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Chapter 7

Job-shop scheduling

Takeshi Yamada and Ryohei Nakano

7.1 Introduction

Scheduling is the allocation of shared resources over time to competing activities. It
has been the subject of a significant amount of literature in the operations research
field. Emphasis has been on investigatingmachine scheduling problemswherejobs
represent activities andmachinesrepresent resources; each machine can process at
most one job at a time.

Table 7.1: A3 × 3 problem
job Operations routing (processing time)
1 1 (3) 2 (3) 3 (3)
2 1 (2) 3 (3) 2 (4)
3 2 (3) 1 (2) 3 (1)

Then×m minimum-makespangeneral job-shop scheduling problem, hereafter
referred to as the JSSP, can be described by a set ofn jobs{Ji}1≤j≤n which is to
be processed on a set ofm machines{Mr}1≤r≤m. Each job has a technological
sequence of machines to be processed. The processing of jobJj on machineMr

is called theoperationOjr. OperationOjr requires the exclusive use ofMr for an
uninterrupted durationpjr, its processing time. Ascheduleis a set of completion
times for each operation{cjr}1≤j≤n,1≤r≤m that satisfies those constraints. The time
required to complete all the jobs is called themakespanL. The objective when
solving or optimizing this general problem is to determine the schedule which min-
imizesL. An example of a3 × 3 JSSP is given in Table 7.1. The data includes the
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CHAPTER 7. JOB-SHOP SCHEDULING 2

routing of each job through each machine and the processing time for each operation
(in parentheses).

The Gantt-Chart is a convenient way of visually representing a solution of the
JSSP. An example of a solution for the3 × 3 problem in Table 7.1 is given in
Figure 7.1.
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Figure 7.1: A Gantt-Chart representation of a solution for a3 × 3 problem

The JSSP is not onlyNP-hard , but it is one of the worst members in the class.
An indication of this is given by the fact that one10 × 10 problem formulated by
Muth and Thompson [18] remained unsolved for over 20 years.

Besides exhaustive search algorithms based on branch and bound methods, sev-
eral approximation algorithms have been developed. The most popular ones in
practice are based on priority rules and active schedule generation [21]. A more
sophisticated method calledshifting bottleneck(SB) has been shown to be very suc-
cessful [1]. Additionally, stochastic approaches such as simulated annealing (SA),
tabu search [11, 33] and genetic algorithms (GAs) have been recently applied with
good success.

This chapter reviews a variety of GA applications to the JSSP. We begin our dis-
cussion by formulating the JSSP by a disjunctive graph. We then look at domain in-
dependent binary and permutation representations, and then an active schedule rep-
resentation with GT crossover and the genetic enumeration method. Section 7.7 dis-
cusses a method to integrate local optimization directly into GAs. Section 7.8 dis-
cusses performance comparison using the well-known Muth and Thompson bench-
mark and the more difficult “ten tough” problems.

7.2 Disjunctive graph

The JSSP can be formally described by a disjunctive graphG = (V, C ∪D), where

• V is a set of nodes representing operations of the jobs together with two
special nodes, asource(0) and asink?, representing the beginning and end
of the schedule, respectively.
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• C is a set of conjunctive arcs representing technological sequences of the
operations.

• D is a set of disjunctive arcs representing pairs of operations that must be
performed on the same machines.

The processing time for each operation is the weighted value attached to the cor-
responding nodes. Figure 7.2 shows this in a graph representation for the problem
given in Table 7.1.
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Figure 7.2: A disjunctive graph of a3 × 3 problem

Job-shop scheduling can also be viewed as defining the ordering between all
operations that must be processed on the same machine, i.e. to fix precedences
between these operations. In the disjunctive graph model, this is done by turning
all undirected (disjunctive) arcs into directed ones. Aselectionis a set of directed
arcs selected from disjunctive arcs. By definition, a selection iscompleteif all the
disjunctions are selected. It isconsistentif the resulting directed graph is acyclic.

A schedule uniquely obtained from a consistent complete selection by sequenc-
ing operations as early as possible is called asemi-activeschedule. In a semi-active
schedule, no operation can be started earlier without altering the machining se-
quences. A consistent complete selection and the corresponding semi-active sched-
ule can be represented by the same symbolS without confusion. The makespanL
is given by the length of the longest weighted path from source to sink in this graph.
This pathP is called acritical pathand is composed of a sequence ofcritical oper-
ations. A sequence of consecutive critical operations on the same machine is called
acritical block.

The distance between two schedulesS andT can be measured by the num-
ber of differences in the processing order of operations on each machine [19]. In
other words, it can be calculated by summing the disjunctive arcs whose directions
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Algorithm 7.2.1 GT algorithm

1. Let D be a set of all the earliest operations in a technological sequence not
yet scheduled andOjr be an operation with the minimumEC in D: Ojr =
arg min{O ∈ D | EC(O)}.

2. Assumei−1 operations have been scheduled onMr. A conflict setC[Mr, i]
is defined as:C[Mr, i] = {Okr ∈ D | Okr onMr, ES(Okr) < EC(Ojr)}.

