedule is
obtained by determining the starting (or completion ) times of all jobs, or equivalently, turning
all undirected disjunctive arcs into directed ones, resulting in a conjunctive graph, or simply, a
job sequence.

Consider a one-machine scheduling problemP with n jobs I = {1,2, . . . , n} characterized by
{r i , pi ,qi}, wherer i , pi andqi are the head, processing time and tail of each jobi respectively.
Hereafter, we omit a set ofn jobs I when it is obvious and just say “P is defined by{r i , pi ,qi}”.
The formal definition of the one-machine scheduling problem was already given by (2.10) and we
do not repeat it here. Table2.2shows an example of the one-machine scheduling problem with
7 jobs and Figure2.11shows an example of a schedule represented by a conjunctive graph for
this problem. Note that the conjunctive graph is simplified such that onlyn−1 arcs are presented
between adjacent job nodes instead of drawingn(n− 1)/2 arcs between all job node pairs, which
are apparently redundant. The number on each arc from source to a job nodei is the headr i

and the numbers on each arc from a job nodei to sink is the processing timepi “+” the tail qi.
The schedule presented in the figure is called a Schrage schedule, the definition of which will be
presented shortly.

A lower bound of the makespan for a one-machine scheduling problem defined byI =

{J1, . . . , Jn} and{r i , pi ,qi} is calculated as follows:

Theorem 4 Let I1 be a subset ofI , then

h(I1) = Min i∈I1r i +
∑

i∈I1

pi + Min i∈I1qi (2.11)
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Algorithm 2.6.1 (SBI heuristic)
A scheduling problem given as a set of technological sequences of machines for each job with
processing times (preferably represented by a disjunctive graph) are given as inputs. LetM be
the set of all machines:M = {M1, . . . ,Mr}.

1. A partial scheduleSp and a set of already scheduled machinesM0 in Sp are initialized as
Sp := {} andM0 := {} respectively.

2. For eachMk ∈ M \M0, do the following

(a) Compute headr i and tail qi for each operationi on Mk given Sp. Let pi be the
processing time ofi.

(b) Solve one-machine scheduling problem{r i ,qi , pi} to optimality for machineMk and
obtain the best one-machine makespanv(Mk) and corresponding job sequence (more
precisely, corresponding selection)SMk.

3. Let M∗ be the bottleneck machine such thatv(M∗) ≥ v(M) for all M ∈ M \M0

4. SetM0 :=M0 ∪ {M∗} andSp := Sp ∪ SM∗.

5. Order the elements ofM0 as{M1,M2, . . . ,Ml} (l = |M0|) in the order of its inclusion to
M0 above.

6. [local optimization of Sp with already scheduled machinesM0 = {M1,M2, . . . ,Ml}]
do

(a) Form = 1,2, . . . , l, do the following:

i. Reset the sequence of operations onMm, i.e., letSp
′ = Sp \ SMm.

ii. Compute headr i and tailqi for each operationi on Mm of Sp
′.

iii. Solve one-machine scheduling problem{r i ,qi , pi} and obtain newv(Mm) and
SMm.

iv. Let Sp
′′ = Sp

′ ∪SMm and compute makespanL(Sp
′′) for partial scheduleSp

′′. If
L(Sp

′′) < L(Sp), then setSp := Sp
′′, otherwise keep the originalSp.

(b) Reorder{M1,M2, . . . ,Ml} according to decreasing order of the newv(Mm)s.

while any improvements are made in Step6a.

7. Repeat from Step2 to Step5 untilM0 =M.

8. OutputSp as a obtained complete selection.
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Table 2.2:An example of the one-machine scheduling problem with 7 jobs
i (= job no.) 1 2 3 4 5 6 7
r i (head) 10 13 11 20 30 0 30
pi (processing time) 5 6 7 4 3 6 2
qi (tail) 7 26 24 21 8 17 0

is a lower bound on the optimal makespan.

Proof: In the conjunctive graph associated with the optimal schedule, there is a pathPI1 from
source to sink, passing through every job inI1. It is clear that the length of the pathPI1 is longer
than or equal toh(I1). Whereas, by definition of the critical path, the length of the pathPI1 is
shorter than or equal to the length of the critical path and which is equal to the makespan of the
optimal schedule. Thus,h(I1) is a lower bound. �

There is a method to generate a reasonably good schedule called thelongest tail heuristic
in which a job with the longest tailqi, therefore with the earliest due date, among ready jobs,
is regarded as the mosturgentand scheduled first. The resulting schedule is called a Schrage
schedule. An algorithm to generate a Schrage schedule is described in Algorithm2.7.1. The
name “longest tail” heuristic stems from (2.13).

Figure2.11shows a Schrage schedule obtained by the longest tail heuristic to the problem
given in Table2.2. The starting times of each job is:s1 = 10, s2 = 15, s3 = 21, s4 = 28, s5 = 32,
s0 = s6 = 0, s7 = 35, s? = 53. The critical path is 0, 1, 2, 3, 4,? and the makespan is equal to
53. This example is taken from [31].
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Figure 2.11:A Schrage schedule represented by a conjunctive graph
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Algorithm 2.7.1 (longest tail heuristic)
A one-machine scheduling problem defined by{r i , pi ,qi} for each jobi ∈ I = {1,2, . . . ,n} is given
as input

1. Initialize a set of scheduled jobsU := {}, and the most recently scheduled jobk := 0.
The starting times and processing times of the two dummy nodes 0 and? are defined as
s0 := s? := 0 andp0 := p? := 0 respectively.

2. Identify R, a set of ready jobs asR := {i ∈ I \ U | r i ≤ sk + pk}.
3. If R is empty, thenk′, the next job to be scheduled, is selected as

k′ := arg Mini∈I\Ur i (2.12)

and schedulek′ assk′ = rk′. Otherwisek′ is selected as

k′ := arg Maxi∈Rqi (2.13)

and schedulek′ assk′ = sk + pk. Updatek := k′.

4. UpdateU := U ∪ {k} and updates? ass? := max{s?, sk + pk + qk}.
5. Repeat Step2 to Step4 until U = I .

6. Output the set of obtained starting times{s0, s1, . . . , sn, s?}.
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The following theorem implies that the Schrage schedule is in a sense “close” to the optimal
schedule, and to improve it, a particular jobc has to be rescheduled.

Theorem 5 Let L be the makespan of the Schrage schedule.
(a) If this schedule is not optimal, there is a critical jobc and a critical setJ such that:

h(J) = Min i∈J r i +
∑

i∈J
pi + Min i∈Jqi > L − rc

(b) If this schedule is optimal, there existsJ such thath(J) = L.

Proof: Let G be the directed graph associated with the Schrage schedule and consider a critical
path ofG that contains maximal number of jobs. By renumbering jobs if necessary, the critical
pathP is denoted asP = (0,1,2, . . . , l, ?) without loss of generality.
The length of the critical pathL is:

L = s1 +
∑

i=1,...,l

pi + ql . (2.14)

If job 1 was scheduled immediately when its predecessork, if exists, was just finished; i.e.,
if sk + pk equals tos1, thenk must be on the critical path, too. This is in contradiction with the
maximality ofP. Hencesk + pk < s1, and this meansR was empty and 1 is selected by (2.12) in
Algorithm 2.7.1. Therefore,

s1 = r1 = Min i=1,...,lr i . (2.15)

If ql = Min i=1,...,lqi, thenL = h(J) with J = {1, . . . , l} from (2.14) and (2.15). Becauseh(J)
is a lower bound from Theorem4, the schedule is optimal.
Otherwise, there existsi ∈ {1, . . . , l} such thatqi < ql. Let c be the greatest number among suchi
and letJ = {c + 1, . . . , l}, then:

qc < qk for all k ∈ J (2.16)

and

ql = Mink∈Jqk. (2.17)

From (2.16), c has the “shortest” tail among{c} ∪ J : the least urgent job in the “longest” tail
heuristic. This means that whenc was scheduled,c was not selected by (2.13) but selected by
(2.12), meaning:

sc = rc < rk for all k ∈ J . (2.18)

Becausec is on the critical path ands1 = r1 from (2.15),

sc = s1 + p1 + . . . pc−1 = r1 + p1 + . . . pc−1. (2.19)
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From (2.18) and (2.19), we have

r1 + p1 + . . . pc−1 < rk for all k ∈ J . (2.20)

Together with (2.17) and (2.20), we have:

h(J) = Mink∈J rk +
∑

k∈J
pk + Mink∈Jqk > r1 + p1 + . . . pc−1 + pc +

∑

k∈J
pk + ql − pc. (2.21)

The right hand side of (2.21) is equal toL − pc �
As a corollary of this theorem, it can be seen that in an optimal schedule, eitherc is processed

before all the jobs inJ or after all the jobs inJ . By using this fact, we consider two new one-
machine scheduling problemsSL andSR by modifying head or tail of the original problemS.
Let P be a one-machine scheduling problem corresponding to{r i , pi ,qi}. Apply the longest tail
heuristic toP and obtain a Schrage scheduleS and the critical jobc and critical setJ . PL requires
job c scheduled before all jobs inJ . ThusPL is obtained fromP using the same{r i , pi ,qi} but
only modifyingqc as follows:

qc := Max(qc,
∑

k∈J
pr + ql). (2.22)

Likewise PR requires jobc scheduled after all jobs inJ . Therefore,PR is obtained fromP by
modifying rc as follows:

rc := Max(rc,Mink∈Jrr +
∑

k∈J
pr). (2.23)

Now we are ready to describe the branch and bound algorithm. In the branch and bound algo-
rithm, we consider a search tree in which each node is associated with a one-machine scheduling
problemP defined by{r i , pi ,qi}. The root nodeP0 corresponds to the original problem to be
solved. The active nodePa is initialized asP0. The upper boundµ is initialized asµ := ∞.

We apply the longest tail heuristic to the active nodePa and obtain the Schrage schedule
and its makespanLs(Pa), the critical operationc and the critical setJ . The upper boundµ is
updated asµ := min{µ, Ls(Pa)}. ThenPL andPR are generated by using (2.22) and (2.23).The
lower boundλ of the two new nodes will beλ(PL) := max{Ls(Pa),hL(J),hL(J ∪ {c})} and
λ(PR) := max{Ls(Pa),hR(J),hR(J∪{c})} respectively, wherehL andhR correspond toh in (2.11)
but calculated with modified{r i , pi ,qi} by (2.22) and (2.23) respectively. A new node will be
added to the tree only if its lower bound is less than the upper boundµ. The next active node is
identified as a node with the lowest bound.

2.8 The Well-known Benchmark Problems

The three well-known benchmark problems with sizes of 6× 6, 10× 10 and 20× 5 (known as
mt06, mt10 and mt20) formulated by Muth and Thompson [4] are commonly used as test beds to
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Algorithm 2.7.2 (Carlier’s branch and bound algorithm)
A one-machine scheduling problemP0 defined by{r i , pi ,qi} is given as input

1. Initialize Pa = P0 andµ := ∞.

2. Apply the longest tail heuristic toPa and obtain the Schrage schedule and its makespan
Ls(Pa), the critical operationc and the critical setJ .

3. If Ls(Pa) < µ, then storePa as the best schedule obtained so far:Pb := Pa, and update
µ := Ls(Pa). MakePa visited.

4. GeneratePL andPR defined by{rL
i , p

L
i ,q

L
i } and {rR

i , p
R
i ,q

R
i } respectively using (2.22) and

(2.23).

5. Calculateλ(PL), the lower bound forPL, asλ(PL) := max{Ls(Pa),hL(J),hL(J ∪ {c})},
wherehL is calculated by (2.11) with hL = h and{r i , pi ,qi} = {rL

i , p
L
i ,q

L
i }. Calculateλ(PR)

in the same way asλ(PL).

6. Add the new nodePL to the search tree as a child node ofPa if λ(PL) < µ and addPR if
λ(PR) < µ.

7. UpdatePa as a node with the lowest bound among nodes not yet visited.

8. Repeat Step2 to Step7 until there is no node that is not yet visited.

9. OutputPb as the optimal schedule forP0.
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measure the effectiveness of a certain method. Figure2.3shows the mt06 problem, which is the
easiest in size and structure. Indeed, it employs only 6 jobs and 6 machines, and the technological
sequence of jobs on each machine is similar to each other.

Table 2.3:Muth and Thompson’s 6× 6 problem (mt06)
job machine (processing time)
1 3 (1) 1 (3) 2 (6) 4 (7) 6 (3) 5 (6)
2 2 (8) 3 (5) 5 (10) 6 (10) 1 (10) 4 (4)
3 3 (5) 4 (4) 6 (8) 1 (9) 2 (1) 5 (7)
4 2 (5) 1 (5) 3 (5) 4 (3) 5 (8) 6 (9)
5 3 (9) 2 (3) 5 (5) 6 (4) 1 (3) 4 (1)
6 2 (3) 4 (3) 6 (9) 1 (10) 5 (4) 3 (1)

Table 2.4:Muth and Thompson’s 10× 10 problem (mt10)

job machine (processing time)
1 1 (29) 2 (78) 3 (9) 4 (36) 5 (49) 6 (11) 7 (62) 8 (56) 9 (44) 10 (21)
2 1 (43) 3 (90) 5 (75) 10 (11) 4 (69) 2 (28) 7 (46) 6 (46) 8 (72) 9 (30)
3 2 (91) 1 (85) 4 (39) 3 (74) 9 (90) 6 (10) 8 (12) 7 (89) 10 (45) 5 (33)
4 2 (81) 3 (95) 1 (71) 5 (99) 7 (9) 9 (52) 8 (85) 4 (98) 10 (22) 6 (43)
5 3 (14) 1 (6) 2 (22) 6 (61) 4 (26) 5 (69) 9 (21) 8 (49) 10 (72) 7 (53)
6 3 (84) 2 (2) 6 (52) 4 (95) 9 (48) 10 (72) 1 (47) 7 (65) 5 (6) 8 (25)
7 2 (46) 1 (37) 4 (61) 3 (13) 7 (32) 6 (21) 10 (32) 9 (89) 8 (30) 5 (55)
8 3 (31) 1 (86) 2 (46) 6 (74) 5 (32) 7 (88) 9 (19) 10 (48) 8 (36) 4 (79)
9 1 (76) 2 (69) 4 (76) 6 (51) 3 (85) 10 (11) 7 (40) 8 (89) 5 (26) 9 (74)
10 2 (85) 1 (13) 3 (61) 7 (7) 9 (64) 10 (76) 6 (47) 4 (52) 5 (90) 8 (45)

The mt10 and mt20 problems are like brothers. They are processing the same set of operations
and technological sequences are similar, but in the mt20 problem, the number of machines avail-
able is reduced to half of that of the mt10 problem. For example, the first operation of each job
in mt10 is exactly same as the first operation of each of the first 10 jobs in mt20 and the second
operation of each job in mt10 is exactly same as the first operation of each of the second 10 jobs
in mt20.

The mt10 and mt20 problems had been a good computational challenges for a long time.
Indeed, the mt10 problem has been referred as “notorious”, because it remained unsolved for
over 20 years. The mt20 problem has also been considered as quite difficult. However they are
no longer a computational challenge.

Applegate and Cook proposed a set of benchmark problems called the “ten tough problems”
as a more difficult computational challenge than the mt10 problem, by collecting difficult prob-
lems from literature, some of which still remain unsolved [1]. The ten tough problems consist of
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Table 2.5:Muth and Thompson’s 20× 5 problem
job machine (processing time)
1 1 (29) 2 (9) 3 (49) 4 (62) 5 (44)
2 1 (43) 2 (75) 4 (69) 3 (46) 5 (72)
3 2 (91) 1 (39) 3 (90) 5 (12) 4 (45)
4 2 (81) 1 (71) 5 (9) 3 (85) 4 (22)
5 3 (14) 2 (22) 1 (26) 4 (21) 5 (72)
6 3 (84) 2 (52) 5 (48) 1 (47) 4 (6)
7 2 (46) 1 (61) 3 (32) 4 (32) 5 (30)
8 3 (31) 2 (46) 1 (32) 4 (19) 5 (36)
9 1 (76) 4 (76) 3 (85) 2 (40) 5 (26)
10 2 (85) 3 (61) 1 (64) 4 (47) 5 (90)
11 2 (78) 4 (36) 1 (11) 5 (56) 3 (21)
12 3 (90) 1 (11) 2 (28) 4 (46) 5 (30)
13 1 (85) 3 (74) 2 (10) 4 (89) 5 (33)
14 3 (95) 1 (99) 2 (52) 4 (98) 5 (43)
15 1 (6) 2 (61) 5 (69) 3 (49) 4 (53)
16 2 (2) 1 (95) 4 (72) 5 (65) 3 (25)
17 1 (37) 3 (13) 2 (21) 4 (89) 5 (55)
18 1 (86) 2 (74) 5 (88) 3 (48) 4 (79)
19 2 (69) 3 (51) 1 (11) 4 (89) 5 (74)
20 1 (13) 2 (7) 3 (76) 4 (52) 5 (45)
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abz7, abz8, abz9, andla21, la24, la25, la27, la29, la38, la40. Theabzproblems are proposed by
Adams in [14]. la problems are parts of 40 problemsla01-la40originally from [32]. Table2.6,
which is taken from [1], shows for each of the ten tough benchmark problems, the problem size,
best solution reported in [1] and best lower bound. Those gaps between the best solution and
the best lower bound suggest the difficulties of the problems and no gap means the problem is
solved. The more recent status of the best solutions will be reported in the later sections.

Table 2.6:The ten tough benchmark problems (status reported by [1] in 1991)
Prob size (n×m) Best Solution Best Lower Bound
abz7 20×15 668 654
abz8 20×15 687 635
abz9 20×15 707 656
la21 15×10 1053 1040
la24 15×10 935 935
la25 20×10 977 977
la27 20×10 1269 1235
la29 20×10 1195 1120
la38 15×15 1209 1184
la40 15×15 1222 1222

Taillard proposed a set of 80 JSP and 120 FSP benchmark problems. They cover various
range of sizes and difficulties. They are randomly generated by a simple algorithm. It has
become more common to use the ten tough problems and/or Taillard benchmark than to use the
mt10 and mt20 problems as benchmark problems.



Chapter 3

Genetic Algorithms

Genetic Algorithms (GAs) are search strategies designed after the mechanics of natural selec-
tion and natural genetics to optimize highly complex objective functions. GAs have been quite
successfully applied to optimization problems including scheduling. In this chapter, the basic
concepts of GAs are reviewed.

3.1 Basic Concepts

Genetic Algorithms use a vocabulary borrowed from natural genetics. We have a set ofindi-
vidualscalledpopulation. An individual has two representations calledphenotypeandgenotype.
The phenotype represents a potential solution to the problem to be optimized in a straightforward
way used in the original formulation of the problem. The genotype, on the other hand, gives an
encodedrepresentation of a potential solution by the form of achromosome. A chromosome is
made ofgenesarranged in linear succession and every gene controls the inheritance of one or
several characters or features. For example, a chromosome consists of a sequence of 0 or 1 (i.e. a
bit string), and the value at a certain position corresponds toon (the value= 1) oroff (the value=
0) of a certain feature. More complicated forms such as a sequence of symbols and a permutation
of alphabets are chosen for chromosomes depending of the target problem.

Each individual has itsfitness, which measures how suitable is the individual for the local
environment. The Darwinian theory tells us that among individuals in a population, the one that
is the most suitable for the local environment is most likely to survive to have greater numbers
of offspring. This is called a rule of “survival of the fittest.”

The objective functionf of the target optimization problem plays the role of an environment,
therefore, the fitness of an individualF measures how “good” is the corresponding potential
solution in terms of the original optimization criteria. When the target optimization is the maxi-
mization of the objective function, then fitness may be identical to the objective function value:

F(x) = f (x) (3.1)

wherex is an individual in the current populationP. When the target is the minimization, then the
objective function must be converted so that an individual with a small objective function value

30
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has a high fitness. The most obvious way to deal with it is to define the fitness as the maximum
of objective function over the current population minus its own objective function value:

F(x) = maxy∈P{ f (y)} − f (x). (3.2)

Another method is known as ranking. In the ranking method, each individual in the current
populationP is sorted in the descending order of its objective function value so that the worst
individual is numbered asx1 and the best asxn, wheren is the size ofP. Then the fitnessF of an
individual xi, thei-th worst individual, is defined as

F(xi) = i. (3.3)

3.2 A Simple Genetic Algorithm

Meanwhile, let us consider a simple case in which the genotype is a bit string of lengthn. A
simple genetic algorithm is composed of the following three operators:

1. Crossover

2. Mutation

3. Reproduction

Crossover and Mutation are genetic recombination operators. Each individual in a population is
coupled to pairs which is called parents at random. Each pair of individuals undergoescrossover
described as follows.

