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Abstract

In a previous paper (Reeves, 1995), a simple genetic algorithm (GA) was developed for

finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop

sequencing problem (PFSP). The performance of the algorithm was comparable to that of a

naive neighbourhood search technique and a proven Simulated Annealing algorithm. However,

recent results (Nowicki & Smutnicki, 1996) have demonstrated the superiority of a tabu search

method in solving the PFSP.

In this paper, we re-consider the implementation of a GA for this problem, and show that

by taking into account the features of the landscape generated by the operators used, we are

able to improve its performance significantly.

1 Introduction

Finding optimal solutions to large combinatorial problems (COPs) is not in general a realistic

endeavour, as has been recognized ever since the implications of the concept of computational

complexity (Garey & Johnson, 1979) have been realized. One effect of this recognition has been

to focus attention on the use of heuristic techniques that generate high-quality solutions in a

reasonable amount of computer time. The permutation flowshop sequencing problem (PFSP) is a
∗This work was undertaken when the second author was a visiting researcher in the School of Mathematical and
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case in point: it is known to be NP-hard (Rinnooy Kan, 1976), and consequently many attempts

have been made to use heuristic methods such as constructive methods and neighbourhood search

(NS) (Nawaz et al., 1983), modern NS-based ‘metaheuristics’ such as simulated annealing (SA)

(Ogbu & Smith, 1990; Ogbu & Smith, 1991; Osman & Potts, 1989) and tabu search (TS) (Widmer

& Hertz, 1989; Taillard, 1990; Reeves, 1993), and genetic algorithms (Reeves, 1995).

The performance of these heuristics has been measured on a set of 120 benchmark instances

of the PFSP proposed in (Taillard, 1993). The GA reported in (Reeves, 1995) produced results

comparable with or better than those of (Osman & Potts, 1989) and only marginally inferior to

those of (Reeves, 1993). More recently Nowicki and Smutnicki have reported significantly better

results using a more sophisticated implementation of TS (Nowicki & Smutnicki, 1996). For some of

the benchmarks they succeeded in finding a global optimum, while in others they were able to find

such a good upper bound that Vaessens was later able to find a global optimum fairly easily using

branch-and-bound or other exact methods (Vaessens, 1995). The question raised by their work is

whether GA performance could be improved by a similar margin.

1.1 The flowshop problem

The PFSP is well-known. However, for completeness, we first state the problem as follows: if we

have processing times p(i, j) for job i on machine j, and a job permutation {π1, π2, · · · , πn}, where

there are n jobs and m machines, then we calculate the completion times C(πi, j) as follows:

C(π1, 1) = p(π1, 1)

C(πi, 1) = C(πi−1, 1) + p(πi, 1) for i = 2, . . . , n

C(π1, j) = C(π1, j − 1) + p(π1, j) for j = 2, . . . ,m

C(πi, j) = max{C(πi−1, j), C(πi, j − 1)} + p(πi, j)

for i = 2, . . . , n; j = 2, . . . ,m

Finally, we define the makespan as

Cmax(π) = C(πn,m).

The PFSP is then to find a permutation π∗ in the set of all permutations Π such that

Cmax(π∗) ≤ Cmax(π) ∀π ∈ Π.

A more general flowshop sequencing problem (FSP) may be defined by allowing the permutation

of jobs to be diferent on each machine. However, what work has been carried out on the more

general FSP has tended to show that any improvement in solution quality over the PFSP is rather

small, while increasing the complexity of the problem substantially—the size of the solution space

increases from from n! to (n!)m.
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While it is the problem with the makespan objective that has received most attention, other

objectives can also be defined. For example, we could seek to minimize the mean flow-time (the

time a job spends in process), or the mean tardiness (assuming some deadline for each job). Other

complexities may also enter real problems—jobs may have non-identical release dates, there may be

sequence-dependent setup times, there may be limited buffer storage between machines and so on.