Crossoveroperates on genotype (i.e. chromosomes) of two individuals called parents. It
generates new (usually two) individuals called offspring whose genes are inherited from either
parents. This can be done by splitting each of the two chromosomes into fragments and recom-
bining them again to form new chromosomes.

Now we assume that the genotype is a bit string of lengthn. The 1-point crossover sets one
crossover point on a string at random and takes a section before the point from one parent and
takes another section after the point from the other parent and recombines two sections to form
a new bit string. For example, considerA1 andA2 being bit strings of lengthn = 5 as parents as
follows:

A1 = 0000| 0
A2 = 1111| 1. (3.4)

The symbol| indicates a crossover point, and in this case it is set after the fourth bit. The resulting
1-point crossover yields two new individualsA′1 andA′2 as follows:

A′1 = 0000| 1
A′2 = 1111| 0. (3.5)
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The two-point crossover sets two crossover points at random, and takes a section between the
points from one parent and other sections outside the points from the other parent and recombines
them. In the following example, the two crossover points are set after the first and fourth bits
respectively.

A1 = 0 | 000 | 0
A2 = 1 | 111 | 1. (3.6)

The resulting two-point crossover yields the following two individuals:

A′1 = 0 | 111 | 0
A′2 = 1 | 000 | 1. (3.7)

The uniform crossover is a generalization of the two above. A random mask bit vector of
lengthn is given, and the positions where the mask bit is zero are taken from one parent and the
other positions where the mask bit is one are taken from the other. In the following example, the
mask bit vectorM′ is given asM = 01010.

M = 01010
A1 = 00000
A2 = 11111.

(3.8)

The resulting uniform crossover yields the following two individuals:

A′1 = 01010
A′2 = 10101.

(3.9)

Mutation operates on genotype of single individual. It corresponds to an error occurred
when chromosome is copied and duplicated. When exact copies are always guaranteed, then the
mutation rate is zero. However in real life, copy error can happen under some circumstances
such as the presence of noise. Mutation changes values of certain genes with small probability.
An example of a typical bit-flip mutation is shown in (3.2), where the third gene from the left in
A is selected with a small probability and its bit is flipped resulting inA′:

A = 00000
A′ = 00100.

(3.10)

Reproductionis a process in which individuals in a population are copied according to their
fitness values to form a new population. The individualsevolve through successive iterations
of reproduction, calledgenerations. Each individual makes number of its copies proportional to
its fitness, therefore, an individual with higher fitness makes more copies than that with lower
fitness.This is an artificial version of natural selection; a Darwinian survival of the fittest among
string creatures.

A simple reproduction operator is called aroulette wheelselection where each individual
in a population has a roulette wheel slot sized in proportion to its fitness. To reproduce, we
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simply spin the weighted roulette wheel and obtain a reproduction candidate with probability
proportional to its fitness. Each time we require another offspring, a simple spin of the weighted
roulette wheel yields the reproduction candidate. An example of the roulette wheel selection is
shown in Figure3.1. In the upper left picture in the figure, there are total seven individuals, ID 1
to ID 7, with fitness value assigned. A roulette wheel is created and shown in the right picture.
The number in each wheel slot corresponds to the individual ID. The first individual with ID 1,
for example, has fitness value 9, which is the highest and therefore the largest slot is assigned.
We spin the roulette wheel seven times to select seven individuals. Individual ID 1 and ID 2 are
likely to be selected more than once but individual ID 4 and ID 6 are not likely to be selected
resulting in the seven individuals with some duplicates shown in the lower picture.

10001001100011   1

10111011010111   5

11011100010010   4
00110011101111   1

10011001100101   5

10101101001110   9
01100010100011   8

fitness

roulette wheel

10101101001110
11011100010010
01100010100011

10011001100101

10101101001110
01100010100011

10111001010111

1
2
3
4
5
6
7

1

2
3

4

5

6
7

1
2
3
1
5
2
7

ID Individuals

Figure 3.1: An example of the roulette wheel selection, where the roulette wheel
is created according to the fitness value of each individual shown in the upper left
picture

3.3 The Procedure of a Simple Genetic Algorithm

The general procedure of a simple GA can be summarized as in Algorithm3.3.1. In the algo-
rithm, we start from a random initial populationP(0). P(t) is a population at generationt with N
individuals.Rc × N members are randomly selected fromP(t) and crossover is applied to gener-
ate newRc × N individuals that join into a new populationP′(t) in Step2, whereRc < 1 is called
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Algorithm 3.3.1 (Simple Genetic Algorithm)

1. Initialize P(t) as a random populationP(t = 0)

2. RecombineP(t) to yield P′(t) by crossover and mutation

3. EvaluateP′(t)

4. ReproduceP(t + 1) from P′(t) by selection

5. Sett← t + 1

6. repeat from2 to 5 until some termination condition is met.

7. Output the best individual inP(t).

a crossover ratio. The rest ofP(t) is just copied toP′(t). Rm × N members are then randomly
selected fromP′(t) and mutation is applied to generate new individuals that replace the original,
whereRm < 1 is call a mutation ratio. When the best individual inP(t) is preserved and copied
to P′(t) without modification, it is calledelitist strategy.

P′(t) is evaluated in Step3 and the new populationP(t + 1) is obtained after the reproduction
using, for example, the roulette wheel selection in step4. The termination condition is usually
given as: whent is sufficiently large, when the best or average fitness inP(t) exceeds certain
value, or when the variation of the fitness inP(t) is small.

While the process described above is repeated for a sufficient number of generations, the
recombination operators keep producing possibly new individuals with new fitness where some
of them are possibly better than those of ever existing ones. The reproduction phase focuses
on such good individuals and replicate them as occurred in the natural evolution. Eventually an
individual with a high fitness value is expected to emerge in a population. The natural evolution
process requires enormous amount of time. However, thissimulatedevolution process on a
computer runs much faster.
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A Simple Genetic Algorithm for the
Jobshop Scheduling Problem

In this chapter, the simple GA described in the previous chapter is applied to the jobshop schedul-
ing problem. The approach described in this chapter was proposed by Nakano and Yamada [24].
An advantage of this approach is that conventional genetic operators, such as one-point, two-
point and uniform crossovers can be applied without any modification. However, one drawback
is that a new individual generated by crossover may not represent a feasible schedule. In other
words, such genotype is calledfatal or illegal. There are two approaches to solve this situation:
one is to repair a fatal genotype to a normal one, and the other is to impose a penalty for the
fatality and to lower the fitness. One example of the former approach will be elaborated in this
chapter.

4.1 Genetic Encoding of a Solution Schedule

We have an×m jobshop scheduling problem (JSP). As described in Chapter2, a solution of a
JSP can be represented as a directed graph. Therefore, by labeling each directed arc as 0 or 1
according to its direction, it can be represented as a bit string of lengthmn(n−1)/2. For example,
consider a 3× 3 problem given in Table2.1 and a solution given in Figure2.2 in Chapter2.
According to Figure2.8, each arc of the graph has a labelling 0 or 1. The only thing we need to
do is to specify the order of arcs. Note that each arc represents the precedence relation between
two jobs Ji and J j on the same machineMr ; hence an arc is specified by a triplet (i, j, r). An
intuitive ordering between two arcs (i, j, r) and (i′, j′, r ′) is a machine-based ordering defined as:

(i, j, r) < (i′, j′, r ′)⇐⇒ (r < r ′ or (r = r ′ and (i, j) < (i′, j′))) (4.1)

where,
(i, j) < (i′, j′)⇐⇒ (i < i′ or (i = i′ and j < j′)) (4.2)

The solution schedule given in Figure2.2and Figure2.8 is encoded as follows:

111 | 100 | 011 (4.3)

35
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The encoding from a schedule to a bit string based on the machine-based ordering of arcs in the
disjunctive graph corresponding to the schedule is called machine-based encoding and decoding.

Another ordering is called a job-based ordering defined as follows:

(i, j, r) < (i′, j′, r ′)
⇐⇒ ((i, j) < (i′, j′) or ((i, j) = (i′, j′) andoj(r) < oj(r ′)))

(4.4)

whereoj(r) < oj(r ′) indicates thatJj is processed onMr prior to Mr ′. In other words, two arcs
corresponding to the same job pair (Ji , Jj) are ordered according to the processing order of the
first job Ji. If we use the job-based ordering, then solution schedule given in Figure2.2 and
Figure2.8 is encoded as follows:

100 | 101 | 101 (4.5)

where the vertical bars are inserted as job-pair delimiters; the partitions correspond to job pair
(1,2), (1,3) and (2,3) from left to right respectively. The encoding from a schedule to a bit string
based on the job-based ordering of arcs in the disjunctive graph corresponding to the schedule is
called job-based encoding and decoding.

As another example, Figure4.1 shows a simplified Gantt chart representation of an optimal
schedule for the mt06 problem defined in Table2.3. In the figure, the number indicates job
number and consecutive sequence of the same number represents an operation for the job. The
repetitions of the same number represents the processing time. For example, the left most se-
quence 111 on machineM1 represents an operation for jobJ1 on machineM1 with processing of
3 time units and it starts at time unit 7. Figure4.2 shows a binary representation of the optimal
solution given in Figure4.1 using the job-based ordering. For the ease of understanding, one
long bit string is partitioned and divided per each job pair. For example, the first bit substring
represents thatJ1 is processed prior toJ2 on M3 and also onM1 but J2 is prior toJ1 on M2. Note
that in the optimal schedule, like the one in this example, there is a tendency that the same bit
continues in each substring of the same job pair. This confirms a heuristic that the processing
priority for each job pair tends to be unchanged. This is especially true for easy problems in
which each technological sequence of jobs on each machine is similar to each other.

As described in the previous chapter, the simple one-point or two-point crossover exchange
chunks of bit sequences between parents. By using the job-based ordering, the consecutive same
bits are likely to be exchanged together and thus this tendency, once acquired, is not destroyed
easily.

4.2 Local harmonization

In the previous section, we have seen a couple of encoding methods to convert a solution schedule
into a bit string. In those methods, different solution schedules are mapped into different bit
strings. However, an arbitrary bit string generated by hand or crossover or mutation may not
necessarily mapped back into a feasible solution schedule. In fact, the directed graph obtained
from any bit string by selecting each arc’s direction according to zero or one of corresponding bit
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M1: 111 44444333333333 66666666662222222222555

M2: 2222222244444666111111555 3

M3: 333331 2222255555555544444 6

M4: 3333 666 4441111111 22225

M5: 2222222222 555553333333444444446666111111

M6: 33333333 66666666622222222225555111444444444

Figure 4.1:An optimal schedule for the mt06 (6× 6) problem (makespan= 55)

(J1, J2) : 110100
(J1, J3) : 011000
(J1, J4) : 110010
(J1, J5) : 111100
(J1, J6) : 110000
(J2, J3) : 101000
(J2, J4) : 111100
(J2, J5) : 111111
(J2, J6) : 111000
(J3, J4) : 111001
(J3, J5) : 111100
(J3, J6) : 111101
(J4, J5) : 110100
(J4, J6) : 111010
(J5, J6) : 101000

Figure 4.2:A binary representation of a solution schedule using the job-based ordering corre-
sponding to the solution given in Figure4.1. The first line corresponds to the precedence relation
betweenJ1 and J2. The first three digits of the bit-string on the first line are 110. This corre-
sponds to the fact thatJ1 is processed prior toJ2 on J1’s first and second machinesM3 andM1,
but is not prior toJ2 on J1’s third machineM2 and so on.
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value may contain cycles. In such cases, the bit string, i.e. genotype, is calledfatal or illegal, and
a bit string is calledfeasiblewhen it corresponds to an executable schedule with corresponding
directed graph being acyclic.

A repairing procedure that generates a feasible bit string, as similar to an illegal one as pos-
sible, is called theharmonization algorithm[24]. The Hamming distance is used to assess the
similarity between two bit strings. The harmonization algorithm goes through two phases:lo-
cal harmonizationandglobal harmonization. The former removes the ordering inconsistencies
within each machine, while the latter removes the ordering inconsistencies between machines.
This section explains the former and the next section will explain the latter harmonization.

The local harmonization works separately for each machine and resolves the cycle within
each machine by changing directions of arcs. Assume that we are resolving cycles on machine
Mr . A set of nodesGr of machineMr is initialized asGr = {O1r ,O2r , . . . ,Onr} (operations and
nodes are identified here). First the least priority nodeOlr ∈ Gr is identified as a node that has
the highest number of incoming arcs fromGr \ Olr (break ties arbitrarily). If this node has any
outgoing arc to any node inGr \Olr , then the direction of the arc is reversed so thatOlr has only
incoming nodes fromGr \Olr , andGr is updated asGr := Gr \Olr . This process is repeated until
Gr becomes empty, and as a result, the local inconsistensy is completely removed. Figure4.3
shows an example of the local harmonization for machineM1. In the figure,O31 is first identified
as the least priority node, and the arcO31 → O61 is reversed such thatO31 becomes the last
operation on machineM1. O21 is then identified as the second least priority node, and the arcO21

→ O41 is reversed such thatO21 becomes the second last operation on machineM1 and so on.
The obtained consistent ordering isO41→ O61→ O51→ O11→ O21→ O31.

4.3 Global harmonization

The global harmonization removes ordering inconsistencies between machines. Even after the
local harmonization, there may exist cycles in the graph. In Figure4.4, for example, there is a
cycle connectingO23→ O22→ O32→ O31→ O33, and again,→ O23. The global harmonization
changes the directions of minimum number of arcs so that there exists no cycles. It is not always
guaranteed that the above harmonization will generate a feasible bit string closest to the original
illegal one, but the resulting one will be reasonably close and the harmonization algorithms are
quite efficient.

4.4 Forcing

An illegal bit string produced by genetic operations can be considered as a genotype, and a
feasible schedule generated by any repairing method can be regarded as a phenotype. Then the
former is an inherited character and the latter is an acquired one. Note that the repairing stated
above is only used for the fitness evaluation of the original bit string; that is, the repairing does
not mean the replacement of bit strings.

Forcing means the replacement of the original string with a feasible one. Hence forcing can
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O61
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O41

O11

O21

O31

O61

O51

O41

O11

O21

O31

O61

O51

O41

O11

O21

O31

O61

O51

O41

Figure 4.3:An example of the local harmonization resolving cycles within six oper-
ationsO11,O21, . . . ,O61 on the same machineM1 where the arcsO31→ O61, O21→
O41 andO11→ O61 are reversed in this order and a consistent orderingO41→ O61

→ O51→ O11→ O21→ O31 is eventually obtained.

O11 O12 O13

O21 O22O23

O31O32 33O

*0

0011

Figure 4.4:An example of global harmonization where a cycleO23→O22→O32→
O31→ O33→ O23 is resolved by reversing an arcO22→O32.
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be considered as the inheritance of an acquired character, although it is not widely believed that
such inheritance occurs in nature. Since frequent forcing may destroy whatever potential and
diversity of the population, it is limited to a small number of elites, usually the best 5% in the
population. Such limited forcing brings about at least two merits: a significant improvement in
the convergence speed and the solution quality.

4.5 Simple GA for the JSP

Using the job-based encoding, standard crossover/mutation, global/local harmonizations and
forcing, a simple GA for the JSP can be constructed. Because the JSP is a minimization prob-
lem, the fitness is defined by the ranking method (3.1) and standard roulette wheel selection
is utilized. The outline of the simple GA for the jobshop scheduling problem is described in
Algorithm 4.5.1.

4.6 The Limitation of the Simple Approach

The simple GA approach described in this chapter can be applied to small problems such as 6×6
problem given in Table2.3. Table4.1summarizes the experimental results for the mt benchmark
problems. The column labeled SGA shows the best makespans obtained by the SGA and the
column labeled Optimal shows the known optimal makespans. In fact, the optimal schedule
shown in Figure4.1is obtained by the GA. However, larger problems such as 10×10 and 20×5
are not tractable by this simple approach.

Table 4.1:Experimental results of the simple GA for mt benchmark problems

Prob. mt06 mt10 mt20
(size) (6×6) (10×10) (20×5)
SGA 55 965 1215
Optimal 55 930 1165
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Algorithm 4.5.1 (Simple GA for the JSP)
A n×mscheduling problem is given as an input. The GA parameters:N, the population size,Rc,
crossover ratio,Rm, mutation ratio are also given.

1. Initialize P(t) as a random populationP(t = 0) of sizeN, where each random individual is
a bit string of lengthm× n× (n− 1)/2.

2. Modify P(t) by applying one-point (3.2), two-point (3.2) or uniform (3.2) crossover to the
randomly selectedRc × N members ofP(t) and obtainP′(t).

3. Modify P′(t) by apply bit-flip mutation (3.2) to the randomly selectedRm× N members of
P′(t) and obtainP′′(t).

4. EvaluateP′′(t) by the following steps;

(a) Decode each individualp in P′′(t) by using the job-based decoding based on (4.1)
into S, with the local and global harmonization methods to repair illegal bit strings.

(b) Calculate the objective functionf of p as f (p) = Cmax(S)

(c) Calculate fitnessF of p by using the ranking method shown in (3.1).

(d) Apply forcing to retain the phenotype of small number of elitest individuals to the
next generation.

5. ReproduceP(t + 1) from P′′(t) by the roulette wheel selection

6. Sett← t + 1

7. repeat from2 to 5 until some termination condition is met.

8. Output the best individual inP(t).
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GT-GA: A Genetic Algorithm based on the
GT Algorithm

As seen in the previous section, conventional GAs can be applied to the jobshop scheduling
problem in a rather straightforward way without major difficulties; a solution is represented as a
bit string and conventional genetic operators such as 1-point, 2-point and uniform crossover and
bit-flip mutation are applied. Because of the complicated constraints of the problem, however,
an individual generated by such genetic operators is often infeasible; its phenotype does not
represent an executable solution, and requires several steps of repairing process such as local and
global harmonizations.

Obviously one of the advantages of the GA is its robustness over a wide range of problems
with no requirement of domain specific adaptations. Hence genetic operators deal with geno-
type, which is domain independent, and are separated from domain specific decoding process
from genotype to phenotype. However from the performance viewpoint, it is often more effi-
cient to directly incorporate domain specific features into the genetic operators and skip wasteful
intermediate decoding steps. Thus the GT crossover and the genetic algorithm based on GT
crossover, denoted as GT-GA, has been proposed by Yamada and Nakano [25] and has the fol-
lowing properties.

• The GT crossover is a problem dependent crossover operator that utilizes the GT algorithm.

• The crossover operates directly on phenotype.

• In the crossover, parents cooperatively give a series of decisions; as which operation should
be processed next, to build a new schedule. These decisions are made based on their own
scheduling orders.

• The offspring represent active schedules, so there is no repairing process required.

Before describing the GT crossover, let us review some other crossover operators based on
non-binary encodings for comparisons and discuss their advantages and disadvantages in the
following sections.

42
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5.1 Subsequence Exchange Crossover

As shown in Figure2.3 in Section2.1, a schedule of the JSP can be represented by a solution
matrix, in other words, the set of permutations of jobs on each machine. When the matrix is
expanded in one dimensional array as shown in Figure5.1, it is called anm-partitioned permu-
tation, where the permutation in thek-th partition (from the left) corresponds to the processing
order of jobs on machineMk. A solution represented by am-partitioned permutation is regarded
as genotype to which a crossover operator is applied.