However, there is no methodological reason to suppose that any results obtained by investigating the

simplest problem, the PFSP, would be irrelevant to the more complex variations. Finally, it must

be recognized that real sequencing problems may also incorporate stochastic or dynamic elements.

Some earlier work reported in (Reeves, 1992) showed that good results could be obtained for the

stochastic PFSP by using a GA developed for the deterministic version, while in (Cartwright &

Tuson, 1994) a deterministic GA was embedded in a dynamic problem with some success. However,

when Reeves and Karatza studied a dynamic PFSP by embedding the deterministic GA described

in (Reeves, 1995), they found that simple priority rules were likely to be just as effective for the case

of minimizing makespan (Reeves & Karatza, 1993). However, this still leaves open the question of

whether a better GA or a different objective would prove to give a different conclusion.

2 Initial Experiments

One factor that might help explain the superiority of the results of (Nowicki & Smutnicki, 1996)

in solving the PFSP benchmarks is a significant increase in capability of computer hardware.

Typically, in the period between the two sets of experiments, the number of function evaluations

that could be accomplished in the same amount of CPU time had increased by at least one order

of magnitude.

An obvious first step was therefore to run the GA of (Reeves, 1995) for 10 times longer than

was possible in the initial set of experiments. For example, instances with 20 jobs were now allowed

37000 function evaluations instead of 3700. As expected, allowing a longer computation time almost

always increased the quality of the solution generated, but not by the margins obtained in (Nowicki

& Smutnicki, 1996). Even when the computation time was increased by a factor of 100, the GA

failed to generate global optima except in one case (a 20-job, 5-machine problem).

This suggests that a fundamental re-appraisal of the way the GA operates may be necessary.

3 The GA’s modus operandi

One conventional explanation for a GA’s modus operandi would be couched in terms of schema-

processing theory. Genetic crossover is presumed to have the ability to identify and recombine

useful schemata or building blocks—that is, complete solutions together contain information about

the utility or otherwise of particular parts of the solution that they have in common. For example,

two job sequences (1,2,3,4,5,6,7) and (1,2,3,6,4,7,5) may convey something relating to the effect

3



of having jobs (1,2,3) in positions 1, 2 and 3 in the processing sequence. The GA is assumed to

operate by evaluating the average effect of such similarity subsequences or schemata.

However, the smallest problems being solved here consisted of 20 jobs, so for an example such

as that above, there would be 17! ≈ 3.6 × 1014 different sequences starting (1,2,3,...). A moment’s

thought will show that even if we examined 370,000 different strings starting (1,2,3,...)—which of

course we did not—we would only have examined a minute fraction of all possible such strings. That

crossover exploits schemata is hard to deny, but it is clear that we cannot expect any information

relating to schema averages to be of much validity. Nevertheless, the general idea of a schema as

restricting the search to a subspace is useful, and if we focus on this rather than on schema averages,

we can develop crossover in a more flexible and general way that can exploit the structure of the

landscape over which the GA is searching.

3.1 The GA Landscape

Interest in the concept of a landscape in the context of GAs has recently increased substantially,

since it has been realized that a landscape is induced by the type of operator used (Culberson, 1995;

Jones, 1995; Höhn & Reeves, 1996b; Höhn & Reeves, 1996a). Most of these analyses have been in

terms of relatively simple problems in a binary search space. For problems in a permutation space,

little theoretical analysis has been carried out. (Boese et al., 1994), for the the travelling salesman

problem, and (Reeves, 1998) for the PFSP, have considered empirically the landscapes induced by

typical neighbourhood search operators. One such operator is the exchange operator EX , which

transforms a permutation π ∈ Π as follows:

EX (i, j) : Π → Π




πi 7→ πj

πj 7→ πi

πk 7→ πk if k 6= i, j

Another is the shift operator SH (where we assume i < j)

SH(i, j) : Π → Π




πk 7→ πk+1 if i ≤ k < j

πj 7→ πi

πk 7→ πk otherwise

In (Reeves, 1998) it is shown that, for Taillard’s benchmarks, the landscape induced by the EX
and SH operators has a ‘big valley’ structure, where the local optima occur relatively close to each

other, and to a global optimum. This offers some encouragement to the development of algorithms

that could exploit this structure. (At this point we should admit that there is no well-defined

mathematical description of what it means for a landscape to possess a ‘big valley’. Rather the

idea is a more informal one, based on the observation that in many combinatorial optimization

problems local optima are not distributed uniformly throughout the landscape, but that they tend

to occur relatively close to each other and to the global optimum or optima. In the context of
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landscapes defined on binary strings, Kauffman has pioneered such experiments (Kauffman, 1993).

Because he was dealing with fitness maximization, he used the term ‘central massif’, but it is clear

that it is the same phenomenon.)

It is by no means clear that the simple GA does exploit this structure efficiently. In (Reeves,

1995) two ‘crossover’ operators were used, one a version of Davis’s order operator (OX) (Davis,

1985), the other the PMX operator of (Goldberg & Lingle, 1985). When these operators are

examined, it is evident that their effects could also be produced by multiple exchanges (in the case

of PMX), or by shifts and exchanges (in the case of OX). Thus, although the GA does not induce

a single landscape, but rather an ensemble of different landscapes, it is reasonable to suppose that

they should all possess the big valley structure.

However, it is not sufficient to have a landscape with ‘nice’ properties. It is necessary also to

have a means of exploring the landscape that makes use of these properties. The moves made on

the landscape under the influence of (for example) PMX are essentially random, in contrast to NS-

based methods that look for improving (or least non-improving) moves. A sort of directionality is

given to the search by means of selection, but this is much weaker than the directionality provided

by a NS-based approach.

Furthermore, as the GA population converges and individual members become increasingly

alike, the chance of choosing ‘crossover sections’ where parents differ falls. The effect is that the

offspring generated by the genetic operator become increasingly unlikely to differ from their parents.

Mutation can also be applied, but in (Reeves, 1995) simple mutation was found to be insufficient.

A method that worked was to use an adaptive mutation rate. Whenever the population became

too similar the mutation rate was raised to a high value, but allowed to fall gradually to a minimum

level at which it stayed until population convergence was again recognized.

Viewed from a NS perspective, this is in fact not too dissimilar from some of the perturbation

methods that are currently enjoying some success. (For example, the ‘iterated Lin-Kernighan’

(ILK) method introduced by (Johnson, 1990) for the TSP is widely regarded as one of the best

heuristics currently available for solving this famous problem.) Again, such methods tend to work

well when a problem has a big valley structure.

However, there are other possibilities besides a random perturbation of the population. (Glover

& Laguna, 1993) mention an idea called ‘path relinking’, which suggests an alternative means for

exploring the landscape.

4 Path Relinking

Suppose we have 2 locally-optimal solutions to a COP such as the PFSP. If the operators we are

using induce a big valley structure, then it is a reasonable hypothesis that a local search that traces

out a path from one solution to another one will find another, because local optima tend to be

found near other local optima. Even if no better solution is found on such a path, at least we
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have gained some knowledge about the relative size of the basins of attraction of these local optima

along one dimension.

Of course, there are many paths that could be taken, and many strategies that could be adopted

to trace them out. One possibility is that used by (Rana & Whitley, 1997) in investigating the idea

of ‘optima linking’ in the context of a binary search space. Here a path was traced by finding at

each step the best move among all those that would take the current point one step nearer (in the

sense of Hamming distance) to the target solution.