M1 M2 M3

1 2 3 3 1 2 2 1 3

Figure 5.1:The solution given in Figure2.3 is converted to anm-partitioned per-
mutation form = 3, where the permutation in thek-th partition corresponds to the
processing order of jobs on machineMk

TheSubsequence Exchange Crossover(SXX) was proposed by Kobayashi, Ono and Yama-
mura [33]. The SXX is a natural extension of the subtour exchange crossover for TSPs presented
by the same authors [34]. Let two m-partitioned permutations bep0 andp1, which correspond to
two feasible solution schedules. A pair of subsequences, one fromp0 and the other fromp1 on
the same machine, is calledexchangeableif and only if they consist of the same set of job num-
bers. The SXX first identifies exchangeable subsequence pairs inp0 andp1 on each machine and
interchanges each pair to produce newm-partitioned permutationsk0 andk1. Figure5.2 shows
an example of the SXX for a 6× 3 problem. In the figure, each underlined subsequence pair is
identified as exchangeable and interchanged.

The SXX ensures thatk0 andk1 are always validm-partitioned permutations and therefore,
there are no inconsistencies within each machine to be resolved by the local harmonization de-
scribed in the previous section. However, there may exist inconsistencies between machines that
must be resolved by the global harmonization.

5.2 Precedence Preservative Crossover

Another representation that uses anunpartitioned permutation ofn job numbers withm-repetitions
has been proposed by Bierwirth [35]. In this representation, we consider a permutation ofn job
numbers but each identical job number occursm times. When such a permutation with repe-
titions is given, it is decoded into a feasible schedule by scanning the permutation from left to
right and referring thek-th occurrence of a job number to thek-th operation in the technological
sequence of this job. Figure5.3shows an example of this decoding process. In the figure, a per-
mutation of three job numbers with three repetitions is given in the top and there are three rows
labeledM1, M2 and M3 in the bottom. We consider decoding this permutation into a solution
schedule of 3× 3 problem given in Table2.1and Figure2.1. From the job sequence matrix{T jk}
given in Figure2.1, we see that jobJ1, for example, is first processed onM1, therefore, the first
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123456 321564 235614

621345 326451 635421

p0

p1

M1 M2 M3

213456 325164 263514

612345 326415 356421

k0

k1

Figure 5.2: An example of subsequence exchange crossover (SXX), where each
underlined subsequence pair one fromp0 and the other fromp1 on each machine is
identified as exchangeable and interchanged to generatek0 andk1

occurrence of 1 in the permutation should be moved straight down to the row ofM1. Likewise,
J1 is then processed onM2 andM3 in this order, so the second and third occurrences of 1 should
be moved down to the rows ofM2 andM3 respectively. By moving all the job numbers down to
one ofM1, M2, or M3 rows, a solution schedule is obtained. In this case the schedule obtained is
identical to the one given in Figure2.3.

The advantage of this representation is that an arbitrary permutation with repetitions can be
decoded into a feasible schedule. Therefore, no repairing processes such as local and global
harmonizations are required.

1 3 2 1 3 2 2 1 3

1   2   3        M1
  3   1     2    M2
          2   1 3M3

A job permutation



is decoded

a schedule
 to

Figure 5.3:A job sequence (permutation with repetition) for a 3×3 problem defined
in Figure2.1 is decoded to a schedule, which is equivalent to the one in Figure2.3.

A crossover operator calledPrecedence Preservative Crossover(PPX) is proposed for this
representation in [36]. The PPX perfectly respects the absolute order of genes in parental chro-
mosomes as follows. Assume we have two parentsp0 and p1 encoded in permutation with
repetitions representation and consider generating a new individualk also represented in a per-
mutation with repetitions. First, a template bit stringh of lengthmnis given that determines from
which parent,p0 or p1, should genes to be drawn to generate a new individual. The bit value is
zero means that the corresponding gene should be copied fromp0 and one fromp1. When a
gene is drawn from one parent and then appended to the offspring chromosome, it is deleted
from the parent and the corresponding gene is also deleted from the other parent. This step is
repeated until both parent chromosomes are empty and the offspring contains all genes involved.
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Figure5.4shows an example of this crossover. Starting from the top left picture, the first two bits
of h are both zero, so the first and second job numbers 3 and 2 ink are copied fromp0 as shown
in the round boxes. The leftmost occurrences of job numbers 3 and 2 are deleted from bothp0

and p1 in the top right picture. The first two bits inh are deleted as well. Then the leftmost
non-deleted bits inh become four ones shown in the square box, which means that the next four
job numbers should be copied fromp1. The leftmost non-deleted four job numbers inp1 are
1121 which are copied tok as shown in the square boxes. In the bottom picture, the leftmost
non-deleted occurrences of job numbers 1121 are then deleted fromp0 as well as fromp1. The
four ones in the square box are also deleted fromh. The remaining non-deleted bits inh are three
zeros, which indicates that the remaining job numbers should be copied fromp0 (however the
remaining non-deleted permutation 233 is identical both inp0 andp1 in this example).

3 2 1 1 2 1 2 3 3k

0 0 1 1 1 1 0 0 0h

3 2 2 2 3 1 1 1 3p0

1 1 3 2 2 1 2 3 3p1

3 2 1 1 2 1 2 3 3k

0 0 1 1 1 1 0 0 0h

3 2 2 2 3 1 1 1 3p0

1 1 3 2 2 1 2 3 3p1

3 2 1 1 2 1 2 3 3k

0 0 1 1 1 1 0 0 0h

3 2 2 2 3 1 1 1 3p0

1 1 3 2 2 1 2 3 3p1

Figure 5.4:An example of the precedence preservative crossover (PPX), wherek is
generated fromp0 andp1 usingh

5.3 GT Crossover

Unlike other crossover operators described in the previous two sections, the GT crossover, GTX
in short, directly operates on the solution matrix representation of a schedule given in Figure2.3.
In this sense, we have no distinction between genotype and phenotype here. Assume we have two
parentsp0 andp1 both represented by solution matrices and consider generating a new individual
k also represented in a solution matrix. LetH be a binary matrix of sizem× n,whereHri = 0
means that thei-th operation on machiner should be determined by the first parentp0 andHri = 1
by the second parentp1 [25, 37]. H is called a inheritance matrix. The role ofHri is similar to
that ofh described in Section5.2. In fact, the idea of the GT crossover including the use ofHri

is first proposed and later adopted to the precedence preservative crossover.
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Algorithm 5.3.1 (GT crossover)
A scheduling problem represented by{T jk}, the technological sequence matrix, and{pjk}, the
processing time matrix as well as two solution schedulesp0 and p1 represented by solution
matricesS0 = {S0

rk} andS1 = {S1
rk} respectively, are given as inputs.

1. Initialize G as a set of operations that are first in the technological sequence; i.e.,G =

{O1T11,O2T21, . . . ,O2Tn1}. For each operationO ∈ G, setES(O) := 0 andEC(O) := p(O).

2. Find the earliest completable operationO∗r ∈ G by (2.1) with machineMr . A subset ofG
that consists of operations processed on machineMr is denoted asGr .

3. Calculate the conflict setC[Mr , i] ⊂ Gr by (2.2), wherei−1 is the number of operations
already scheduled onMr .

4. Select one of the parents{p0, p1} as p according to the value ofHri , that is, p := pHri

andSp := SHri . For eachO jr ∈ C[Mr , i] with job number j, there exists an indexl such
that Srl = j. Let lm be the smallest index number among them; i.e.,lm := min{l | Srl =

j and O jr ∈ C[Mr , i]} and letk := Srlm. This results in selecting an operationOkr ∈
C[Mr , i] that has been scheduled inp earliest among the members ofC[Mr , i].

5. ScheduleOkr as thei-th operation onMr ; i.e. Sri := k, with its starting and completion
times equal toES(Okr) andEC(Okr) respectively:s(Okr) = ES(Okr), c(Okr) = E(COkr).

6. For all Ojr ∈ Gr \ {Okr}, UpdateES(Ojr ) as

ES(Ojr ) := max{ES(O jr ),EC(Okr)} andEC(Ojr ) asEC(Okr) := ES(Okr) + p(Okr).

7. RemoveOkr from G (and therefore fromGr), and add operationOks that is the next to
Okr in the technological sequence toG if such Oks exits; i.e., if r = Tki and i < m, then
s := Tki+1 andG := (G \ {Okr}) ∪ {Oks}.
CalculateES(Oks) andEC(Oks) as:

ES(Oks) := max{EC(Okr),EC(PM(Oks))} andEC(Oks) := ES(Oks) + p(Oks) respectively.

8. Repeat from Step1 to Step7 until all operations are scheduled.

9. Output the solution matrix{Srk} as the active schedule obtained with the set of starting and
completion times{s(O jr )} and{c(O jr )} respectively wherej = Srk.
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The GT crossover can be defined by modifying Step4 of Algorithm 2.2.1, where the choice
of the next operation from the conflict setC[Mr , i] was at random. In the GT crossover, the
choice is made by looking at the processing order in one of the parents specified byH and an
operation that has been scheduled in the parent earliest among the members of the conflict set
is selected. By doing so, it tries to reflect the processing order of the parent schedules to their
offspring. Note that if the parents are identical to each other, the resulting new schedule is also
identical to those of the parents. In general the new schedule inherits partial job sequences of
both parents in different ratios depending on the number of zeros and ones contained inH.

Algorithm 5.3.1describes the GT crossover. For the purpose of self-completeness, it is pre-
sented as a complete form, but the differences between the GT algorithm and the GT crossover
are only the inputs and Step4. The other steps are just the exact copies of the GT algorithm.
The GT crossover generates only one schedule at once. Another schedule is generated by using
the sameH but changing the roles ofp0 and p1. Thus two new schedules are generated that
complement each other.

Figure5.5shows an example of the GT crossover applied to the two parentsp0 andp1 repre-
sented by solution matrices with an inheritance matrixH and generatingk as an offspring when a
problem is given as shown in Figure2.3. For better understanding, correspondig solutions repre-
sented by the simplified gantt chart introduced in Figure4.1are also shown in the square boxes.
Each number with an arrow pointing to an operation indicates the order of the corresponding
operation selected in Step4 of Algorithm 5.3.1. This order is dynamically assigned in the algo-
rithm. For example, the first operation on machineM1 should be first determined in this case.
The corresponding bit inH is consulted and here, we seeH11 = 1 which means the operation
should be determined fromp1. Because the first operation on machineM1 in p1 is O11, O11 is
also scheduled as the first operation on machineM1 in k. The next operation to be determined is
the first operation on machineM2 andH21 = 1 indicates that this operation should be determined
again fromp1, thusO32 is selected ink. In the similar way, the next operation to be determined is
the second operation on machineM1 andH12 indicates that this operation should be determined
this time fromp0, thusO21 is selected ink. Repeating this process, the complete schedule shown
in the right is finally obtained ask. One can see, for example, that the whole job sequence onM3

is consequently copied fromp0 because corresponding bits inH are all zeros.
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Figure 5.5:GT crossover
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While applying the GT crossover, simulated randomcopy erroris incorporated as mutation
built into the GT crossover. More precisely, in Step4 of Algorithm5.3.1, then-th (n > 1) smallest
index numberlnm is selected instead oflm = l1m and the corresponding operation inC[Mr∗ , i] that
is then-th earliest scheduled operation inp among the members ofC[Mr∗ , i] is selected with a
small probabilityRm When the two parentsp0 andp1 are identical, then the offspringk generated
by the GT crossover is also identical top0 and p1, however, with the mutation incorporated,k
can be slightly different from the parents.

5.4 GT-GA

A Genetic Algorithm based on the GT crossover is straightforward. The general procedure de-
scribed in Section3.3 is used without major modifications. The following points should be
mentioned.

1. In the GT-GA, each individual is always a feasible schedule represented by a solution ma-
trix. In fact, each individual is not only feasible but also an active schedule. As described
earlier, we have no distinction between genotype and phenotype here.

2. Because the problem is a minimization problem, the rank-based roulette wheel selection
method is used.

3. An elitest strategy to preserve the best individual in the current population to the next
generation is used.

5.5 Computational Experiments

GT-GA is applied to the mt benchmark problems to explore its efficiencies and limitations. Ta-
ble5.1shows the best solutions obtained by the GT-GA for each problem. For the mt06 problem
the optimal schedule with makespan 55 is immediately obtained even with small population. For
the mt10 and mt20 problems, 600 trials are performed with different random number seeds in
each trial.

For the GA parameters, the population sizeN < 100 is used for the mt06 problem,N = 1000
andN = 2000 are used for the mt10 and mt20 problems respectively with high crossover rate
Rc > 0.9 and low mutation rateRm < 0.01. Each GT-GA run is terminated after 200 generations.
Figure5.6shows the histgram of the obtained best solutions of the mt10 problem for 600 trials.
For example, the optimal schedule of the mt10 problem with makespan 930 was obtained four
times among 600 trials.

From the experimental results, we can observe that notorious mt10 problem can be solved
to optimally even with this simple algorithm. The success is limited in a sense that the optimal
makespan for the mt10 problem is obtained only occasionally among many trials and for the
mt20 problem, the optimal makespan cannot be obtained. However, considering the simplicity
of the algorithm, the results are still interesting.
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Algorithm 5.4.1 (A Genetic Algorithm using the GT crossover)
As always, we are given a jobshop scheduling problem represented by{T jk}, the technological
sequence matrix, and{pjk}, the processing time matrix. Besides, the following GA parameters
are given: population sizeN, crossover rateRc and mutation rateRm.

1. A random initial populationP(t = 0) of sizeN is constructed in which each individual is
generated using the GT algorithm with randomly selecting operations in Step4 of Algo-
rithm 2.2.1. The makespan of each individual is automatically calculated as an output of
the GT algorithm.

2. Select randomlyN × Rc individuals fromP(t) and pair them randomly. Apply the GT
crossover (with built-in mutation of probabilityRm) to each pair and generate newN × Rc

individuals that are inserted intoP′(t). The rest ofP(t) members are just copied toP′(t). As
a result of the GT crossover, the makespan of each individual is automatically calculated.

3. If the best makespan inP′(t) is not as good as that inP(t), then the worst individual inP′(t)
is replaced by the best individual inP(t) (elitest strategy).

4. ReproduceP(t + 1) from P′(t) by using the rank-based roulette wheel selection, in which
each individual inP′(t) is sorted in the descending order of its makespan so that the worst
individual is numbered asx1 and the best asxN. Then the roulette wheel selection is applied
with the fitnessf of an individulxi defined asf (xi) = i to obtainP(t + 1).

5. Sett← t + 1

6. Repeat from Step2 to 5 until some termination condition is met.

7. Output the best individual inP(t) as the obtained best solution.

Table 5.1:Experimental results of the GT-GA for mt benchmark problems

Prob. mt06 mt10 mt20
(size) (6×6) (10×10) (20×5)
SGA 55 965 1215
GTGA 55 930 1184
Optimal 55 930 1165
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Figure 5.6:The histgram of the best makespans obtained by the GT-GA after 200
generations among 600 trials for the mt10 problem
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5.6 Concluding Remarks

Figure5.7 summarizes the relationship between various crossover operators discussed in this
and previous chapter. The ordinate indicates the level of problem independence of each solution
representation. The SGA described in the previous chapter uses the binary codings and does not
use any domain knowledge of the scheduling problem, therefore, gives the most general repre-
sentation. The SXX uses the property that the scheduling problem can be represented by the
permutation problem but does not incorporate the fact that permutations on each machine are not
mutually independent. The PPX utilizes this fact but does not directly use the fact that in the
makespan minimizing scheduling problem, the optimal schedules are always active schedules,
therefore, we can restrict the search for the optimal schedule within the set of all active sched-
ules. The GT crossover denoted as GTX in the figure incorporates all these domain knowledges
therefore the most efficient but still simple enough.

SGA with one-point crossover
(genotype is represented by a bit string)

SXX 
(genotype is represented by a m-

partitioned permutaion)

PPX
(genotype is represented by a 

permutation with m repetitions)

GTX
(genotype and phenotype are identical 
and  represented by a solution matrix)

makespan-minimizing jobshop 
scheduling problem in which 
active schedules make sense

general

problem specific

(any problem)

domain knowledges

permutation problem

jobshop scheduling problem

Figure 5.7:relationship between various crossover operators



Chapter 6

Neighborhood Search

As is now universally appreciated, it is not really likely that optimal solutions to large combinato-
rial problems will be found reliably by any exact method, although it is possible to find classes of
instances where problem-specific methods can achieve good results. However, for problems that
are NP-hard [38], it is now customary to rely on the application of heuristic techniques [39, 40].
These techniques include what some call the ‘metaheuristics’—simulated annealing (SA) and
tabu search (TS)—as well as genetic algorithms (GAs) which are already discussed in the ear-
lier chapters. Central to most heuristic search techniques is the concept of neighborhood search
(NS). In this chapter, the general concept of the neighborhood search is first reviewed and the
well-known instances of metaheuristics, SA, TS, and GAs are formulated in this context so that
the differences and characteristics of those methods become clear.

6.1 The Concept of the Neighborhood Search

If we assume that a solution is specified by a vectorx, that the set of all (feasible) solutions is
denoted byX (which we shall also call thesearch space), and the cost of solutionx is denoted
by f (x), then every solutionx ∈ X has an associated set ofneighbors, N(x) ⊂ X, called the
neighborhood ofx. Each solutionx′ ∈ N(x) can be reached directly fromx by an operation
called amove, a single perturbation ofx. Many different types of move are possible in any
particular case, and we can view a move as being generated by the application of a transition
operatorω. For example, ifX is then-dimensional binary hypercubeZZn

2, a simple transition
operator is the bit flipφ(k)

φ(k) : ZZn
2→ ZZn

2

{
zk 7→ 1− zk

zi 7→ zi if k , i
(6.1)

wherez is a binary vector of lengthl.

As another example, we can take the forward shift operator for the case whereX is Πn—the

52
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space of permutationsπ of lengthn. The operatorFSH(i, j) (where we assumei < j) is

FSH(i, j) : Πn→ Πn


πk 7→ πk−1 if i < k ≤ j
πi 7→ π j

πk 7→ πk otherwise
(6.2)

The permutation flowshop scheduling problem withn jobs andm machines and with any objec-
tive function, such asn/m/P/Cmax or n/m/P/Csum introduced in Chapter2 can be considered as
a typical example of this permutation space.

An analogous backward shift operatorBSH(i, j) can similarly be described; the composite
of BSH andFSH is denoted bySH . Another alternative for such problems is an exchange
operatorEX(i, j) which simply exchanges the elements in theith and jth positions.

Algorithm 6.1.1 A general structure of Neighborhood Search
A cost function ofx ∈ X is given asf (x) and neighborhood ofx asN(x). Certain criteria are
given to selecty ∈ N(x) based on the valuef (y).

1. Select a starting pointx0 ∈ X at random and setx = xbest = x0.

2. do

(a) a candidatey is chosen fromN(x) and is accepted or rejected according to the given
criteria based on the valuef (y). Setx = y if y is accepted, otherwise repeat this step
until somey is accepted .

(b) If f (x) < f (xbest) then setxbest = x.

until termination conditions are satisfied.

3. Outputxbest as the best solution obtained.

A typical neighborhood search (NS) heuristic procedure is shown in Figure6.1.1. As shown
in the figure, NS operates by generating neighbors in an iterative process where a move to a new
solution is made whenever certain criteria are fulfilled in Step2a. There is a great variety of ways
in which candidate moves can be chosen for consideration, and in defining criteria for accepting
candidate moves. Perhaps the most common case is that ofascent, in which the only moves ac-
cepted are to neighbors that improve the current solution.Steepestascent corresponds to the case
where all neighbors are evaluated before a move is made—that move being the best available.
Nextascent is similar, but the next candidate (in some pre-defined sequence) that improves the
current solution is accepted, without necessarily examining the complete neighborhood. Nor-
mally, the search terminates when no moves can be accepted.
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6.2 Avoiding Local Optima

The trouble with NS is that the solution it generates is usually only alocal optimum—a point in
the search space none of whose neighbors offer an improved solution and NS does not guarantee
to find theglobaloptimum, the very best solution in the entire search space. In recent years many
techniques have been suggested for the avoidance of local optima. At the most basic level, we
could useiterative restartsof NS from many different initial points, thus generating a collection
of local optima from which the best can be selected. There are more popular and intelligent
principles. For completeness, We refer here briefly to some of the most popular ones.Simulated
annealinguses a controlled randomization strategy—inferior moves are accepted probabilisti-
cally, the chance of such acceptance decreasing slowly over the course of a search. By relaxing
the acceptance criterion in this way, it becomes possible to move out of the basin of attraction
of a local optimum.Tabu searchadopts a deterministic approach, whereby a ‘memory’ is im-
plemented by the recording of previously-seen solutions. This record could be explicit, but is
often an implicit one, making use of simple but effective data structures. These can be thought
of as a ‘tabu list’ of moves which have been made in the recent past of the search, and which
are ‘tabu’ or forbidden for a certain number of iterations. This prevents cycling, and also helps
to promote a diversified coverage of the search space.Perturbation methodsimprove the restart
strategy: instead of retreating to an unrelated and randomly chosen initial solution, the current
local optimum is perturbed in some way and the heuristic restarted from the new solution. Per-
haps the most widely-known of such techniques is the ‘iterated Lin-Kernighan’ (ILK) method
introduced by Johnson [41] for the travelling salesman problem. On reaching a local optimum,
a set of links is randomly chosen for removal and re-connection, in such a way that a new search
can start relatively close to a new local optimum. Such techniques can perhaps best be described
asperturbationmethods.Genetic algorithmsdiffer in using a population of solutions rather than
moving from one point to the next. Furthermore, new solutions are generated from two (or,
rarely) more solutions by applying a ‘crossover’ operator. However, they can also be encom-
passed within an NS framework, as we shall discuss later in this thesis.

6.3 The Neighborhood Structure for the Jobshop Scheduling
Problem

As shown in Section5.1 and5.2, the jobshop scheduling problem withn jobs andm machines
can be considered itself as a permutation problem; namely we have a permutation ofn jobs
on each machine, which results inm-partitionedn-job permutations. However, the simpleSH
andEX operators, for example, are not efficient because of the two reasons: (1) the size of the
neighborhood becomes too large and (2) the resulting new permutation does not always corre-
spond to a feasible schedule. One way to resolve these problems is to construct a neighborhood
structure based on Theorem1 in Chapter2. Namely, given a scheduleS, a transition opera-
tor that exchanges a pair of adjacent critical operations (i.e., operations on a critical path) on a
same machine inS as shown in Figure6.1 forms a neighborhood which we call theAE (adja-
cent exchange) neighborhoodand denoteAE(S). Theorem1 guarantees thatAE(S) members
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are always feasible and Theorem2 guarantees that an optimal schedule is reachable from any
initial schedule by applying finite number of transitions. The transition operator was originally
proposed by Balas in his branch and bound approach[6] and has been used as a neighborhood
structure for SA in [12] and for TS in [17].

critical block

AE neighborhood

Figure 6.1: AE(S), adjacent exchange neighborhood ofS, consists of schedules
obtained fromS by exchanging a pair of adjacent operations within a same critical
block.

Another very powerful transition operator was proposed in [9] using the notions ofbefore
candidateandafter candidateintroduced in Section2.5 of Chapter2. Let a schedule beS and
let its critical blocks beB1, . . . , Bk, thenbefore candidateBB

j andafter candidateBA
j in a critical

block Bj are defined by Equation2.5. Let NBBj (S) andNABj (S) be sets of (maybe infeasible)
schedules obtained by moving each operation inBB

j (or BA
j ) to the front (or rear) ofBj respectively

as shown in Figure6.2. Because we have Theorem2.5, it is tempted to define the CB neighorhood
as a set of all the shedules obtained from before and after candidates as follows:

CB′(S) =
⋃

Bj

{NBBj (S) ∪ NABj (S)}. (6.3)

However unfortunately, there is no theorem similar to Theorem1 that guarantees the feasibility
of CB′ members. In fact,CB′ may contain infeasible schedules. Therefore the CB neighborhood
is given as follows:

CB neighborhood

u1 um

critical block

Figure 6.2:CB(S), critical block neighborhood ofS, consists of schedules obtained
from S by moving an operation in a critical block to the front or the rear of the block.

CB(S) = {S′ ∈ CB′(S) | S′ is a feasible schedule}. (6.4)
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In the next chapter, we will see that using the CB neighorhood, an efficient simulated annealing
algorithm can be constructed.



Chapter 7

Critical Block Simulated Annealing for the
Jobshop Scheduling Problem

7.1 Simulated Annealing

Consider that we have a nonlinear optimization functionf (x) defined over a continuous variablex
in multi-dimensional Euclidean spaceX. Such a nonlinear optimization function may be likened
to a mountainous state space landscape, with the algorithm’s objective being to locate the lowest
valley. Simulated Annealing (SA) methods1 are analogous to searching a state space landscape
by bouncing a rubber ball around the terrain. The ball bounces around the landscape, in and
out of different valleys, probabilistically sampling different locations. As the degree of bounce
is reduced it becomes more difficult for the ball to bounce out of low valleys into higher ones,
than vice versa. Finally, when there is no bounce left in the ball, the ball will settle in the lowest
valley. This is mathematically guaranteed given time and a proper bounce (annealing) reduction
schedule [42].

Thus, SA algorithms employnoiseto choose new parameter values. They generate a new
statex′ in the neighborhood ofx, probabilistically. Whenx is a continuous variable, there are
infinite number of candidate states in the neighborhood ofx and thus, a new statex′ is generated
using a given distribution functiong() which will be described shortly. The algorithms calculate
the value of the function costE = f (x′), and then probabilistically decides toacceptor reject it.
If accepted, the new state becomes the current state. The new state may be accepted even if it
has a larger function cost than the current state. The criteria for acceptance is determined by an
acceptance functionh(), the temperature parameterT, and the difference in the function values
of the the two states. Initially,T is large, and a new state is accepted quite frequently. As the
algorithm progresses,T is reduced, lowering the probability that the acceptance function will
accept a new state if it’s functional cost is greater than that of the current state.

The general SA procedure [43] is defined below.

1. Choose an initial (high) temperatureT0 and a random statex0.

1Annealing (as in metallurgical annealing) refers to the process involving the slow reduction of a temperature.

57



58 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

Tk=0← T0, x← x0

2. Calculate the cost function value of the starting state.

Ek=0← f (x0)

3. For each iterationk, k = 1 . . . kf do the following:

(a) Choose a new statex′, using a generating function.

x′ ← g(x)

(b) Calculate the cost ofx′.

E′ ← f (x′)

(c) Setx← x′ andE← E′ with probability determined by the acceptance functionh().

(d) Reduce the temperatureT by annealing

(e. g.Tk+1← γTk, 0 < γ < 1).

(e) WhenT is lower than a sufficiently small valueT f , exit the loop.

4. Returnx andE as the (near) optimal state and function cost value.

Because the algorithm occasionally chooses statesuphill from its current state (i.e. chooses states
with higher functional values than the current states), it can escape from local minima and more
effectively search the function space to find the global minimum.

The Simulated Annealing method in general consists of a system statex and the following
functional relationships:

1. f (x): a cost function to minimize,

2. g(x): a generating probability density function of new states.

3. P(x): an acceptance function that decides if a new state should become the current state,
and

4. T(k): an annealing temperature (T) schedule.

For numeric optimization problems,x is often defined as an integer or real parameter vector,
x = {xi; i = 1 . . .D}, and Boltzmann Annealing is used to generate new states. Boltzmann
Annealing employs a Gaussian probability density function,

g(x′) =
1

(2πT)D/2
e−(x−x′)2/(2T)

whereg(x′) is the probability of generatingx′ from the currently accepted statex, and where the
temperatureT is a measure of the fluctuations of the Boltzmann distribution.
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A Gaussian probability density distribution is not applicable for the generation of new states
for combinatorial optimization problems including the job shop scheduling problem. Instead, a
uniform random distribution is often used

g(x′) = 1/n, x′ ∈ N(x) (7.1)

wheren is the number of states that can be directly generated by the generating function, i.e.n
is the number of states in the neighborhood ofx, n = |N(x)|.

The acceptance probability functionP(x) is based on the chances of accepting a new statex′

relative to the current statex, i.e. the difference of their function values

P(x′) =
e− f (x′)/T

e− f (x′)/T + e− f (x)/T
=

1
1 + e( f (x′)− f (x))/T

. (7.2)

If lower cost states are always accepted, as in [44], the acceptance function above can be rede-
fined as

P(x′) =

{
1 if f (x′) ≤ f (x)
e(− f (x′)− f (x))/T otherwise.

(7.3)

The practical annealing schedule,Tk, most often used to find the global minimum is of the form

Tk = T0e
−ck (7.4)

wherec is a positive constant.

7.2 Critical block Simulated Annealing

For the JSP, a statex is defined by a particular scheduleS, and the costf (x) is defined by the
makespanCmax(S). A neighborhoodN(S) of a scheduleS can be defined as the set of feasible
schedules that can be reached fromS by exactly one transition (a single perturbation ofS).
We use the critical block neighborhoodCB(S) defined by (6.4) in the previous chapter as the
neighborhood structure.

The algorithm begins by setting the annealing temperature to an initial value and generat-
ing a random scheduleS. The makespan and critical path ofS is then calculated. Next, a new
scheduleS′ in the neighborhood ofS is randomly generated. The new scheduleS′ is compared
with the current scheduleS, and probabilistically accepted according to the makespan difference
between the two schedules, and the annealing temperature. The temperature, initially quite high,
is decreased according to a given annealing schedule. This process is repeated until 1) the tem-
perature is sufficiently low, 2) a given number of iterations have occurred, or 3) a schedule having
a (near) optimal makespan is found. Finally, the best generated schedule and its makespan are
printed. The algorithm is described in7.2.1.
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Algorithm 7.2.1 (The Critical Block Simulated Annealing Algorithm)
We are given a jobshop scheduling problem to optimize, and the initial temperatureT0.

1. SetS = S0 a randomly generated initial schedule, iteration step numberk = 0, andTk=0 =

T0 the initial temperature.

2. do

(a) do

i. Pick S′ ∈ CB(S)

ii. Accept S′ probabilistically according to the Metropolis Criterion distribution,
i.e. chooseS′ with probability one ifCmax(S′) ≤ Cmax(S), ande−(Cmax(S′)−Cmax(S))/T

otherwise, i.e., the probabilityP to acceptS′ is defined as follows:

P(S′) =

{
1 if Cmax(S′) ≤ Cmax(S)
e−(Cmax(S′)−Cmax(S))/T otherwise.

(7.5)

until S′ is accepted.

(b) SetS = S′, increasek, and decreaseT according to the annealing schedule.

until termination (i.e. T is sufficiently small ork is sufficiently large or the minimal
makespan or lower bound is found).

3. Print the best schedule found and its makespan.
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7.3 Reintensification

Often during the search process 1) the system state wanders far from states that are leading to
the global minima, or 2) the system state may become trapped in a deep local minima. Then
all schedules generated from the current schedule will have longer makespans. If the acceptance
temperature is low, it may be difficult for the system to escape from this local minimum and
continue the search.

Occasionally a reintensification strategy may be applied to improve the search. This reinten-
sification is similar to reannealing [45], [46] which is used in numerical function optimization
to occasionally reset the system temperature and the state of the system after a sufficiently long
period of time without finding a new global minima.

It is useful to reintensify the search when a large number of acceptances have occurred with-
out improving the problem makespan, or when the recentacceptance to generated ratio(AG
ratio) becomes lower than a prescribed threshold, indicating that the system is caught in a mini-
mum. The reintensification process replaces the current state (schedule) with the best state found
so far, removing the system state from a local minimum if it has become trapped in a basin
of attraction. Reintensification also alters the annealing temperature to a more current and ap-
propriate value. A new annealing temperature is calculated from the standard deviation of the
functional cost of states in the best neighborhood. If the new resulting temperature is greater than
the current temperature, then the current temperature is reset to the new temperature.

7.4 Parameters

Simulated annealing algorithms often require some parameter specific values be determineda
priori . These annealing scheduling parameters include the initial and final temperatures (T0, T f ),
and the number of annealing steps (kf ). Reasonable values for the reintensification frequency
and theAG threshold must be chosen as well. For the annealing schedule, appropriate choices
of both the initial and final (lower bound) temperatures, and the maximum number of annealing
steps, must be determined.

An appropriate temperature reduction function is also needed. Since both inverse logarithmic
and inverse linear annealing schedules are too slow for practical consideration, it is useful to
apply the exponential annealing schedule given in equation7.4, with constantc determined by

c = − log(T f /T0)/kf . (7.6)

For example, if the annealing schedule is defined so thatT0 = 1, T f = 10−20 andkf = 10000,
thenc = −log (10−20)/10000= 0.0046.

Since scheduling problems have different characteristics, constraints, and differing degrees
of difficulty, different annealing schedules must be chosen to fit different problems. Because the
initial and final lower bound temperatures are problem dependent parameters, they are difficult
to determinea priori. By defining these temperatures in terms of the desireduphill AG ratios, the
temperatures can be determined adaptively from problem independent values. The initial uphill
AG ratio should be relatively large so that a large number of uphill transitions are accepted.
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Later, at the end of the annealing schedule, the final uphillAG ratio should be small forcing most
schedules having inferior makespans to be rejected.

The adaptive determination of the initial or final temperature can be incorporated in a short
warmupsequence at the beginning of a simulation. A desired uphillAG threshold is chosena
priori which is used to adaptively determine the annealing temperatures. The reverse annealing
process is implemented by starting at a sufficiently low temperature such that no uphill states are
accepted, and increasing the temperature by a small percentage (e.g. 5%) until the actual uphill
AG ratio is greater than or equal to the desired threshold. This approach is similar to that defined
by Aarts [47] (p59), however onlyuphill generated and accepted states determine theAG ratio.

For the initial temperature,T0, an uphillAG threshold of 50% of the makespans generated
that were larger than the current schedule’s makespan was found to be appropriate. For the
final (lower bound) temperature,T f , an uphillAG threshold of 0.2% proved most effective. T f

provides a lower bound for the final temperature. This value would only be arrived at if all
generated states would be accepted. Realistically this never occurs.

The total number of annealing stepskf can be chosen empirically, but should be governed
by the desires 1) to have reasonable small differences between successive temperatures, and 2)
to have non-excessive trial run times, i.e. at most one or four hour per trial, and 3) to generate
as many potential schedules as possible within the time limits. Concerning to 1), the acceptance
temperature is assumed to be lowered according to equation7.4 sufficiently slowly such that a
detailed balanceis maintained, and that the resulting distribution of the inhomogeneous Markov
chain generated using this schedule between temperaturesT +δ andT −δ, (δ � 1) approximates
the stationary distribution of a finite length homogeneous Markov chain at temperatureT.

If reintensification is to be used, two parameters must be specified to determine when it
must be performed. The first parameter, the reintensification frequencyR, determines how often
reintensification should be performed. Reintensification can be applied after a set number of new
schedules are accepted without finding an improved makespan. The second parameter is anAG
threshold limit. Reintensification is performed when the currentAG ratio falls below this value.

7.5 Methodology and Results

The performance of the CBSA algorithms was tested by running several simulation trials with
and without reintensification. For the reintensification trials, two reintensification frequencies
R = 3,000 andR = 10,000 were tested, both with an AG ratio threshold of 10−3. Although
reintensification violates the theoretical ergodicity of simulated annealing by resetting the state
of the system, performances were found to be improved when reintensification was incorporated
into the system.

Table7.1 shows the minimum makespans of the first ten trials when the CBSA algorithm
(with reintensification every 3,000 acceptances) was initially applied to the mt10 problem. Dif-
ferent random number seeds were used in each trial, resulting in each trial starting from a dif-
ferent randomly generated schedule. The CBSA algorithm was executed for a warm up period
to generate new schedules and to gather acceptance rate statistics. The statistics were used to
adaptively determine appropriate values forT0 andT f . T f given in equation7.6 was used to
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Run Min Evaluations Generations Initial Temp Last Temp Time
1 ?930 481429 548175 51.837858 6.194249 38m 0s
2 ?930 510050 537087 44.833024 10.612196 41m 28s
3 ?930 507396 579957 47.036501 6.203178 40m 8s
4 ?930 344341 331749 49.404748 17.333848 28m 45s
5 ?930 366680 403856 44.760441 7.891267 28m 40s
6 ?930 459323 472286 47.085840 14.834713 37m 59s
7 ?930 371984 405170 38.693533 9.067814 29m 8s
8 ?930 649431 711167 38.756278 9.568809 51m 39s
9 ?930 316954 352034 36.828203 8.406492 25m 0s
10 938 459372 1000000 54.385611 0.500000 36m 6s

Table 7.1:Ten Trials using the Simulated Annealing Method (R = 3,000).

determine reasonable values forc.

The table also shows the number of actual schedules evaluated, the number of new schedules
generated, and the cpu time for each of the trials2.

Since new schedules are often regenerated from the same current schedule, their makespans
need not be reevaluated. Hence the actual number of schedules evaluated is always less than or
equal to the number of generations. Optimal schedules are indicated by a star?.

Table7.2shows the initial and final temperatures of the ten trials. The last temperature of the
successful runs shown can vary considerably depending upon when the algorithm terminated. In
table7.2the algorithm was terminated when an optimal solution was found, or whenk was equal
to kf . SinceT f was determined from accepted, rather than generated states, any solution found
on or before the last generationkf will have an actual final temperature larger than the initially
determinedT f .

2One test simulation performed during the initial programming of the mt10 problem found an optimal schedule
in 47 seconds on a Sparcstation 2, however this was not to be representative of other trials.
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Run Initial Temp Last Temp
1 51.837858 6.194249
2 44.833024 10.612196
3 47.036501 6.203178
4 49.404748 17.333848
5 44.760441 7.891267
6 47.085840 14.834713
7 38.693533 9.067814
8 38.756278 9.568809
9 36.828203 8.406492
10 54.385611 0.5

Table 7.2:Initial and Last Temperatures. Last temperature is the temperature when
an optimal makespan was found, or the temperature after 1,000,000 iterations.

Although the last mt10 trial did not find the optimal solution, it did terminate with a makespan
of 938. Trial ten’s initial temperature, which was adaptively determined, was the highest of all of
the trials. Hence it is likely that the system spent excessive amounts of annealing time perform-
ing random search at high temperatures. The cpu time and the number of function evaluations
performed during the execution of trial ten was quite comparable with those of the successful
trials. It is likely that the the system state became caught in a deep local minimum, allowing few
if any new states to be explored.

7.5.1 Random Search

The effects of randomly searching the schedule space was investigated to determine if the tran-
sition operations were solely responsible for the generation of the high quality schedules shown
in table7.1. Ten trials of the simulated annealing algorithm were performed by setting the initial
and final temperatures to large values, i.e.T0 = 100.0 andT f = 99.0. Results of this random
search are shown in table7.3.
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Run Min Generations Time Acceptances
1 994 1000000 1h 41m 16s 844798
2 998 1000000 1h 39m 34s 845644
3 997 1000000 1h 40m 9s 846223
4 999 1000000 1h 39m 13s 847081
5 993 1000000 1h 39m 15s 846005
6 998 1000000 1h 39m 13s 846835
7 992 1000000 1h 39m 30s 845302
8 995 1000000 1h 40m 33s 846163
9 989 1000000 1h 41m 19s 845688

10 1010 1000000 1h 40m 36s 846533

Table 7.3:TenHigh TemperatureRandom Trials.

Approximately 84% of all schedules generated were accepted. Schedules with shorter makespans
were always accepted, i.e. from equation7.5, S′ is always accepted whenL(S′) ≤ L(S). Since
high temperatures,T0 ≈ T f � 1, result in a large numbers of inferior schedules being accepted,
the method essentially performs like a random search with the critical block transition operators
being used to generate the new schedules. Performances of these random searches was noticeably
poorer than those in table7.1.

7.5.2 Low Temperature Greedy Search

Searching with a very low temperature for a small number of generations essentially implements
a greedy(downhill only) search. When the critical block transition operators are applied with
this greedy algorithm, many of the generated schedules of poor quality were observed. Ten
thousand schedules were generated by randomly generating initial schedules and applying the
CBSA algorithm to them for 1,000 iterations at very low temperatures, i.e.T0 = 0.01, T f ≈
0.001, andkf = 1000. Figure7.1shows the a histogram of the 10,000 makespans generated. It is
clear from those performances that the low temperature greedy algorithm is not solely responsible
for the performances in table7.1.
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10000 Greedy Trials (MT10x10)
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Figure 7.1:Generated Makespans of 10,000Greedy(mt10) Schedules.