In the context of a permutation space, it would seem logical to measure distances on the

landscape with respect to the operator that induces the landscape, but this is not always an easy

task. It is possible for the EX operator to compute the minimum number of exchanges needed

to transform one permutation π into another π′. But it is not so easy for SH, and in practice it

would be more convenient to have an operator-independent measure of distance. In (Reeves, 1998)

4 measures were investigated, and it was concluded that two of them were suitable:

• The precedence-based measure counts the number of times job j is preceded by job i in

both π and π′; to obtain a ‘distance’, this quantity is subtracted from n(n − 1)/2.

• The position-based measure compares the actual positions in the sequence of job j in

each of π and π′. For a sequence π its inverse permutation σ gives the position of job πi (i.e,

σπi = i). The position-based measure is then just

n∑
j=1

|σj − σ′
j|.

These measures are closely related to each other, and in what follows we use only the precedence

measure. It should also be mentioned, as a further justification for using these measures, that recent

empirical investigations (Yamada & Reeves, 1998) have suggested that in fact the correlation of

solution quality with operator-based distance measures is actually less than with these operator-

independent measures.

5 Implementation

If we are to embed the idea of path relinking in a GA, we need to consider several questions:

• What criteria do we use for choosing 2 solutions to link (i.e. ‘parents’)?

• What neighbourhood should we use for the search?

• How should points on the path be selected, and what should be done subsequently?

• What should be done if the parents are so close that there is no path linking them?
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There are clearly many ways in which these questions could be answered. Here we aimed as far

as possible to use ideas used in earlier work, partly because of the ready availability of software,

but also because by preserving the basic structure of the GA we can be more confident that any

improvements are due to the changes made.

5.1 Selection and deletion strategies

Here we used the same strategy as in (Reeves, 1995): a steady-state GA was employed in which

parents were selected probabilistically, the probability of selection being based on a linear ranking

of their makespan values. A newly generated solution is inserted into the population only if its

makespan is better than the worst in the current population (which is deleted). Furthermore, in

order to avoid premature convergence, it is not inserted if the population already contains an indi-

vidual with the same makespan. As it is possible for different solutions to have the same makespan,

it could be argued that this is too restrictive, but it has the merits of simplicity and speed—to

check whether two solutions are completely identical has a greater computational overhead. It

might further be objected that this approach runs the risk of neglecting to explore potentially new

regions of the search space. However, if the ‘big valley’ conjecture is valid, such points are probably

relatively close on the landscape, and so are likely to be explored at some point in any case.

5.2 Neighbourhood and path selection

In the research described here we took advantage of some earlier work relating to the job shop

problem. Although the term ‘path relinking’ was not used, the basic idea is clearly present in

(Yamada & Nakano, 1996). This in its turn had built on an earlier suggestion in (Reeves, 1994)

for conducting the search in the space of intermediate vectors—those lying ‘between’ two parents.

In (Yamada & Nakano, 1996) a ‘crossover-like’ operator is defined—MSXF (multi-step crossover

fusion). As has been observed elsewhere—for example, in (Höhn & Reeves, 1996a)—traditional

genetic crossover actually has two functions. Firstly it focuses attention on a region between the

parents in the search space (F1); secondly, it picks up possibly good solutions from that region

(F2). Unlike traditional crossover operators, MSXF is more search oriented: it is designed as an

extension of a local search algorithm, but it has the functions F1 and F2, and thus may still be

called ‘crossover’.

However, MSXF may equally well be viewed from the perspective of path relinking, and we

choose to emphasize this aspect of it here. MSXF carries out a short term local search starting

from one of the parent solutions, where the search is directed towards the the other parent. It

clearly, therefore, needs a neighbourhood, and a strategy for deciding whether or not to move to a

candidate neighbour. The method adopted in (Yamada & Nakano, 1996), and also used here was

as shown in Figure 1, which describes the approach in a generic way. For the PFSP, V (·) of course

corresponds to Cmax(·). The termination condition can be given by, for example, a fixed number
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of iterations L in the outer loop. The best solution q is used for the next generation.