Van Laarhoven et. al. [12] describe a similar method called iterative improvement that con-
sists of repeated generation of random schedules using the same neighborhood structure. They
tested that method using the previously described Balas transition operator and the best makespan
they found over 5 macro runs (averaging 9441.2 trials each) was 1006. In contrast, the best cost
makespan found during the ten thousand greedy CBSA trials was 944. The relative difference is
indicative of the power of the respective transition operators.

Figure7.2shows the time evolution of the makespans of two typical trials with and without
reintensification. The abscissa shows the number of schedules generated, and the ordinate shows
the makespan differences between the current and optimal schedules. The highly oscillatory be-
havior of the reintensification trial is due to reintensification.
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Annealing Method R = 0 R = 3,000 R = 10,000
CBSA min/max 930 945 930 938 930 938
CBSA mean/std. 937.80 4.19 930.80 2.40 933.10 3.81
AESA min/max 938 972 930 951 934 970
AESA mean/std. 951.60 10.20 939.50 5.12 944.40 10.24

GREEDY min/max 971 1491
GREEDY mean/std. 1171.45 66.15

Table 7.4:Comparisons between CBSA and AESA.
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Figure 7.2: Successive makespan differences between the current and optimal solution of the
mt10 problem, without reintensification (R=0) and with reintensification (R = 3,000).

The power of a reintensification and Critical Block neighborhood structure is shown in table
7.5.2. We show comparative performances of 10 trials of the CBSA and the simulated anneal-
ing algorithms using the AE (adjacent exchange) neighborhood (AESA), which was described
in Section6.3, proposed by van Laarhoven et. al. [12] . All performances conditions were
identical, except for the reintensification frequencies, (R=0 (no reintensification), R=3,000, and
R=10,000), and the neighborhood structure. The performances are best when R=3,000 and the
CBSA is used. Not shown are the cpu times which were similar for all runs given.

7.6 Performance on Benchmarks Problems

A set of benchmark problems has been established to judge the effectiveness of algorithms on
the JSP.3

3We are grateful for the benchmark problem set given to us by D. Applegate [48].
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PROB NxM LB CBSA Appl Laar Mats Adams Bruck
abz7 20x15 655 685 668 710
abz8 20x15 638 679 687 716
abz9 20x15 656 701 707 735
la21 15x10 1046 1050 1053 1063 1071 1084 1059
la24 15x10 935 943 ?935 952 973 976 935
la25 15x10 977 985 ?977 992 991 1017 977
la27 20x10 1235 1262 1269 1269 1274 1291 1270
la29 20x10 1130 1188 1195 1203 1196 1239 1202
la38 15x15 1196 1209 1217 1215 1231 1255 1232
la40 15x15 1222 1235 ?1222 1234 1235 1269 1238

Table 7.5:Ten difficult Benchmark Job Shop Scheduling Problems.

The problem set includes the problemsmt06, mt10,andmt20from [4], and problemscar1-
car8 from [49]. Problemsabz5-9are those given in Adams [14]. Also included is a set of 40
job shop scheduling benchmark problemsla01-la40originally from [32], The first column in
both tables gives the problem name. The next column, NxM, indicates the size of the problem,
i.e. N jobs by M machines. The LB column indicates the lower bound of the problem if the
optimal makespan is unknown. TheCBSAcolumn indicates the best makespan found from 5
CBSA trials. (Each trial used a reintensification frequencyR = 3,000 and was run for one
million generations or until the known optimal minimum makespan or lower bound was found.)
The column headingsAppl, Laar, Mats, Adamsand Bruck indicate the best performances of
Applegate [1], Van Laarhoven [12], Matsuo [13], Adams [14], and Brucker [9] respectively. A
single star,?, indicates the optimum or best known minimum. Table7.6shows the performances
of the CBSA and some of the best known job shop algorithms on thela problem test set.
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PROB NxM LB CBSA Appl Laar Mats Adams Bruck
la01 10x5 — ?666 ?666 666 — 666 666
la02 10x5 — ?655 ?655 655 655 669 655
la03 10x5 — ?597 ?597 606 597 605 597
la04 10x5 — ?590 ?590 590 590 593 590
la05 10x5 — ?593 ?593 593 — 593 593
la06 15x5 — ?926 ?926 926 — 926 926
la07 15x5 — ?890 ?890 890 — 890 890
la08 15x5 — ?863 ?863 863 863 863 863
la09 15x5 — ?951 ?951 951 — 951 951
la10 15x5 — ?958 ?958 958 — 958 958
la11 20x5 — ?1222 ?1222 1222 — 1222 1222
la12 20x5 — ?1039 ?1039 1039 — 1239 1039
la13 20x5 — ?1150 ?1150 1150 — 1150 1150
la14 20x5 — ?1292 ?1292 1292 — 1292 1292
la15 20x5 — ?1207 ?1207 1207 — 1207 1207
la16 10x10 — ?945 ?945 956 959 978 945
la17 10x10 — ?784 ?784 784 784 787 784
la18 10x10 — ?848 ?848 861 848 859 848
la19 10x10 — ?842 ?842 848 842 860 842
la20 10x10 — 907 ?902 902 907 914 902
la21 15x10 1046 1050 1053 1063 1071 1084 1059
la22 15x10 — 935 ?927 938 927 944 927
la23 15x10 — ?1032 ?1032 1032 1032 1032 1032
la24 15x10 935 943 ?935 952 973 976 935
la25 15x10 977 985 ?977 992 991 1017 977
la26 20x10 — ?1218 ?1218 1218 1218 1224 1218
la27 20x10 1235 1262 1269 1269 1274 1291 1270
la28 20x10 — ?1216 ?1216 1224 1216 1250 1276
la29 20x10 1130 1188 1195 1203 1196 1239 1202
la30 20x10 — ?1355 ?1355 1355 1355 1355 1355
la31 30x10 — ?1784 ?1784 1784 — 1784 1784
la32 30x10 — ?1850 ?1850 1850 — 1850 1850
la33 30x10 — ?1719 ?1719 1719 — 1719 1719
la34 30x10 — ?1721 ?1721 1721 — 1721 1721
la35 30x10 — ?1888 ?1888 1888 — 1888 1888
la36 15x15 — 1291 ?1268 1293 1292 1305 1268
la37 15x15 — 1420 ?1397 1433 1435 1423 1424
la38 15x15 1196 1209 1209 1215 1231 1255 1232
la39 15x15 — 1243 ?1233 1248 1251 1273 1233
la40 15x15 1222 1235 ?1222 1234 1235 1269 1238

Table 7.6:Performances of the 40 Benchmark Job Shop Scheduling Problems.
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7.7 Concluding Remarks

According to Aarts [47], The success of an approximation algorithm depends on a number of
aspects including performances, ease of implementation, and applicability and flexibility. It is
clear that the SA algorithm is very simple and easy to implement, taking only a few hundred
lines of code to implement. Regarding flexibility, we found that our SA code could be used
to implement both Aarts SA approach and the CBSA method by changing only the call to the
neighborhood generation procedure.

Matsuo [13] has indicated that Aarts SA method has very few adjacent pairs that improve the
makespan by exactly one interchange (Aarts SA transition). Compared with Aarts neighborhood
structure, the CB neighborhood contains more (or at least the same number of) transitions that
can immediately improve the a schedules makespan by exactly one transition.

Undoubtedly new and more powerful approaches will be developed to solve the JSP, meth-
ods having better performance and convergence characteristics then the methods described here.
Unlike SA methods, other approximation approaches have no theoretical guarantee that they will
converge to to an optimal solution.



Chapter 8

Critical Block Simulated Annealing with
Shifting Bottleneck Heuristics

In this chapter, we consider to improve the CBSA described in the previous chapter in two
aspects. One is to employ a new neighborhood by incorporating the notion of active schedule
described in Section2.2and the other is to combine with a deterministic heuristic called “shifting
bottleneck” described in Section2.6.

8.1 Active Critical Block Simulated Annealing

As explained in the previous chapter, a solution obtained from a before or an after candidate
is not necessarily executable. In the following, we propose a new neighborhood by modifying
the CB neighborhood. Each element in the new neighborhood is not only executable, but also
active and structurally close to the corresponding member in the original CB neighborhood. Let
S be an active schedule andBα,β

γ be a critical block ofS on a machineMγ, where the first and
the last operations ofBα,β

γ are theα-th and theβ-th operations onMγ respectively. LetOλ
γ be

a “moving” operation that is theλ-th operation onMγ such thatα < λ < β (i.e., Oλ
γ is inside

Bα,β
γ ). We consider to generate an active scheduleSλ,α

γ (or Sλ,β
γ ) by movingOλ

γ into positionα (or
positionβ). If the resulting schedule is active, then we will use it. Otherwise, we try to find an
alternate position that is as close toα (or β) as possible and is insideBα,β

γ such that the resulting
schedule becomes active and use it instead. This can be done by adopting the GT algorithm
described in Algorithm2.2.1and modifying Step4 of the algorithm, where the choice of the
next operation from the conflict setC[Mr , i] was at random. Here, the choice is made by looking
at the processing order inS. An operation that is inC[Mr , i] and that was scheduled earliest inS
is selected when the operation is located outsideBα,β

γ (i.e., i < [α, β]). This way, the processing
order of operations inSλ,α

γ or Sλ,β
γ is kept mostly unchanged from that inS outsideBα,β

γ . However
insideBα,β

γ instead, the “moving” operationOλ
γ must be chosen from the conflict set with the top

most priority when generatingSλ,α
γ and with the bottom least priority when generatingSλ,β

γ . The
details are described in Algorithm8.1.1. In the algorithm, if we are generatingSλ,α

γ (i.e.,d = f )
and wheni = α, Oλ

γ should be chosen fromC[Mr , i] as soon asi becomes equal toα. However
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at that point,Oλ
γ may not yet exist inC[Mr , i]. This means that if we moveOλ

γ to the front
positionα ignoring the fact thatOλ

γ < C[Mr , α], then the resulting schedule becomes non-active,
or may even become infeasible. Hence, we have to “pass” this time and wait untilOλ

γ appeares
in C[Mr , i]. BecauseS is an active schedule, it is guaranteed thatOλ

γ appeares inC[Mr , i] at the
latest wheni = λ, in which case resulting schedule becomes identical toS. If we are generating
Sλ,β
γ instead (i.e.,d = r), thenOλ

γ should be moved to the rear postionβ, in other words,Oλ
γ

should be chosen fromC[Mr , i] only wheni becomes equal toβ and not whilei < β. In fact,Oλ
γ

is guaranteed to appear inC[Mr , i] when i = β at the latest becauseS is active. HoweverOλ
γ may

become the only element ofC[Mr , i] and then it is unavoidable to chooseOλ
γ even wheni < β.

This means that if we moveOλ
γ to the rear positionβ ignoring the fact thatOλ

γ < C[Mr , β], then
the resulting schedule becomes non-active, or may be even infeasible. Hence we have to choose
Oλ
γ even wheni < β. The new neighborhoodACB(S) is now defined as a set of allSλ,α

γ andSλ,β
γ

over all critical blocks:

ACB(S) =


⋃

Bα,βγ

{Sλ,α
γ }α<λ<β ∪ {Sλ,β

γ }α<λ<β

 \ {S}. (8.1)

Once we have the neighborhood structureACB(S) defined, the basic framework of the sim-
ulated annealing algorithm described in Algorithm7.2.1can be applied without major modifica-
tions by usingACB(S) in place ofCB(S) in Step2(a)i of Algorithm 7.2.1.

In Algorithm 7.2.1, if the acceptance probabilities are low for all members inACB(S), the
system will remain trapped in a local minimumS and it will take a long time to move to a new
state. The algorithm may stay inS even after all members are selected in Step2(a)iand evaluated
in Step2(a)ii. To avoid this, relative acceptance probability defined by (8.1)

P(Si) =
P(Si)∑

S j∈ACB(S) P(S j)
for eachSi ∈ ACB(S) (8.2)

will be introduced after all members inACB(S) are visited and evaluated without being chosen.
The memberSi in ACB(S) is then randomly selected in proportion toP(Si), and the system
moves unconditionally toSi. This modification is effective when, likeACB(S), the neighborhood
size is limited. Therefore, Algorithm7.2.1is modified as in Algorithm8.1.2.

8.2 Active CBSA Enhanced by Shifting Bottleneck

As described in Section2.6, Shifting bottleneck (SB) proposed by [14] is a powerful heuristic
method for solving a JSP. Here we consider to incorporate the local optimization procedure used
in the SBI heuristic described in Algorithm2.6.1into the active CBSA described in the previous
section.

SBI is a constructive method that generates a complete schedule from scratch. Modifying
the method is necessary in order to refine a certain complete schedule for improvement. The
BottleRepairshown in Algorithm8.2.1describes an iterative version of the basic SB. The reopti-
mization process used here is the same as used in Algorithm2.6.1. The basic idea ofBottleRepair
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Algorithm 8.1.1 (An algorithm to generateSλ,α
γ or Sλ,β

γ from S)
A scheduling problem is given as in Algorithm2.2.1. An original active scheduleS of the
problem and a moving operationOλ

γ on a critical blockBα,β
γ of S is given, whereα < λ < β. The

directiond = f (front, when generatingSλ,α
γ ) or d = r (rear, when generatingSλ,β

γ ) is given.

1. Initialize G (as in Step1 of Algorithm 2.2.1). Initialize S′ as an empty schedule.

2. Find the earliest completable operationO∗r ∈G (as in Step2 of Algorithm 2.2.1).

3. Calculate the conflict setC[Mr , i] ⊂ Gr (as in Step3 of Algorithm 2.2.1).

4. If r , λ, then select and schedule fromC[Mr , i] the earliest operationOkr in S as thei-th
operation onMr in S′, i.e.,S′ri := k, wherek is the job number ofOkr.

If r = λ,

• If d = f (i.e., generatingSλ,α
γ ),

– If α ≤ i ≤ λ andOλ
γ ∈ C[Mr , i], then select and scheduleOλ

γ as thei-th operation
on Mr in S.

– Otherwise, select and schedule fromC[Mr , i] the earliest operation inS as the
i-th operation onMr in S′.

• If d = r (i.e., generatingSλ,β
γ ),

– If λ ≤ i ≤ β andC[Mr , i] contains any operation other thanOλ
γ, then select and

schedule fromC[Mr , i] \ {Oλ
γ} the earliest operation inS as thei-th operation on

Mr in S′.
– If C[Mr , i] = {Oλ

γ} or i = β andOλ
γ ∈ C[Mr , i] , then select and scheduleOλ

γ as the
i-th operation onMr in S′.

– Otherwise, select and schedule fromC[Mr , i] the earliest operation inS as the
i-th operation onMr in S′.

Let Okr be the operation selected above, wherek is the job number ofOkr, then
S′ri := k.

5. Do Step6 and Step7 of Algorithm 2.2.1.

6. Repeat from Step1 to Step5 until all operations are scheduled.

7. Output the active scheduleS′ asSλ,α
γ if d = f , or asSλ,β

γ if d = r.
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Algorithm 8.1.2 (The Active Critical Block Simulated Annealing)
We are given a jobshop scheduling problem to optimize, and the initial temperatureT0.

1. Set S = S0 a random initial active schedule, generated by the GT algorithm in Algo-
rithm 2.2.1. Setk = 0, andTk=0 = T0.

2. do

(a) SetN be the size ofACB(S) and setn = 0, the number of elements inACB(S) that
are already evaluated.

(b) do

i. Pick Si from ACB(S) randomly and ifSi is first time to be picked and not yet
evaluated, then evaluateSi by calculatingCmax(Si) and setn = n + 1.

ii. AcceptSi with probability:

P(Si) =

{
1 if Cmax(Si) ≤ Cmax(S)
e−(Cmax(Si )−Cmax(S))/T otherwise.

until Si is accepted orn = N.

(c) • If Si is accepted, then setS = Si andn = 0.

• Otherwise(i.e., if n = N) selectS′ from ACB(S) in proportion to the probability

P(Si) =
P(Si)∑

S j∈ACB(S) P(S j)

and setS = Si andn = 0.

(d) Setk = k + 1 and decreaseTk according to the annealing schedule.

until termination (i.e. T is sufficiently small ork is sufficiently large or the minimal
makespan or lower bound is found).

3. Print the best schedule found and its makespan.
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Algorithm 8.2.1 (BottleRepair: Iterative SB)
A complete selectionS is given as an input. LetM be a set of all machines:M = {M1, . . . ,Mr}.

1. LetM0 = {M1,M2, . . . ,Ml} be a set of all the critical machines (machines that contain
parts of critical path inS).

2. Reset all sequences of all machines inM \M0 and make the machines unsequenced. Let
Sp be a partial selection obtained fromS by this resetting.

3. Reoptimize all sequenced machines inM0 by applying Step6 of Algorithm 2.6.1withM0

andSp obtained above and obtain newSp.

4. Do Step2 to Step8 of Algorithm 2.6.1 with M0 and Sp obtained above and obtain a
complete selection.

5. Output the complete selection as an obtained schedule.

Algorithm 8.2.2 (SB incorporation for Active CBSA)

2(b)iii. If Si is rejected, applyBottleRepairto Si and obtainSi
∗.

AcceptSi
∗ and setSi = Si

∗ if Cmax(Si
∗) < Cmax(S).

comes from the original paper of SB [14] where the lastα noncritical machines are temporarily
removed for the reoptimization.

As shown in Algorithm8.1.2, Si is selected fromACB(S) and is probabilistically accepted.
BottleRepairis applied toSi only whenSi is rejected. The resulting scheduleSi

∗ is accepted if
its makespan is shorter than that ofS. To summarize, Step2(b)iii as defined in Algorithm8.2.2
is added to Algorithm8.1.2just after Step2(b)ii.

BottleRepairgives a systematic way to inspect the schedule’s critical path and permutes op-
erations again and again by repeatedly solving one machine problems in a deterministic manner.
If it generates an improved scheduleS′ from S, the critical path ofS′ becomes different from
S and the difference is much greater than that betweenS and its active CBSA neighbor. On the
other hand, active CBSA gives a stochastic more focused local search around the current critical
path. The proposed integration of active CBSA and SB is expected to have the synergistic effect
as: SB gives a long jump to active CBSA so that it can omit many time-consuming inferior tran-
sitions and active CBSA adds stochastic perturbations to SB so that it can escape from the local
minima.
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8.3 Experimental Results

8.3.1 Muth and Thompson’s Benchmark

A 10 × 10 problem (mt10) and 20× 5 problem (mt20) formulated by [4] (MT benchmarks) are
well known benchmark JSPs. CBSA with and without SB modification was evaluated using
these problems. Table8.1shows the results of 20 trials with different random number seeds on a
SUN SPARC station 10. All programs are written in the C language.

Table 8.1:Comparisons between CBSA and CBSA+SB using MT benchmarks
CBSA (R = 6,000) CBSA+SBProb n×m

best mean std BT best mean std BT
mt10 10× 10 930 933.65 4.04 190 930 932.45 3.01 786
mt20 20× 5 1178 1179.45 1.94 2351165 1165.00 0.00 449
std: standard deviation
BT: average cpu time (sec.) to find the best solution

Results for the mt10 problem using CBSA without SB show that the optimal solutions of
L = 930 were found in 11 trials. The average cpu time was 3 min. 10 sec., and the fastest was 1
min. 21 sec. Although the solutions ofL = 930 were found in only half of the trials, the cpu time
in successful runs were satisfactorily short. If the temperature is more slowly lowered, though it
takes longer, the rate of finding optimal solutions will become higher as in [50]. CBSA without
SB could not find any optimal solution for mt20 problem. In most cases, solutions ofL = 1178
were found instead of the optimalL = 1165.

The results for the mt10 problem using active CBSA with SB modification show that the
number of trials finding optimum solutions increased slightly, but the average cpu time increased
about four times. This fact indicates that CBSA without SB is powerful enough to solve mt10
problem. On the other hand, all 20 trials with SB modification for mt20 problem found the
optimal solutions ofL = 1165 in an average cpu time of 7 min. 29 sec., and 1 min. 22 sec. was
the best time. The effect of SB enhancement is obvious from this problem. Reintensification did
not work well because the optimal or near optimal solutions were obtained at an early stage of
the search.