The neighbourhood used was a variant of that generated by the SH operator. Many authors—

for example, (Nowicki & Smutnicki, 1996; Osman & Potts, 1989; Reeves, 1993)—have reported that

SH seems on average to be better than EX . Further, it is possible to speed up the computation

for SH by using Mohr’s algorithm. This method is described in (Taillard, 1990) as a modification

to the NEH algorithm (Nawaz et al., 1983), and adapted for NS in (Reeves, 1993). Nowicki and

Smutnicki (Nowicki & Smutnicki, 1996) have improved the effectiveness of SH still further by

making use of the notion of a critical path.

The processing of a job on a machine is called an operation. A critical path is a sequence

of operations starting from the first operation on the first machine M1 and ending with the last

operation on the last machine Mm. The starting time of each operation on the path except for the

first one is equal to the completion time of its preceding operation—that is, there is no idle time

anywhere on the path. Thus the length of the critical path is the sum of the processing times of

all the operations on the path and is equal to Cmax.

The operations on the critical path can be partitioned into subsequences called critical blocks

according to their associated machines. A critical block consists of maximal consecutive operations

on the same machine, or to put it more simply, a subsequence of associated jobs. The size of

the SH based neighbourhood can be reduced by focusing on the blocks: a critical-block based

neighbourhood is a set of moves that shift a job in a critical block to some position in one of the

other blocks.

To reduce the size of the neighbourhood even further, a representative neighbourhood is pro-

posed in (Nowicki & Smutnicki, 1996). A new neighbourhood is generated from the original critical-

block based neighbourhood by clustering its members and picking up the best move (representative)

from each cluster. A representative neighbourhood is the set of all representative moves. In this

paper, a simplified form of their neighbourhood is adopted.

For each job j in a critical block, let Sa
j be a set of moves that shift the job j to some position

in the next block; similarly Sb
j shifts j to the previous block. The schedules obtained from each

move in Sa
j are evaluated, the best being denoted by sa

j . Similarly sb
j is obtained from Sb

j . Then the

representative neighbourhood is defined as a set of all schedules obtained by representative moves

{sa
j , s

b
j} for all jobs j in all critical blocks

Figure 2 shows an example of the critical path and blocks, by means of a Gantt-chart repre-

sentation of a partial solution in which the critical path is marked by a thick line. In Figure 2(a),

jobs J3, . . . , J6 (on machine M4) form one critical block and J6, . . . , J9 another (on machine M5).

In Figure 2(b), 4 possible moves are shown for shifting J8 to some position in the preceding block,

these moves forming the set Sb
J8

.

Naturally, the use of this neighbourhood and search strategy raises the question as to whether

the induced landscape still exhibits the big valley structure. Some experiments reported in (Yamada
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• Let p1, p2 be the relevant solutions. Set x = q = p1.

do

• For each neighbour yi∈N(x), calculate d(yi, p2).

• Sort yi∈N(x) in ascending order of d(yi, p2).

do

1. Select yi from N(x) with a probability inversely proportional to the index

i.

2. Calculate V (yi) if V (yi) is unknown.

3. Accept yi with probability 1 if V (yi)≤V (x), and with probability Pc(yi)

otherwise.

4. Change the index of yi from i to n, and the indices of yk (k ∈ {i+1, . . . , n})
from k to k − 1.

until yi is accepted.

• Set x = yi.

• If V (x) < V (q) then set q = x.

until some termination condition is satisfied.

• q is used for the next generation.

Figure 1: Path relinking by MSXF. The initial point on the path is p1 and p2 is the target.

The objective function for solution x is denoted by V (x); the neighbourhood of solution x is

denoted by N(x); neighbours that are closer to p2 are probabilistically preferred; better neighbours

(V (yi) < V (x)) are always accepted, otherwise yi may be accepted with probability Pc(yi) =

exp (−∆V/c),where ∆V = V (yi) − V (x). This last prescription is similar to the approach of

simulated annealing, corresponding to annealing at a constant temperature T = c.
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Figure 2: An example of a critical path and blocks.
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& Reeves, 1997) seem to answer this question in the affirmative: the quality of the local optima

generated by this approach was significantly correlated with their distance from a global optimum

(where this was known), or with the average distance from other local optima (where a global

optimum was not known). In each case, distance was computed by the precedence measure.