8.3.2 Other Benchmarks

Results in the previous section indicate that if CBSA without SB can solve a problem skillfully,
applying CBSA+SB has no advantage. However, if CBSA fails to work well, CBSA+SB may
improve solution quality and compensate for the extra cpu time needed with SB enhancement. A
set of benchmark problems has been established to evaluate different algorithms for JSPs. Table
8.2 shows the makespan performances of CBSA+SB and various other algorithms for the ten
difficult benchmark JSPs. All experiments of CBSA+SB runs were done on a HP 730 (HP 730
is about 1.5 times faster than SUN SPARC station 10).
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The LB column indicates the theoretical lower bound of the problem if the optimal makespan
is unknown. The CBSA+SB column indicates the best makespans found from ten trials. Each
trial used a reintensification frequency ofR = 1,000 and ran for three hours or until the known
optimal makespan or lower bound was found. The column headings Aart, Matt, Appl and Tail
indicate the best performances of those in [51], [52], [1] and [17] respectively.

Table 8.2:Results of 10 tough JSPs
CBSA+SBProb n×m LB

best mean std. BT
Aart Matt Appl Tail

abz7 20×15 654 665 671.0 3.92 7814668 672 668 665
abz8 20×15 635 675 680.0 3.13 8775670 683 687 676
abz9 20×15 656 686 698.6 7.42 8749691 703 707 691
la21 15×10 1040 1046 1049.3 3.32 3611053 1053 1053 1047
la24 15×10 – 935 939.2 1.99 6226935 938 935
la25 20×10 – 977 979.3 1.62 4117983 977 977
la27 20×10 1235 1235 1242.4 6.15 78051249 1236 1269 1240
la29 20×10 1120 1154 1162.4 7.10 54341185 1184 1195 1170
la38 15×15 1184 1198 1206.8 4.53 34791208 1201 1209 1202
la40 15×15 – 1228 1230.2 2.32 33311225 1228 1222
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Figure 8.1:The time evolution of CBSA+SB trial for the la27 problem

Figure8.1 shows the time evolution of the makespan (L) and temperature (T) of the best
trial of CBSA+SB for the la27 problem. The abscissa shows the cpu time in seconds, and the
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Table 8.3:An optimal solution of la27 problem
m Job sequences on each machine
1 18 9 4 2 11 3 12 8 10 7 13 15 20 1 6 19 5 14 17 16
2 14 9 8 12 3 17 15 4 10 13 6 7 11 19 1 2 18 16 20 5
3 11 14 3 19 10 4 9 5 6 2 16 17 13 15 7 20 18 12 8 1
4 6 11 10 1 19 3 8 13 15 18 2 12 14 17 4 7 9 16 20 5
5 12 3 5 6 20 13 11 8 1 17 9 19 7 14 2 16 18 15 10 4
6 19 18 11 8 14 7 3 16 2 17 1 10 9 5 13 6 20 4 12 15
7 17 2 13 15 9 8 19 7 6 20 10 18 14 16 5 4 3 1 11 12
8 2 12 16 14 11 10 3 5 19 20 6 7 13 17 8 18 15 1 4 9
9 18 12 3 14 11 10 16 8 19 13 4 6 15 2 17 20 1 9 7 5
10 13 20 18 9 4 5 11 6 3 8 2 19 10 14 1 17 7 15 16 12
m: machine

solid and dotted lines show the makespan and the temperature respectively. Starting from the
makespan valueL = 1665, it rapidly decreases toL = 1291 during the first warmup interval.
After twelve times of reintensification, it finally reached the optimal valueL = 1235. In this
experiment, 56059 schedules were generated and 8850 schedules accepted. About 25% of the
accepted schedules were accepted byBottleRepairto add CBSA long jumps and the rest served
as stochastic perturbations toBottleRepair. The oscillatory behavior is due to reintensification.

Although CBSA+SB outperformed other methods most of the cases in Table8.2, the required
computational time is much longer. For example, [53] reported that Applegate’s method in the
Appl colum found a schedule ofL = 1269 in 604.2 sec. on SUN SPARC station ELC which is
about 10 times slower than HP 730. This is because each CBSA+SB experiment includes a lot
of unsuccessfulBottleRepairtrials. But this gap can be filled to some extent by the fact that in
the same experiment, CBSA+SB passed a pointL = 1269 in 164 sec.

8.4 Concluding Remarks

The proposed method CBSA+SB is an improved CBSA enhanced by integrating with a problem
specific method called shifting bottleneck. The performance of CBSA+SB was evaluated using
difficult benchmark problems. The results show that for eight problems of ten difficult benchmark
problems, CBSA+SB could find schedules better than or equal to the best schedules published so
far in the literature, when enough computational time is given. A new solution ofL = 1235 was
found for the la27 problem; it is optimal because the value equals the theoretical lower bound.
Further research is necessary to reduce the computational time.



Chapter 9

Scheduling by Genetic Local Search with
Multi-Step Crossover Fusion

As we have seen in Chapter5, Genetic Algorithms can be applied to the job-shop scheduling
problem with good success. However, the well-known fact that GAs are, in general, not well
suited for fine-tuning structures which are very close to optimal solutions also applies to this
case and obstructs further improvements. The general remedy to this problem is to incorporate
local search methods, such as neighborhood search described in Chapter6, into GAs. The result
of such incorporation is often calledGenetic Local Search (GLS)[26]. In this framework, an
offspring obtained by a recombination operator, such as crossover, is not included in the next
generation directly but is used as a “seed” (initial solution) for the subsequent local search. The
local search moves the offspring from its current point to the nearest locally optimal point, which
is included in the next generation.

In solving combinatorial optimization problems, it is often difficult to construct an efficient
crossover operator, because a crossover operator that “recombines” solutions, allows to cause
global changes that alters the structure of a solution in large parts and therefore may violate the
constraints of the target problem, resulting in generating many infeasible solutions.

On the other hand, a neighborhood search operator which modifies a solution only locally is
rather easier to construct as we have seen in Chapter7 and Chapter8. A simple neighborhood
search operator exchanges a pair of consecutive jobs in a job sequence, another operator removes
a job from its original position and re-insert it in another position on the same job sequence. As
we have seen in the previous chapters, they should be improved by focusing on the jobs on the
critical path. Unfortunately the same method cannot be applied directly to construct an effective
crossover operator.

9.1 Multi-step crossover fusion

Reeves has been exploring the possibility of integrating local optimization directly into a Sim-
ple GA with bit string representations and has proposed the Neighborhood Search Crossover
(NSX) [54]. Let any two individuals bex andz. An individualy is calledintermediatebetween

79
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Algorithm 9.1.1 (Multi-Step Crossover Fusion — MSXF)
Parent individualsp0, p1 are given as inputs. The distance measured is defined. For a given
individualx, f (x) is the function to be minimized.

1. Initialize both current solutionx and outputq asp0; x = q = p0.

2. do

(a) For each memberyi ∈ N(x), estimated(yi , p1).

(b) Sortyi ∈ N(x) in ascending order of thed(yi , p1) estimation.

do

i. Selectyi from N(x) randomly, but with a bias in favor ofyi with a small indexi.

ii. Evaluateyi and obtainf (yi) if yi has not yet been evaluated.

iii. Acceptyi with probability one if f (yi) ≤ f (x), and withPc(yi) otherwise.

iv. (optional) Change the index ofyi from i to n, and the indexes ofyk (k ∈ {i+1, i+
2, . . . , n}) from k to k− 1.

until y i is accepted.

(c) Setx = yi.

(d) If f (x) < f (q) then setq = x.

until some termination condition is satisfied.

3. Outputq as an individual for the next generation.
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x andz, written asx � y � z, if and only if d(x, z) = d(x, y) + d(y, z) holds, wherex, y andz
are represented in binary strings andd(x, y) is the Hamming distance betweenx andy. Then
thekth-order 2 neighborhoodof x andz is defined as the set of all intermediate individuals at a
Hamming distance ofk from eitherx or z. Formally,

Nk(x, z) = {y | x � y � z and (d(x, y) = k or d(y, z) = k)}.
Given two parent bit stringsp0 andp1, the neighborhood search crossover of orderk (NSXk) will
examine all individuals inNk(p0, p1), and pick the best as the new offspring.

In this chapter, we extend the idea of the NSX to make it applicable to more complicated
problems such as job-shop scheduling and propose the Multi-Step Crossover Fusion (MSXF): a
new crossover operator with a built-in local search functionality [55, 56, 57]. The MSXF has the
following characteristics compared to the NSX.

• It can handle more general class of representations (i.e., it is not limited to the binary
representation) and neighborhood structures.

• It is based on a stochastic local search algorithm.

• Instead of restricting the neighborhood by the intermediateness, a biased stochastic re-
placement method is used.

A stochastic local search algorithm is used for the base algorithm of the MSXF. Although the
SA is a well-known stochastic method and has been successfully applied to many problems as
well as to the JSP, it would be unrealistic to apply SA repeatedly in a GA run that would consume
too much time. In such a case, a restricted method with a fixed temperature parameterT = c is a
good alternative. Accordingly, the acceptance probability defined in (7.1) is modified as:

P(x′) =

{
1 if f (x′) ≤ f (x)
e(− f (x′)− f (x))/c otherwise.

(9.1)

Let parent individuals bep0 andp1, and let the distance between any two individualsx and
y in any representation bed(x, y). If x and y are schedules, thend(x, y) is the DG distance
defined in Section2.4. Let f be the function to be minimized. In the case of the scheduling
problem, f is the makespanCmax. The basic idea to incorporate crossover functionality into the
neighborhood search described in Algorithm6.1.1 is to set the initial starting point as one of
the parent:x0 = p0 and when choosing a candidatey from N(x), give a greater acceptance bias
for y with smalld(y, p1), which we call biased stochastic replacement. This bias control in the
MSXF is achieved easily by sortingN(x) members in ascending order ofd(yi , p1) so thatyi with
a smaller indexi has a smaller distanced(yi , p1). The calculation ofd(yi , p1) is not an expensive
task if d(x, p1) and the the nature of the move fromx to yi are known; it is not necessary to
actually generate and evaluateyi. Thenyi is chosen fromN(x) randomly, but with a bias foryi

with small indexi. The outline of the MSXF is described in Algorithm9.1.1.
In place ofd(yi , p1), one can also usesign(d(yi , p1) − d(x, p1)) + rε to sortN(x) members in

Algorithm 9.1.1. Heresign(x) denotes the sign ofx: sign(x) = 1 if x > 0, sign(x) = 0 if x = 0,
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sign(x) = −1 otherwise. A small random fractionrε is added to randomize the order of members
with the same sign. The termination condition can be given, for example, as the fixed number of
iterations in the outer loop.

The MSXF is not applicable if the distance betweenp0 andp1 is too small compared to the
number of iterations. In such a case, a mutation operator called theMulti-Step Mutation Fusion
(MSMF) is applied instead. The MSMF can be defined in the same manner as the MSXF is
except for one point: the bias is reversed, i.e. sort theN(x) members in descending order of
d(yi , p1) in Algorithm 9.1.1.

9.2 Scheduling in the reversed order

The GT algorithm in Algorithm2.2.1and all its variants determine the job sequences from left
to right in temporal order. This is because active schedules are defined to have no extra idle
periods of machinesprior to their operations. However the idea described below enables the
same algorithms to determine the job sequences from right to left with only small modifications.

In general, a given problem of the JSP can be converted to another problem by reversing all
of the technological sequences. The new problem is equivalent to the original one in the sense
that reversing the job sequences of any schedule for the original problem results in a schedule for
the reversed problem with the same critical path and makespan. It can be seen, however, that an
active schedule for the original problem may not necessarily be active in the reversed problem;
the activeness is not necessarily preserved.

job Routing
1 2(3) 1(4)
2 2(2) 1(4)

Figure 9.1:A simple 2× 2 problem
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Figure 9.2:Schedule reversal and activation

For example, the simple 2× 2 problem described in Table9.1 is considered. Figure9.2(1)
shows a solution of this problem, which is active and no more left shifts can improve its makespan.
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Figure9.2(2), obtained by reversing Figure9.2(1), is not active and can be improved by a left
shift that moves job 1 prior to job 2 on machine 2, resulting in Figure9.2(3). Finally Figure9.2(4)
is obtained by reversing Figure9.2(3) again, which is optimal. As things turn out, Figure9.2(1)
is improved by moving job 1posteriorto job 2 on machine 2, resulting in Figure9.2(4).

Although repairing a semi-active schedule to the active one improves the makespan, it can
be seen from the example above that there sometimes are obvious improvements that cannot
be attained only by left shifts. We call a scheduleleft active if it is an active schedule for the
original problem andright active if it is such for the reversed problem. It sometimes happens
that a reserved problem is easier to solve compared to the original. Searching only in the set
of left (or right) active schedules may bias the search toward the wrong direction and result in
poor local minima. Therefore left active schedules as well as right active ones should be taken
into account together in the same algorithm. In most local search methods, many schedules are
generated in a single run; therefore it would be better to apply this reversing and repairing method
periodically to change the scheduling directions rather than to reverse and repair every schedule
each time it is generated.

9.3 MSXF-GA for Job-shop scheduling

The MSXF is applied to the JSP by using the active CB neighborhood and the DG distance
defined in Section2.4. Algorithm 9.3.1describes the outline of the MSXF-GA routine for the
JSP using the steady state model proposed in [58, 59]. To avoid premature convergence even
under a small-population condition, an individual whose fitness value is equal to someone’s in
the population is not inserted into the population in Step2d.

A mechanism to search in the space of both the left and right active schedules is introduced
into the MSXF-GA as follows. First, there are equal numbers of left and right active schedules
in the initial population. The scheduleq generated fromp0 and p1 by the MSXF ought to be
left (or right) active ifp0 is left (or right) active, and with some probability (0.1 for example) the
direction is reversed.

Figure9.3shows all of the solutions generated by an application of (a) the MSXF and (b) a
stochastic local search computationally equivalent to (a) for comparison. Both (a) and (b) started
from the same solution (the same parentp0), but in (a) transitions were biased toward the other
solutionp1. Thex axis represents the number of disjunctive arcs whose directions are different
from those ofp1 on machines with odd numbers, i.e. the DG distance was restricted to odd
machines. Similarly, they axis representing the DG distance was restricted to even machines.

9.4 Benchmark Problems

The two well-known benchmark problems with sizes of 10× 10 and 20× 5 (known as mt10
and mt20) formulated by Muth and Thompson [4] are commonly used as test beds to measure
the effectiveness of a certain method. The mt10 problem used to be called a “notorious” prob-
lem, because it remained unsolved for over 20 years; however it is no longer a computational



84 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

Algorithm 9.3.1 (MSXF-GA for the JSP)

1. Initialize population: randomly generate a set ofleft and right active schedules in equal
number and apply the local search to each of them.

2. do

(a) Randomly select two schedulesp0, p1 from the population with some bias depending
on their makespan values.

(b) Change the direction (left or right) of p1 by reversing the job sequences with proba-
bility Pr .

(c) Do step2(c)i with probabilityPc, or otherwise do Step2(c)ii.

i. If the DG distance betweenp1, p2 is shorter than some predefined small value
dmin, apply MSMF top1 and generateq.
Otherwise, apply MSXF top1, p2 using the active CB neighborhoodN(p1) and
the DG distance and generate a new scheduleq.

ii. Apply Algorithm 6.1.1with acceptance probability given by (9.1) and the active
CB neighborhood.

(d) If q’s makespan is shorter than the worst in the population, and no one in the popula-
tion has the same makespan asq, replace the worst individual withq.

until some termination condition is satisfied.

3. Output the best schedule in the population.
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Figure 9.3:Distribution of solutions generated by an application of (a) MSXF and (b) a short-
term stochastic local search
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Table 9.1:Performance comparison using the MT benchmark problems

1963 Muth-Thompson Test problems 10× 10 20× 5
1991 Nakano/Yamada Simple GA 965 1215
1992 Yamada/Nakano Giffler-Thompson GT-GA 930 1184

Dorndorf/Pesch Priority-Rule based P-GA 960 1249
Dorndorf/Pesch Shifting-Bottleneck SB-GA 938 1178

1995 Kobayashi/Ono Subsequence Exchange Crossover 930 1178
/Yamamura SXX-GA

1995 Bierwirth Generalized-Permutation GP-GA 936 1181
1996 Yamada/Nakano Multi-step Crossover Fusion MSXF-GA 930 1165

challenge.
Applegate and Cook proposed a set of benchmark problems called the “ten tough problems”

as a more difficult computational challenge than the mt10 problem, by collecting difficult prob-
lems from literature, some of which still remain unsolved [1].

9.4.1 Muth and Thompson benchmark

Table9.1summarizes the makespan performance of the methods described in this chapter. The
Simple GA described in Chapter4 has only limited success. It would be improved by being
combined with the GT algorithm and/or the schedule reversal. The other results excluding the
MSXF-GA results are somewhat similar to each other, although the SXX-GA (a GA with Sub-
sequence Exchange Crossover described in Section5.1) is improved over the GT-GA described
in Section5.4in terms of speed and the number of times needed to find optimal solutions for the
mt10 problem. The SB-GA produces better results using the very efficient and tailored shifting
bottleneck procedure. The MSXF-GA which combines a GA and local search obtains the best
results.

For the MSXF-GA, the population size= 10, constant temperaturec = 10, number of itera-
tions for each MSXF= 1000,Pr = 0.1 andPc = 0.5 are used. The MSXF-GA experiments were
performed on a DEC Alpha 600 5/226 which is about four times faster than a Sparcstation 10,
and the programs were written in the C language. The MSXF-GA finds the optimal solutions for
the mt10 and mt20 problems almost every time in less than five minutes on average.

9.4.2 The Ten Tough Benchmark Problems

Table9.2shows the makespan performance statistics of the MSXF-GA for the ten difficult bench-
mark problems proposed in [1]. The parameters used here were the same as those for the MT
benchmark except for the population size= 20. The algorithm was terminated when an optimal
solution was found or after 40 minutes of cpu time passed on the DEC Alpha 600 5/266. In the
table, the column named lb shows the known lower bound or known optimal value (for la40)
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of the makespan, and the columns named bst, avg, var and wst show the best, average, vari-
ance and worst makespan values obtained, over 30 runs respectively. The columns namednopt

andtopt show the number of runs in which the optimal schedules are obtained and their average
cpu times in seconds. The problem data and lower bounds are taken from the OR-library [60].
Optimal solutions were found for half of the ten problems, and four of them were found very
quickly. The small variances in the solution qualities indicate the stability of the MSXF-GA as
an approximation method.

Table 9.3 shows the performance comparisons with various heuristic methods for the 10
tough problems. The column headings Nowi and Dell indicate the best performances of TABU
search proposed in [19] and [18]. CBSA+SB indicates SA results described in Chapter8. Aart,
Matt, Appl indicate SA results proposed in [51], GA results in [52] and results in [1] respectively.
It is interesting to observe from those results that the two approaches CBSA+SB are mutually
complementary. For the problem instances abz7, abz8, abz9 and la29, SA+SB outperforms
MSXF-GA. In fact, SA+SB performs the best for these problems. However, for the problem
instance la38 for which SA+SB fails to find the global optimum, MSXF-GA successfully and
frequently find the global optimum. MSXF-GA also shows reasonably good performances for
the problem instance la40 for which SA+SB performs relatively poorly.

Table 9.2:Results of the 10 tough problems

prob size lb bst avg var wstnopt topt

abz7 20×15 655 678 692.5 0.94 703 – –
abz8 20×15 638 686 703.1 1.54 724 – –
abz9 20×15 656 697 719.6 1.53 732 – –
la21 15×10 – ?1046 1049.9 0.57 1055 9 687.7
la24 15×10 – ?935 938.8 0.34 941 4 864.1
la25 20×10 – ?977 979.6 0.40 984 9 765.6
la27 20×10 – ?1235 1253.6 1.56 1269 1 2364.75
la29 20×10 1130 1166 1181.9 1.31 1195 – –
la38 15×15 – ?1196 1198.4 0.71 1208 21 1051.3
la40 15×15 ?1222 1224 1227.9 0.43 1233 – –

Figure9.4shows a performance comparison of GLS with and without MSXF using the la38
problem. A total of 100 experiments (runs) were performed for each under the same conditions
used in Table9.2but with different random seeds. In the figure, the solid line gives the results of
MSXF-GA (in other words, GLS with MSXF) and the dotted line gives the equivalent results of
GLS without MSXF (i.e., in place of MSXF, CPU equivalent short-term stochastic local search
is used). Each of the 100 runs is numbered from No.1 to No.100 in ascending order of cpu
time at which each run is terminated. For example, run No.1 successfully found the optimal
schedule and was terminated the most quickly. The cpu time value= 2400 means that the run
was terminated before it found the optimal schedule. In the figure, instead of standard time
evolution graph, thex axis represents run numbers and they axis represents the cpu time. The
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Table 9.3:Performance comparisons with various heuristic methods on the 10 tough problems

prob our bst Nowi Dell CBSA+SB Aarts Matt Appl
abz7 678 – 667 665 668 672 668
abz8 686 – 678 675 670 683 687
abz9 697 – 692 686 691 703 707
la21 ?1046 1047 1048 ?1046 1053 1053 1053
la24 ?935 939 941 ?935 ?935 938 ?935
la25 ?977 ?977 979 ?977 983?977 ?977
la27 ?1235 1236 1242 ?1235 1249 1236 1269
la29 1166 1160 1182 1154 1185 1184 1195
la38 ?1196?1196 1203 1198 1208 1201 1209
la40 1224 1229 1233 1228 1225 1228?1222
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Figure 9.4:Performance comparison using the la38 15× 15 problem
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fact that the solid line increases slower and has shorter horizontal tail part than the dotted line
means that the experiments with MSXF outperforms those without MSXF both in terms of the
cpu time and in the number of successful runs.



Chapter 10

Permutation Flowshop Scheduling by
Genetic Local Search

So far, we have mainly considered the jobshop scheduling problem (JSP), but hereafter, we will
shift our focus to the permutation flowshop scheduling problem, abbreviated as PFSP or just
FSP, which is a special case of the JSP in a sense that the technological sequence of machines
is the same for all jobs and the order in which each machine processes the jobs is also same for
all machines. A solution schedule is then represented by a permutation ofn jobs, instead ofm
permutations ofn jobs. We do not have the concept of active schedule, but still we have critical
path and blocks, if the objective isCmaxbut not if the objective isCsum, the sum of the completion
times of all the operations. In this chapter, the MSXF method described in the previous chapter
is applied to then/m/P/Cmax and in the next chapter, the MSXF is applied to then/m/P/Csum.

10.1 The Neighborhood Structure of the FSP

Because the FSP is a special case of the JSP, the concepts of critical path and blocks also apply
to the FSP in a similar but much simpler fashion. We briefly review those concepts again in the
FSP context for the better understanding.

The permutation flowshop scheduling problem designated by the symbolsn/m/P/Cmax has
n jobs that have to be processed onm machines in the same order. Because of this simplicity
against the general JSP, we can assume that the machines are indexed in the processing order
of jobs, so that theM1 is the first machine to process jobs andMm is the last. We are given the
processing timepjr of each operation of jobJj on machineMr . A schedule can be represented
by a permutation of jobs, or to put it more simply, a permutation of job numbersπ.

A critical path is a sequence of operations starting from the first operation on the first machine
M1 and ending with the last operation on the last machineMm. The starting time of each operation
on the path, except for the first one, is equal to the completion time of its preceding operation—
that is, there is no idle time along the path. Thus, the length of the critical path is the sum of the
processing times of all the operations on the path and equals toCmax. There can be more than
one critical path on a schedule.

89
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Figure 10.1:A grid graph representation of a solution to a problem of 8 jobs and 6 machines.

The operations on a critical path can be partitioned into subsequences, calledcritical blocks,
according to their associated machines. A critical block consists of maximal consecutive opera-
tions on the same machine, as in the JSP, but here we make it simple and define a critical block
as a subsequence of associated jobs, instead of operations.

Consider a schedule represented by a permutationπ. Let B1, . . . Bk be a set of all critical
blocks that contains more than one job and letml be the index of the machine associated withBl.
Let π(ul) be the first job ofBl (and the last job ofBl−1). Then the ‘inside’ ofBl, denoted byB̂l, is
defined as follows:

B̂l =


Bl \ {π(ul+1)} if l = 1 andml = 1
Bl \ {π(ul)} if l = k andml = n
Bl \ {π(ul), π(ul+1)} otherwise.

(10.1)

Figure 10.1 shows an example of scheduleπ = 4,5,6,1,2,3,8,7 for a problem withn = 8
jobs andm = 6 machines represented by so-called a grid graph, which is a simplification of
the disjunctive graph for the JSP. In the figure, the vertical axis corresponds to machines and
the horizontal axis to jobs. Each circle represents an operation, and arrows precedence relation
between operations. A critical path is marked by thick lines. In this example, there are four
critical blocksB1, . . . , B4 that contain more than one job.B2 on machine 3, for example, consists
of four jobs 5,6,1 and 2, andB̂2 consists of jobs 6 and 1. LikewisêB4 on machine 6 consists of
jobs 8 and 7. Note that the machines are indexed in the processing order of jobs.

As described in Chapter6, a neighborhoodN(x) of a pointx in a search space can be defined
as a set of new points that can be reached fromx by exactly one transition or move (a single
perturbation ofx). One of the well-known transition operators for PFSP is theshift movethat
takes a job from its current position and re-inserts it in another position. Letv = (a,b) be a pair of
positions inπ. Here,v defines a move that removes the jobπ(a) from a positiona and re-inserts
it in a positionb. If a < b, the resulting schedule is represented byπv = π(1), . . . , π(a− 1)π(a +

1), . . . , π(b), π(a), π(b + 1), . . . , π(n), and if a > b, πv = π(1), . . . , π(b), π(a), π(b + 1), . . . , π(a −
1)π(a + 1), . . . , π(n). A neighborhoodN(V, π) is defined as the set of all schedules obtained by
shift moves inV = {(a,b) : b < {a− 1,a},a,b ∈ {1, . . . , n}}.
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the best move is selected
as a representative move

the job moved to
the next block

the job moved to
the previous block
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Figure 10.2:The best move to the next/previous block is selected as a representative.

Let Wl(π) be a set of moves restricted to the inside ofBl, namely

Wl(π) = {(a,b) ∈ V|a,b ∈ B̂l} (10.2)

and

W(π) =

k⋃

l=1

Wl(π) (10.3)

then the block property described in Theorem2.5for the JSP is reformulated as follows:

Corollary 1 (Block property for the FSP) For any scheduleβ,
if β ∈ N(W(π), π) then Cmax(β) ≥ Cmax(π).

According to Corollary1 above, no move inW(π) can directly improve scheduleπ. Therefore,
it is reasonable, for computational efficiency, to reduce the size of the neighborhoodN(V, π) by
eliminating moves inW(π), and to use a new neighborhoodN(V \W(π), π), which we call here
a “critical block neighborhood”.

10.2 Representative Neighborhood

Nowicki and Smutnicki have proposed therepresentativeneighborhood method[20], where are-
ducedneighborhood is generated from the original neighborhood by first patitioning the original
neighborhood members into clusters and then picking up the best move (representative) from
each cluster as a representative. A new neighborhood is the set of all representative moves.

In this chapter, the representative neighorhood method is applied as follows. For each job
j in a critical block, letSa

j be a set of moves that shift the jobj to some position in the next
block; similarlySb

j shifts j to the previous block. Evaluate schedules obtained from each move
in Sa

j and denote the best one bysa
j . Similarly sb

j is obtained fromSb
j . Then the representative

neighborhood is defined as a set of all schedules obtained by representative moves{sa
j , s

b
j } for all

jobs j in all critical blocks (see Figure10.2).
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10.3 Distance Measures

To measure the difference between two permutation schedulesS andT, an appropriately de-
fined distance is required. In the case of the JSP, we have used the DG distance introduced in
Section2.4. For the FSP, two well-known distances are considered as follows:

precedence-based:This distance counts the number of job pairs{i, j} in which j is preceded by
i in S but not inT.

position-based: This distance sums up the positional differences for each job inS andT.

The first precedence-based distance is equivalent to the DG distance if the FSP is viewed as a
special case of the JSP. The relationship between these two distances will be discussed in the
later section.

10.4 Landscape analysis

According to Ḧohn and Reeves [61], a landscape is defined by a triple of a search space, an
objective function and a distance measure. The link between landscape and search algorithm is
given by the NS operators used in the algorithm. Because these operators generate new points in
the search space relative to a given point, they define a distancedN (s, t) on the search space given
by the minimum number of applications of operatorN that will convert elementt into element
s.

One can understand the degree of difficulty of the given combinatorial optimization problem
by looking at its landscape: if the landscape is simple and has only one peak, it is very easy
to find the global optimum by using simple best ascent search. Unfortunately mostNP-hard
combinatorial optimization problems, including PFSP, have very ‘rugged’ landscapes with many
false peaks under any NS operator.

Recently, Boese et al. [62] have shown that an appropriate choice of NS operator introduces
some neat structure into the landscape. In this ‘big valley’ structure, local optima occur in clusters
– good candidate solutions are usually to be found ‘fairly close’ to other good solutions. If
a landscape has this structure, it would support the idea of generating new starting points for
search from a previous local optimum rather than from a random point in the search space.

Before we apply our GLS method to PFSP, we investigate whether there is a big valley
structure for the PFSP and the NS operator using the representative neighborhood and a stochastic
search using (9.1) (constant temperature). For the same PFSP but with simpler NS operators,
similar experiments reported in Reeves [63] found such a landscape did occur.

As discussed in [62, 64, 63], the existence of a big valley structure can be examined by
first generating a set of random local optima and then observing the correlation between their
objective function values and their distances to the nearest global optimum, and/or their aver-
age distances to other local optima. The distance used here should bedN for an operatorN .
However this distance is difficult to compute, and precedence-based distance is used here as an
approximation.
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Figure 10.3:1841 distinct local optima obtained from 2500 short term local search for the ta011
(20× 10) problem and 2313 distinct local optima for the ta021 (20× 20) problem are plotted
in terms of (a) average distance from other local optima and (b) distance from global optima
(x-axis), against their relative objective function values (y-axis).
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Figure 10.4:The correlation between the precedence-based distance (PREC) and the approxi-
mate number of steps (STEPS)

Figure10.3shows a scatter plot of random local optima for problems ta011 and ta021, being
respectively the first of Taillard’s 20× 10 and 20× 20 groups of problems [21]. Each local
optimum is generated by running the neighborhood search described in Algorithm6.1.1with
L = 5000 based on the stochastic method with acceptance probabilityPc, c = 5. Extensive
preliminary experiments found only two distinct global optima for the ta011 problem, very close
to each other in terms of the precedence-based distance (the distance is two) and only one global
optimum for ta021 problem; although one cannot rule out the possibility of finding other different
global optima by continuing the search. However, more than 2500 global optima were found for
the smaller ta001 (20× 5) problem by spending the same amount of CPU time.

The x-axis in Figure10.3 represents (a) the average precedence-based distance from other
local optima (MEAND), and (b) the precedence-based distance from one of the nearer global
optima (BESTD). They-axis represents their objective function values relative to the global
optimum. These plots clearly show that there are good correlations between the distances and
objective function values. The calculated correlation coefficients for each plot are: ta011(a):
0.74, ta011(b): 0.50, ta021(a): 0.62 and ta021(b): 0.44. These values are statistically significant
at the 0.1% level, on the basis of 1000 replications in a randomization test [63]. These high
correlations suggest that the local optima are radially distributed in the problem space with the
global optima as the centre, and the more distant are the local optima from the centre, the worse
are their objective function values. Hence, by tracing local optima step by step, moving from one
optimum to nearby slightly better one, without being trapped, one can eventually reach a near
global optimal solution.

In the analysis above, the precedence-based distance is used as a surrogate fordN , because
the minimum number of steps for the neighborhood operator to reach the global optimum is
difficult to compute. Although the precedence-based distance seems to be a good alternative, the
approximation still need to be justified. For this purpose, the approximate number of steps to
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Figure 10.5:The correlation between the precedence-based distance (PREC) and the position-
based distance (POSN)

reach the global optimum from each local optimum was calculated by choosing the closest move
to the global optimum each time from the neighborhood. While this does not necessarily give
the best distance between two points, it seems likely to give a fairly close upper bound.

Figure10.4 shows the correlation between the precedence-based distance (PREC) and the
approximate number of steps (STEPS) for the local optima shown in Figure10.3ta011(a) (cor-
relation coefficient is 0.66). Figure10.5 shows that there is a strong correlation between the
precedence-based distance (PREC) and the position-based distance (POSN) for the same local
optima (correlation coefficient is 0.91). Thus it does not matter which distance is used. The same
kind of experiments were carried out for all Taillard’s 20×10 and 20×20 benchmarks, and similar
results were obtained in every case. Therefore, the use of the easily-computed precedence-based
distance appears to be justified, and the ‘big valley’ structure can be assumed to hold for this
neighborhood.

10.5 MSXF-GA for PFSP

As described in Section9.1, the MSXF operator is designed to find a new local optimum based
on previous ones. MSXF-GA provides a framework for traversing local optima without being
trapped, by concentrating its attention on the area between the parent solutions and thus eventu-
ally finding a very good solution under the assumption of a ‘big valley’. MSXF-GA was applied
to PFSP using the representative neighborhood described in Section10.1 and the precedence-
based distance.

Algorithm 10.5.1describes the outline of the MSXF-GA routine for the PFSP. In this model,
the population is ranked according to the makespan values, and the parents are selected from
the population with a probability inversely proportional to their ranks. The newly generated
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solution q is inserted into the population only if its makespan is better than the worst in the
current population. To avoid premature convergence even under a small-population condition, if
an individual with the same makespan already exists in the population, thenq is not inserted into
the population in Step2c.

Algorithm 10.5.1 MSXF-GA for the PFSP
The population sizeP is given.

1. Initialize population: randomly generate a set of permutation schedules. Sort the population
members in descending order of their makespan values.

2. do

(a) Select two schedulesp1, p2 from the population with a probability inversely proportional
to their ranks.

(b) Do Step2(b)i with probabilityPX, or otherwise do Step2(b)ii.

i. If the precedence-based distance betweenp1, p2 is less thandmin, apply MSMF top1

and generateq.
Otherwise, apply MSXF top1, p2 using the representative neighborhood and the
precedence-based distance and generate a new scheduleq.

ii. Apply Algorithm 6.1.1with acceptance probabilityPc and the representative neigh-
borhood.

(c) If q’s makespan is less than the worst in the population, and no member of the current
population has the same makespan asq, replace the worst individual withq.

until some termination condition is satisfied.

3. Output the best schedule in the population.

10.6 Experimental results

In Section10.4, the existence of a big valley structure became clear for the relatively small-size
PFSP instances. An adaptive multi-start method (AMS) in which new local search is concen-
trated in a region between previously found local optima should be effective at least for these
problems. MSXF-GA for PFSP is especially designed as one of the AMS approaches for PFSP.
Preliminary experiments show that MSXF-GA is very effective for the problem instances dis-
cussed in Section10.4, and the global optima are found very quickly. In this section we will
extend our investigations to larger-size problems and apply MSXF-GA to a subset of Taillard’s
benchmark problems.

Table 10.1 summarizes the performance statistics of MSXF-GA for a subset of Taillard’s
benchmark problems together with the results found by Nowicki and Smutnicki using their tabu
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Figure 10.6:Navigated local search by MSXF-GA: A new search is started from one of the par-
ents and while no other good solutions are found, the search ‘navigates’ towards the other parent.
In the middle of the search, good solutions would be eventually found somewhere between the
parents. That direction is then pursued to the top of a hill (or a bottom of the valley, if it is a
minimization problem) — a new local optimum.

Table 10.1:Results of the Taillard benchmark problems
50× 20 100× 20 200× 20

No. best avg.nowi lb – ub best avg.nowi lb – ub best avg. nowi lb – ub
1 3861388038753771–38756242 625962866106–622811272 113161129411152–11195
2 3709371637153661–37156217 623462416183–621011299 113461142011143–11223
3 3651366836683591–36686299 631263296252–627111410 114581144611281–11337
4 3726374437523631–37526288 630363066254–626911347 114001134711275–11299
5 3614363636353551–36356329 635463776262–631911290 113201131111259–11260
6 3690 370136983667–36876380641764376302–640311250 112881128211176–11189
7 3711 372337163672–37066302 631963466184–629211438 114551145611337–11386
8 3699372137093627–37006433 646664816315–642311395 114261141511301–11334
9 3760 376937653645–37556297 632363586204–627511263 113061134311145–11192

10 3767 377237773696–37676448 647164656404–643411335 114091142211284–11313
best, avg.: our best and average makespan values
nowi: results of Nowicki and Smutnicki
lb, ub: theoretical lower bounds and best known makespans taken from OR-library
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search implementation[20] and the lower and upper bounds, taken from the OR-library [60].
(Upper bounds are the currently best-known makespans, most of them found by a branch and
bound technique with computational time unknown). In all, 30 runs were completed for each
problem under the same conditions but with different random number seeds. For each MSXF-
GA run, population size= 15, constant temperaturec = 3, number of iterations for each MSXF
= 1000,dmin = n/2 andPX = 0.5 are used. Each run is terminated after 700 iterations, which
takes about 12, 21 and 47 minutes of CPU time respectively for each 50× 20, 100× 20 and
200× 20 problems on a DEC Alpha 600 5/226.

It can be seen that the results for 50× 20 problems are remarkable: the solution qualities of
our best results are improved over those found in [20] for most of the problems, and some results
(marked in bold letters) are even better than the existing best results reported in the OR-library.
The results for larger problems are not as impressive as those of 50× 20 problems, but still good
enough to support our hypothesis. The degradation is probably due to the increasing complexity
of the neighborhood calculation. In fact for problems where the ration/m > 3, Nowicki and
Smutnicki abandoned their representative neighborhood and used a simple one instead: just
moving a job to the beginning or the end of its critical block. They also implemented an efficient
way of evaluating all the members in the neighborhood in a specific order. This method is useful
for the tabu search, but not directly applicable to our stochastic search.

10.7 Concluding Remarks

The landscape for the Permutation Flowshop Scheduling Problem with stochastic local search
and the representative neighborhood structure has been investigated. The experimental analysis
using 20× 10 and 20× 20 Taillard benchmark problems shows the existence of a ‘big valley’
structure for PFSP. This suggests a well-designed AMS method, such as MSXF-GA in which
new local search is concentrated in a region between previously found local optima should be
effective in finding near-optimal solutions. MSXF-GA for the PFSP is implemented using the
neighborhood operator and applied to more challenging benchmark problems. Experimental
results demonstrates the effectiveness of the proposed method.
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CsumPermutation Flowshop Scheduling by
Genetic Local Search

11.1 Introduction

We have already proposed an efficient method based on the genetic local search with the MSXF
to solve then/m/P/Cmax in the previous chapter. In this chapter we deal with then/m/P/Csum.
Compared to theCmaxproblem, theCsumproblem is more difficult to optimize, mainly because the
calculation of the objective function is more time consuming, and problem specific knowledge
such as critical blocks is not applicable. However, this difficulty can be partly overcome by
extending the idea of the representative neighborhood discussed in Section10.2.