As an example, Figure 3 shows a scatter plot of local optima for problems ta011 and ta021,

being respectively the first of Taillard’s 20 × 10 and 20 × 20 groups of problems (Taillard, 1993).

These results were generated by running a stochastic local search as described above with L = 5000

and an acceptance probability using c = 5.

The x-axis in Figure 3 represents (a) the average precedence-based distance from other local

optima (MEAND), and (b) the precedence-based distance from one of the nearer global optima

(BESTD). The y-axis represents their objective function values relative to the global optimum.

These plots clearly show that there are good correlations between the distances and objective

function values. The calculated correlation coefficients for each plot are: ta011(a): 0.74, ta011(b):

0.50, ta021(a): 0.62 and ta021(b): 0.44. These values are statistically significant at the 0.1% level,

on the basis of 1000 replications in a randomization test (Reeves, 1998). These high correlations

suggest that the local optima are radially distributed in the problem space relative to a global

optimum at the centre; the more distant the local optima are from the centre, the worse are their

objective function values. Hence, by tracing local optima step by step, moving from one optimum

to a nearby slightly better one, without being trapped, one can hope eventually to reach a near

global optimum.

5.3 Mutation

Mutation is nearly always regarded as an integral part of a GA. In this case, we made use of mutation

only when parents were too close to each other. In such circumstances, MSXF is not applicable as

the number of possible neighbours is severely curtailed—in the limit, where the distance is just one

move, there is of course no path at all. In such cases (defined to be when the distance was less than

a value dmin), a mutation operator called Multi-Step Mutation Fusion (MSMF) is applied with the

aim of diversifying the search. MSMF can be defined in the same manner as MSXF except that the

neighbours of x are sorted in descending order of d(yi, p2) in Figure 1, and the most distant solution

is stored and used in the next generation instead of q, if q does not improve the parent solutions. As

mentioned earlier, (Reeves, 1995) used a purely random scheme to perturb the current population.

Here, by contrast, we try to use the structure of the landscape to guide the direction of mutation.

From a path relinking viewpoint, we are attempting to extrapolate the path between the solutions,

rather than (as normal) to interpolate it.
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Figure 3: 1841 distinct local optima obtained from 2500 short term local search for the ta011

(20 × 10) problem and 2313 distinct local optima for the ta021 (20 × 20) problem are plotted in

terms of (a) average distance from other local optima and (b) distance from global optima (x-axis),

against their relative objective function values (y-axis).
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Parent1 Parent2

Offspring

MSXF

Figure 4: Exploration and exploitation: A search is started from one of the parents and while no

other good solutions are found, the search traces a path towards the other parent. In the middle of

the search, good solutions may be found somewhere between the parents. A local search can then

exploit this new starting point by climbing to the top of a hill (or the bottom of a valley, if it is a

minimization problem)—a new local optimum.

5.4 Local search

In the initial stages, even the best members of the poulation are unlikely to be local optima. In

fact, it is likely that they are in quite the wrong part of the landscape for the big valley hypothesis

to hold. It is thus important to incorporate a local search into the algorithm. This enables the

fast location of the big valley region in the early stages, but it may also be beneficial later. When

points on the path have been selected and inserted into the population, they are probably not local

optima either. Rather, they provide good initial points for a local search to exploit.

It was decided to make the choice of local search a probabilistic one—with probability PX the

algorithm would use path relinking (either interpolatory or extrapolatory), otherwise a stochastic

local search was used on the first parent selected. This used a constant temperature Pc for a fixed

number of iterations L. In this way a balance can be struck between the exploratory effect of path

relinking, and the exploitation of new data by local search. Figure 4 gives a pictorial representation

of the idea.