11.2 Representative Neighborhood

Let sbe a job sequence of the current solution, ands[i, k] be a new job sequence obtained froms
by moving a job from thei th position ins and re-inserting it in thekth position.Na

i (s) andNb
i (s),

subsets ofN(s), are defined as follows:

Na
i (s) = {s[i, k] | i < k ≤ n},Nb

i (s) = {s[i, k] | 1 ≤ k < i}.
Thus the original neighborhoodN(s) is divided into clusters consisting ofNa

i (s) andNb
i (s). Let

Na
i (s) andNb

i (s) be one of the best members inNa
i (s) andNb

i (s) respectively. The representative
neighborhoodN∗(s) can be denoted as:

N∗(s) = {Na
i (s) | 1 ≤ i < n} ∪ {Nb

i (s) | 1 < i ≤ n}.
In most local search algorithms, the NS operators to choose a new member from the neighbor-

hood of the current solution can be categorized into two types according to their choice criteria
discussed in Section6.1; one is best descent, and the other is first descent. The best descent
method scans all the members in the neighborhood and choose the best as a new current so-
lution. This is suitable when the neighborhood size is small and the cost of evaluating all the
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(3) choose the best as
     a representative

(2) evaluate all

in Ni(S)

(1) choose Ni(S) at random

N (S)

S

i

Figure 11.1:Representative neighborhood

members is negligible. Tabu search can be seen as an extension of this method. The first descent
method selects one member (at random) and accepts it if it is sufficiently good, otherwise selects
another one. This can be used even when the neighborhood size is large. The stochastic sam-
pling in stochastic local search including SA can be seen as an extension of this method. The
representative neighborhood fills the gap between these two criteria: a clusterNi(s) is chosen
randomly by using first descent, then best decent is applied to evaluate all the members inNi(s)
of which the best is chosen as a representative. Figure11.1illustrates this process. As we will
see in the later section, this enables the TS and a stochastic local search method to integrate into
a single unified method.

11.3 Tabu List Style Adaptive Memory

As described in Chapter6, Tabu Search (TS) adopts a deterministic local search approach with
a ‘memory’ implemented as a ‘tabu list’ of moves which have been made in the recent past of
the search, and which are ‘tabu’ or forbidden for a certain number of iterations. The use of the
representative neighborhood makes it easy to have ’tabu list’ style adaptive memory.

If a solutions[i, k] generated from the current solutions by moving a jobj = s[i] to thekth

position is accepted, the pair (j, i), i.e. the job and its original position, is stored on the top of a list
of lengthl and recorded astabu. The oldest element in the list is then deleted. In the subsequent
iterations, a solution generated by moving jobj to thei th position should not be accepted as long
as (j, i) is on the list. In our representative neighborhood scheme, this is achieved by excluding
the tabu solution from the calculation of the representative best solution (Na

i (s) and Nb
i (s)) so

that the representative neighborhood will contain no tabu solutions. Because the tabu solutions
have already been excluded from the representative neighborhood, there is no need to modify the
stochastic local search procedure described in Section10.5by this modification.
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11.4 Experimental Results

We applied our method to some of Taillard’s benchmark problems (ta problems, in short) [21].
First it was applied to relatively easy problems from ta001 to ta030 (the number of jobs is 20
and the number of machines is 5, 10 and 20: denoted by 20x5, 20x10 and 20x20). Six runs
were carried out for each problem with different random seeds. The parameters used in these
experiments are:P = 5, L1 = 1000, L2 = 700,PX = 0.5 and the length of the tabu listl = 7.

Here quite consistent results were obtained, i.e. almost all of the 6 runs converged to the same
job sequence in a short time (from a few seconds to a few minutes) before the limit ofL2 = 700
was reached on a HP workstation. The best results (and they are also the average results in most
cases) are reported in Table11.1together with the results obtained by the constructive method
(NSPD) due to J.Liu [65].

Table 11.1:Taillard’s benchmark results (ta001 – ta030)

prob best NSPD prob best NSPD prob best NSPD
001 14033 14281 011 20911 21520 021 33623 34119
002 15151 15599 012 22440 23094 022 31587 32706
003 13301 14121 013 19833 20561 023 33920 35290
004 15447 15925 014 18710 18867 024 31661 32717
005 13529 13829 015 18641 19580 025 34557 35367
006 13123 13420 016 19245 20010 026 32564 33153
007 13548 13953 017 18363 19069 027 32922 33763
008 13948 14235 018 20241 21048 028 32412 33234
009 14295 14552 019 20330 21138 029 33600 34416
010 12943 13054 020 21320 22212 030 32262 33045

Problems ta031 to ta050 (50x5 and 50x10 problems) are much more difficult and the best
results were different in each run. Ten runs were carried out for each problem with different
random seeds. The parameters used in these experiments were:P = 30, L1 = 10000, L2 =

700,PX = 0.5. It takes 45 minutes per run for 50x5 problems (ta031 to ta040) and 90 minutes
for 50x10 problems (ta041 to ta050).

It is difficult to say how good these solutions are, in other words, how far they are from the
global optima. Even for the easier problems in Table11.1, there is no guarantee that the best
solutions obtained so far are optimal, although we believe that they are at least very close to
being so. For the problems in Table11.2, it is almost certain that our best results are not optimal.
In fact we found one solution ofCsum = 64803 for problem ta031 by an overnight run.

11.5 Concluding Remarks

A new genetic local search method is proposed to solve theCsumpermutation flowshop schedul-
ing problem. This method effectively integrates the stochastic sampling of Simulated Annealing,
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Table 11.2:Taillard’s benchmark results (ta031 – ta040)

prob best average NSPD prob best average NSPD
031 64860 64934.8 66590 041 87430 87561.4 90373
032 68134 68247.2 68887 042 83157 83305.8 86926
033 63304 63523.2 64943 043 79996 80303.4 83213
034 68259 68502.7 70040 044 86725 86822.4 89527
035 69491 69619.6 71911 045 86448 86703.7 89190
036 67006 67127.6 68491 046 86651 86888.0 91113
037 66311 66450.0 67892 047 89042 89220.7 93053
038 64412 64550.1 66037 048 86924 87180.5 90614
039 63156 63223.8 64764 049 85674 85924.3 91289
040 68994 69137.4 69985 050 88215 88438.6 91622

the adaptive memory using the tabu list of Tabu Search and the population-based search of Ge-
netic Algorithms into a single unified framework as summarized in Figure11.2. The method is
applied to Taillard’s benchmark problems. Experimental results demonstrate the effectiveness of
the proposed method.

Genetic Local Search

Simulated Annealing
(Stochastic local search)

first descent

Tabu Search

best descent

Stochastic
sampling

Adaptive
memory

Population,
path relinking
crossover, mutation

+

+

representative
neighbourhood

mult-step
crossover fusion

Figure 11.2:The framework of the proposed method



Chapter 12

Tabu Search with a Pruning Pattern List
for the Flowshop Scheduling Problem

12.1 Introduction

In this chapter, an approximation method based on Tabu Search with an additional memory
structure called “pruning pattern list” is described [66]. A pruning pattern is constructed from
a solution, which is represented by a permutation of job numbers, by replacing some of its job
numbers by a “wild card” or a “don’t care” symbol. The job numbers to be replaced are deter-
mined by investigating the critical path of the schedule. A list of pruning patterns are generated
from “good” schedules that are obtained in the course of a search process, and maintained. The
list is used to inhibit the search to visit already searched and no longer interesting region again
and again.

12.2 Tabu Search

As described in Chapter6, Tabu Search (TS) adopts a deterministic local search approach with a
‘memory’ implemented as a ‘tabu list’ of moves which have been made in the recent past of the
search, and which are ‘tabu’ or forbidden for a certain number of iterations. A tabu move may
be accepted (even if it is ’tabu’) if certain criteria are satisfied, such as the solution obtained by
the application of the move being better than the best solution obtained so far. Such criteria are
called aspiration criteria.

Nowicki and Smutnicki [20] proposed a Tabu Search (TS) method for the Permutation Flow-
shop Scheduling Problem (PFSP). The tabu list used in their approach is described as follows by
using the notations used in Chapter10.

Let π be a permutation of job numbers representing a schedule andv = (a,b) be a move
that removes the jobπ(a) from positiona and re-inserts it into positionb in π. Whenv = (a,b)
with a < b is performed onπ, the precedence relation between a pair of jobs (π(a), π(a + 1)) is
reversed. To inhibit the future recovery, i.e., re-reversal, of the precedence relation, (π(a), π(a+1))
is stored as ‘tabu’ in the tabu listT of lengthtl. Then, a movev′ = (a′,b′) with a′ < b′ cannot be
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v = (2,7)

v' = (1,6)

tabu

π

β

x y z

wxy

Figure 12.1:Whenv = (2,7) is applied toπ, (π(2), π(3)) = (x, y) is stored inT
as tabu. Later,v′ = (1,6) is not allowed to apply toβ because it will restore the
previously banned precedence relation between (x, y).

performed on a new scheduleβ if v′ induces a recovery of any precedence relation inT, i.e., if
{(β( j), β(a′)) | j = a′+1, . . . , b′}∩T , φ. Likewise, (π(a−1), π(a)) is stored as ‘tabu’ ifv = (a,b)
with a > b is performed onπ.

The neighborhoodN(V \W(π), π), which is a subset ofN(V, π), is still too big for problems
of even moderate size. Thus, it is impracticable to evaluate all the neighbors inN(V \W(π), π),
so Nowicki and Smutnicki use a subset ofN(V \W(π), π) as a neighborhood structure. Alterna-
tively, one can make the evaluation probabilistic: a memberα from N(V \W(π), π) is selected at
random and accepted ifCmax(α) < Cmax(π), otherwise probabilistically accepted according to the
Metropolis probabilityPc(α) = exp (−∆Cmax/c),where∆Cmax = Cmax(α) −Cmax(π).

12.3 Pruning Pattern

A pruning pattern [π] l associated withπ and its critical blockBl is derived fromπ by replacing
the jobs that belong tôBl by? as follows:

[π] l( j) =

{
? if j ∈ B̂l ,
π( j) otherwise.

For example, the pruning pattern corresponding toπ = 4,5,6,1,2,3,8,7 andB2 in Figure10.1
is [π]2 = 4,5, ?, ?, 2,3,8,7. The makespan of [π] l is defined as the makespan ofπ, namely,
Cmax([π] l) := Cmax(π). The? means a wild card, and a permutationβ ‘matches’ [π] l if β( j) =

[π] l( j) at all but? positions. For example 4,5,6,1,2,3,8,7 and 4,5,1,6,2,3,8,7 both match
[π]2. [π] l and a set of all permutations that match [π] l are identified. It is clear thatN(Wl(π), π) ⊂
[π] l. The block property described in Corollary1 in Section10.1can be reformulated using [π] l
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as follows:

Corollary 2 For any scheduleβ and any pruning pattern[π] l, β ∈ [π] l =⇒Cmax(β) ≥ Cmax([π] l).

This again can be reformulated as follows:

Corollary 3 For any two pruning patterns[π] i and[φ] j, [π] i ⊂ [φ] j =⇒ Cmax([π] i) ≥ Cmax([φ] j).

Corollary2 suggests that when a new, possibly good, solutionπ is found during the search, [π] l

identifies a region where no solutions are better thanπ, and that excluding [π] l from the search
space can reduce the size of the search space without eliminating the global optima.

12.4 Pruning Pattern List Approach

The basic idea of the pruning pattern list approach is to reduce the size of the search space
effectively through storing the ‘important’ pruning patterns that correspond to a long critical
block of a good solution. Let [π] (without suffix) be the pruning pattern that corresponds to the
longest critical block of scheduleπ. The pruning pattern listPL with length pl is maintained
and updated as shown in Algorithm12.4.1. Here,N(π) represents the neighborhood ofπ. N(V \
W(π), π) or its subset is normally used asN(π). There is no good reason to keep patterns that are
rarely accessed in the list. Therefore such patterns are replaced by new patterns. According to
Corollary3, it is also not necessary to keep pruning patterns in the list that are subsets of other
patterns. Thus they are removed.

Starting from an initial solution, the local search iteratively replaces the current solution with
one of its neighbors. In advanced local search strategies, such as Simulated Annealing (SA)
and TS, cost-increasing neighbors can be accepted as well as cost-decreasing ones. Accepting
cost-increasing moves enables the search to escape from the local optima, but this may also
cause revisiting of previously evaluated points in the search space – something that is wasteful
of computing resources in itself, and which also means the search is not adequately diversified.
One of the main aims of tabu search is to discourage such revisiting. This can be accomplished
by means of an explicit ‘tabu list’ of points previously visited, but normally it is easier, and more
efficient, to record specific attributes of such points, or of moves that would lead towards them.
Nevertheless, recording attributes of the points, and not the points themselves, can risk treating
even moves that are better than any solution obtained so far as tabu. This is one of the main
reasons why aspiration criteria should be introduced into TS.

In the case of the pruning pattern list approach, Corollary2 guarantees that a move that
matches a pruning pattern is never better than the best solution obtained so far. This means that
an aspiration criterion is not necessary, and it also means that the pruning pattern list can serve as
a longer-term memory to prevent the search getting stuck in an already searched and no longer
interesting region. Unlike the tabu list, an old pattern can remain in the pruning list as long
as it is accessed frequently. IfN(V \W(π), π) or its subset is used as the neighborhood of the
current solutionπ, it does not contain any solution that matches [π] l, even withoutPL. However,
it is still possible that the region [π] l would be revisited in some later stages without any better
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Algorithm 12.4.1 The pruning pattern list approach to the PFSP.
A flowshop scheduling problem is given as an input. The size ofPL is given aspl.

1. PL is initialized as a list of emptypl elements.

2. Generate a starting solution scheduleπ0 at random, and setπ = π0.

3. do

(a) CalculateN(π) from π.

(b) NP(π) is initialized asN(π). For eachα ∈ NP(π), if α matches any pattern [β] ∈ PL,
thenα is removed fromNP(π), resultingNP(π) := NP(π) \ α, and the ‘access count’
of [β] is incremented.NP(π) is used as the new neighborhood ofπ.

(c) do

i. A candidate scheduleφ is chosen fromNP(π) and is accepted or rejected based
on the valueCmax(φ).

until φ is accepted.

(d) When the acceptedφ is a cost-decreasing solution (i.e.,Cmax(φ) < Cmax(π)), then its
longest pruning pattern [φ] is stored inPL.

(e) All the existing patterns [β] in PL such that [β] ⊂ [φ] are removed and substituted by
empty patterns.

(f) If the number of non-empty patterns onPL exceedspl, then the least accessed pattern
[γ] is removed from the list.

(g) Setπ = φ.

until termination conditions are satisfied.

4. Output the best solution obtained.

solutions thanπ being found. The size ofPL is fixed topl mainly for computational efficiency.
Theoretically,NP(π) may not satisfy the connectivity property thatN(V\W(π), π) does. It should
be noted that the pruning pattern list is treated in a similar way that the population is treated in
Genetic Algorithms (GAs), especially in the steady state model [67]. The access count of the
pruning pattern corresponds to the fitness function of the individual in GAs.

12.5 Experimental Results

The pruning pattern list approach described in the previous section can be embedded into any
local search method, including TS, SA, and even GAs [68, 69]. Here a simple probabilistic
version of the TS described in Section12.2is used as a test case. The programs are coded inC.
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The graph on the left side of Figure12.2shows the time evolution of the makespan averaged
over 30 runs of the TS with and without the pruning pattern list. This uses the ta041 problem,
which is one of Taillard’s benchmarks for sizen = 50,m = 10 [21]. The parameters used are
c = 3.0, tl = 7 andpl = 10. One run takes about 10 minutes on an HP 700 workstation. The
best and worst makespans obtained among 30 runs are 3000 and 3016 respectively when TS with
the pruning pattern list is used, and 3010 and 3025 when TS without the pruning pattern list is
used. It can be seen that the pruning pattern list approach improves both the solution quality and
the speed. Without the pruning pattern list 12 runs out of 30 were trapped at a local minimum
of makespan= 3025, which Nowicki and Smutnicki reported as the new reference makespan
for this problem. This suggests that their TS method can also be improved by incorporating the
pruning pattern list approach.

The graph on the right side of Figure12.2shows the results of the ta051 problem (50 jobs
and 20 machines) based on 10 replications rather than 30. It also includes the computationally
equivalent MSXF-GA results reported in [69] for comparison. The pruning pattern list approach
is also applied to other Taillard’s benchmarks of the same sizes, and the similar behaviors were
observed for most of the cases. The results are summarized in Figure12.3. The parameters used
are the same as in the ta041 and ta051 cases and the results are averaged over 10 replications.
The results of TS with the pruning pattern list generally outperform the results of TS without the
pruning pattern list , except for the ta057 problem, where the difference is not so significant.

12.6 Concluding Remarks

The pruning pattern list approach to the makespan-minimizing permutation flowshop scheduling
problem is proposed and embedded into a Tabu Search method. The preliminary experimen-
tal results demonstrate the effectiveness of the proposed approach. Future research will aim to
implement an way to efficiently scan the pruning pattern list to find a match quickly, because
currently the scanning time becomes not negligible as the problem size increases. The pro-
posed approach can also be embedded into GAs. However, the implementation details including
whether each individual should have its own pruning pattern list and should occasionally ex-
change it with others, or a single list should be shared by all the members in the population are
yet to be investigated. It is also expected to apply the pruning pattern list approach to the jobshop
scheduling problem.
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Figure 12.2:The time evolutions of makespans for the ta041 (50 jobs and 10 machines) problem
averaged over 30 tabu search runs with and without the pruning pattern list (left). The time
evolutions for the ta051 (50 jobs and 20 machines) problem averaged over 10 tabu search runs
and the computationally equivalent MSXF-GA runs for comparison (right).
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Figure 12.3:The time evolutions for the other nine Taillard problems of 50 jobs and 20 machines
(ta052 – ta060) averaged over 10 tabu search runs with (labeled TS+PL) and without (labeled
TS) the pruning pattern list.
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Conclusions

In this thesis, we have investigated various approaches to solve scheduling problems by meta-
heuristics, including Genetic Algorithms, Simulated Annealing and Tabu Search, and demon-
strated the effectiveness of the proposed methods. We have basically started from a simple
problem-independent approach to more tailored problem-specific ones that involve more domain
specific knowledge of the scheduling problem.

The key features of the proposed methods include the effective use of the concept of active
schedule and the GT algorithm as well as the concept of critical path and blocks. The use of
these problem-specific knowledge greatly improves the performance of the proposed methods.
This is because the use of problem-specific knowledge enables to reduce the size of the search
space.

It appears to be always desirable to keep the size of the search space as small as possible.
For example, it is more efficient to search in the sub space of active schedules rather than the
space of all the semi-active schedules. The use of the critical block neighborhood reduces the
size of the neighorhood. TS also reduces the neighborhood size by temporally eliminating some
of the members in the neighborhood as “tabu”. Likewise, the pruning pattern list introduced in
Chapter12 also provides a mechanism to reduce the neighborhood size by eliminating already
searched and no longer interesting solutions from the neighborhood. In GAs, a redundant encod-
ing of phenotype to genotype should be avoided because it increases the size of the search space
in which more than one genotypes correspond to the same phenotype. A time-consuming gene
decoding process as well as allowing fatal genotypes to be generated and later to be repaired
must be avoided.

That said, a simple approach presented in Chapter4 cannot be dismissed. Because it is
implemented easily and sometimes it is more robust, especially in the real-world situation the
objective function becomes more complicated and incorporating its domain specific knowledge
into the search structure may become more difficult.

Another key feature is the hybrid of GAs and other local search methods such as SA and
TS. It appears more promising to consider such hybrid rather than adhering to a single approach.
In fact, GAs are known to be unsuited for fine-tuning structures which are very close to optimal
solutions as opposed to SA and TS. On the other hand, SA and TS are inherently serial algorithms
and not straight-forward to be parallelized. Thus, the MSXF method proposed in Chapter9 as a
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new approach for Genetic Local Search would be promising. In this framework, each individual,
or search agent in the population, performs local search using SA and/or TS as a main search
engine. Whereas crossover operates occasionally on the solutions of two selected individuals
in the population and produces a new solution, which is then used as an initial solution for the
subsequent local search. Here, the role of the crossover is to exchange informations between
the search agents which otherwise perform independent local search in parallel, rather than to
perform search itself as in the conventional GAs. One promising future direction might be to
consider multiple parents in the MSXF.

Recently, the factory automation has been so advanced that each machine has self diagnos-
tic sensors as well as a network interface and is monitored online even remotely. The flexibility
and the accuracy of controlling machines for reconfiguration and rescheduling are also improved.
Therefore, the need for generating an efficient and fine-tuned schedule in reasonable time is more
envisaged. However unfortunately, the jobshop and flowshop scheduling problems investigated
in this thesis might be too simplistic compared to the real-world problems that have more com-
plicated constraints, more flexible objective functions and more dynamic features. It is highly
expected to extend these approaches to incorporate more realistic settings. The author believes
that the ideas presented in this thesis, at least some of them, will be helpful for future research.
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