6 Experimental Results

The above ideas were incorporated into a C program and implemented on a DEC Alpha 600 5/226

computer. A template summarizing the final version of the algorithm is given in Figure 5.

The parameter values used were as follows (no attempt was made to investigate whether these
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• Initialize population: randomly generate a set of permutation schedules. Sort the pop-

ulation members in descending order of their makespan values.

do

1. Select two schedules p1, p2 from the population with a probability inversely

proportional to their ranks.

2. Do Step (a) with probability PX , otherwise do Step (b).

(a) If the precedence-based distance between p1, p2 is less than dmin, apply

MSMF to p1 and generate q. Otherwise, apply MSXF to p1, p2 using

the representative neighbourhood and the precedence-based distance and

generate a new schedule q.

(b) Apply local search to p1 with acceptance probability Pc and the represen-

tative neighbourhood. q is the best solution found during L iterations.

3. If q’s makespan is less than the worst in the population, and no member of the

current population has the same makespan as q, replace the worst individual

with q.

until some termination condition is satisfied.

• Output the best schedule in the population.

Figure 5: The GA with embedded path relinking for the PFSP
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were in any sense ‘optimal’). The population size = 15, constant temperature c = 3, number of

iterations for each path relinking or local search phase L = 1000, and dmin = n/2. The probability

PX = 0.5.

Global optima are now known for all Taillard’s smaller PFSP benchmarks (instances ranging

from 20× 5 to 50× 10 in size). The algorithm was run on these, and in every case it quite quickly

found a solution within about 1% of the global optimum.

Of more interest are the larger problem instances, where global optima are still unknown. Ta-

ble 1 summarizes the performance statistics for a subset of Taillard’s larger benchmarks, together

with the results found by Nowicki and Smutnicki using their TS implementation (Nowicki & Smut-

nicki, 1996) and the lower and upper bounds, taken from the OR-library (Beasley, 1990). (These

upper bounds are the currently best-known makespans, most of them found by a branch and bound

technique with computational time unknown).

In all, 30 runs were completed for each problem under the same conditions but with different

random number seeds. Each run was terminated after 700 iterations, which took about 12, 21 and

47 minutes of CPU time respectively for each 50 × 20, 100 × 20 and 200 × 20 problem.

It can be seen that the results for 50 × 20 problems are impressive: the solution quality of our

best results improves those found in (Nowicki & Smutnicki, 1996) for most of the problems, and

some results (marked in bold letters) are even better than the existing best results reported in the

OR-library. The results for larger problems are not as good as those for the 50× 20 problems, but

still good enough to support our hypothesis that implementing crossover as path relinking offers

an effective way to improve GA performance significantly. It is of interest that the best solutions

obtained were (with one exception) within 2% of the lower bound, and often significantly closer;

even the mean values were seldom much further distant; finally, the standard deviations were all

small, so that the possibility of generating a really poor solution is remote.

The degradation that we see as the problem size increases is probably due to the increasing

complexity of the neighbourhood calculation. In fact, for problems where the ratio n/m > 3, Now-

icki and Smutnicki abandoned their representative neighbourhood and used a simple one instead:

just moving a job to the beginning or the end of its critical block. They also implemented an

efficient way of evaluating all the members in the neighbourhood in a specific order. This method

is useful for the tabu search, but not directly applicable to our approach. Their paper (Nowicki &

Smutnicki, 1996) provides more details.

Some further experiments were carried out on the 50 × 20 set of instances, where CPU time

was increased by a factor of about 4. The results of these experiments (based on 10 replications,

rather than 30) are shown in Table 2.

It appears from this table that longer runs are able to improve the quality of solution even

more—in 6 cases, further new best solutions have been obtained. (Altogether, 7 new best solutions

have been found, and in the other cases the difference is either 0 or 1 unit.) Perhaps of almost
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50 × 20 best avg std nowi lb – ub

1 3861 3880 9.3 3875 3771–3875

2 3709 3716 2.9 3715 3661–3715

3 3651 3668 6.2 3668 3591–3668

4 3726 3744 6.1 3752 3631–3752

5 3614 3636 8.9 3635 3551–3635

6 3690 3701 6.7 3698 3667–3687

7 3711 3723 5.6 3716 3672–3706

8 3699 3721 7.7 3709 3627–3700

9 3760 3769 5.2 3765 3645–3755

10 3767 3772 4.2 3777 3696–3767

100 × 20 best avg std nowi lb – ub

1 6242 6259 9.6 6286 6106–6228

2 6217 6234 8.9 6241 6183–6210

3 6299 6312 7.8 6329 6252–6271

4 6288 6303 2.7 6306 6254–6269

5 6329 6354 11.3 6377 6262–6319

6 6380 6417 12.7 6437 6302–6403

7 6302 6319 11.0 6346 6184–6292

8 6433 6466 17.3 6481 6315–6423

9 6297 6323 11.4 6358 6204–6275

0 6448 6471 10.6 6465 6404–6434

200 × 20 best avg std nowi lb – ub

1 11272 11316 20.8 11294 11152–11195

2 11299 11346 21.4 11420 11143–11223

3 11410 11458 25.2 11446 11281–11337

4 11347 11400 29.9 11347 11275–11299

5 11290 11320 16.6 11311 11259–11260

6 11250 11288 23.4 11282 11176–11189

7 11438 11455 9.3 11456 11337–11386

8 11395 11426 16.4 11415 11301–11334

9 11263 11306 21.5 11343 11145–11192

10 11335 11409 31.3 11422 11284–11313

Table 1: Results of the Taillard benchmark problems: best, avg, std denote the best, average and

standard deviation of our 30 makespan values; nowi denotes the results of Nowicki and Smutnicki;

lb, ub are the theoretical lower bounds and currently best known makespan values taken from the

OR-library; bold figures are those which are better than the current ub.
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Table 2: Results of longer runs (approx. 45 mins.) for the 50 × 20 instances

No. best avg. nowi lb – ub

1 3855 3863 3875 3771–3875

2 3708 3713 3715 3661–3715

3 3647 3657 3668 3591–3668

4 3731 3735 3752 3631–3752

5 3614 3621 3635 3551–3635

6 3686 3692 3698 3667–3687

7 3707 3713 3716 3672–3706

8 3701 3712 3709 3627–3700

9 3743 3761 3765 3645–3755

10 3767 3768 3777 3696–3767

equal significance is the very good average performance, which in many cases is within a few units

of the best. This suggests that the result of just a single long run is likely to be very close to the

global optimum.

7 Conclusions

The concept of path relinking has been introduced as a means of enhancing the performance of

a GA for the permutation flowshop scheduling problem. Empirical analysis using 20 × 10 and

20 × 20 Taillard benchmark problems has confirmed the existence of a ‘big valley’ structure which

motivates the use of such techniques.

A GA for the PFSP has therefore been implemented using the representative neighbourhood

and path relinking, and applied to more challenging benchmark problems. Experimental results

demonstrate the effectiveness of the proposed method, and several new upper bound values have

been found for Taillard’s benchmarks.

Further investigation will be carried out to examine whether it is possible to reduce the com-

putational time further without losing the quality of solution found in this work. It is also planned

to investigate different types of flowshop problem, such as the minimization of the sum of job com-

pletion times, and those with more complex requirements such as sequence dependent setup times,

and to explore alternative ways of implementing path relinking.

It should also be pointed out that other combinatorial problems such as graph bisection and

the TSP have also been found to possess a ‘big valley’ structure. If this is a feature of many COPs,

we would expect a genetic algorithm with embedded path relinking to prove a fruitful approach to

its solution, so that the findings of this paper might well be of more general relevance.
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