3. Select an operationO ∈ C[Mr, i].

4. ScheduleO as thei-th operation onMr with its completion time equal to
EC(O).

are different betweenS andT . We call this distance thedisjunctive graph(DG)
distance. Figure 7.3 shows the DG distance between two schedules. The two dis-
junctive arcs drawn by thick lines in schedule (b) have directions that differ from
those of schedule (a), and therefore the DG distance between (a) and (b) is 2.

DG distance = 2
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Figure 7.3: The DG distance between two schedules

7.2.1 Active schedules

The makespan of a semi-active schedule may often be reduced by shifting an opera-
tion to the left without delaying other jobs. Such reassigning is called apermissible
left shift and a schedule with no more permissible left shifts is called anactive
schedule. An optimal schedule is clearly active so it is safe and efficient to limit
the search space to the set of all active schedules. An active schedule is generated
by theGT algorithmproposed by Giffler and Thompson [13], which is described
in Algorithm 7.2.1. In the algorithm, theearliest starting timeES(O) andearliest
completion timeEC(O) of an operationO denote its starting and completion times
when processed with the highest priority among all currently schedulable operations
on the same machine. An active schedule is obtained by repeating the algorithm un-
til all operations are processed. In Step 3, if all possible choices are considered, all
active schedules will be generated, but the total number will still be very large.
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Figure 7.4 shows how the GT algorithm works. In the figure,O11 is identified as
Ojr andM1 asMr. ThenO31 is selected from the conflict set and scheduled. After
that, the conflict set and earliest starting times of operations are updated.
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Figure 7.4: Giffler and Thompson’s active schedule generation

7.3 Binary representation

As described in the previous section, a (semi-active) schedule is obtained by turn-
ing all undirected disjunctive arcs into directed ones. Therefore, by labeling each
directed disjunctive arc of a schedule as 0 or 1 according to its direction, a schedule
can be represented by a binary string of lengthmn(n − 1)/2. Figure 7.5 shows a
labeling example, where an arc connectingOij andOkj (i < k) is labeled as 1 if the
arc is directed fromOij to Okj (soOij is processed prior toOkj) or 0, otherwise.
It should be noted that the DG distance between schedules and the Hamming dis-
tance between the corresponding binary strings can be identified through this binary
mapping.
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Figure 7.5: Labeling disjunctive arcs
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A conventional GA using this binary representation was proposed by Nakano
and Yamada [19]. An advantage of this approach is that conventional genetic oper-
ators, such as 1-point, 2-point and uniform crossovers can be applied without any
modification. However, a resulting new bit string generated by crossover may not
represent a schedule, and such a bit string would be calledillegal. There are two
approaches for this problem: one is to repair an illegal string and the other is to
impose a penalty for the illegality. The following sections will elaborate on one
example of the former approach.

7.3.1 Local harmonization

A repairing procedure that generates a feasible bit string, as similar to an illegal one
as possible, is called theharmonization algorithm[19]. The Hamming distance is
used to assess the similarity between two bit strings. The harmonization algorithm
goes through two phases:local harmonizationandglobal harmonization. The for-
mer removes the ordering inconsistencies within each machine, while the latter re-
moves the ordering inconsistencies between machines. This section explains the
former and the next section will explain the latter.

The local harmonization works separately for each machine. Thus the following
merely explains how it works for one machine. Here we are given an original illegal
bit string. The bit string indicates the processing priority on the machine and may
include an ordering inconsistency within the machine, for example, job 1 must be
prior to job 2, job 2 must be prior to job 3, but job 3 must be prior to job 1. The
local harmonization can eliminate such a local inconsistency. At first, the algorithm
regards the operation having the highest priority as the one to process first. When
there is more than one candidate, it selects one of them. Then it removes the priority
inconsistencies relevant to the top operation. By repeating the above, the local
inconsistency can be completely removed. The local harmonization goes halfway
in generating a feasible bit string.

7.3.2 Global harmonization

The global harmonization removes ordering inconsistencies between machines. It
is embedded in a simple scheduling algorithm. First, the scheduling algorithm is ex-
plained. Given the processing priority generated by the above local harmonization
as well as the technological sequences and processing time for each operation, the
scheduling algorithm polls jobs checking if any job can be scheduled, and schedules
an operation of a job that can be scheduled. It stops if no more jobs can be scheduled
due to a global inconsistency, i.e. a deadlock happens. The global harmonization is
called whenever such a deadlock occurs.

The algorithm works as follows. For each jobj the algorithm considersnext(j),
the jobj operation to be scheduled next, andnext(j).machine, the machine which
processesnext(j). The algorithm calculates how far in the processing priority it
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is from next(next(j).machine), the next operation on the machine, tonext(j).
The algorithm selects the job with the minimum distance. When there is more than
one candidate, it selects one of them. Then it removes the priority inconsistencies
relevant to the permutation, and returns control to the scheduling algorithm.

Thus the scheduling algorithm generates a feasible bit string in cooperation with
the global harmonization. It is not always guaranteed that the above harmonization
will generate a feasible bit string closest to the original illegal one, but the resulting
one will be reasonably close and the harmonization algorithms are quite efficient.

7.3.3 Forcing

An illegal bit string produced by genetic operations can be considered as a genotype,
and a feasible bit string generated by any repairing method can be regarded as a
phenotype. Then the former is an inherited character and the latter is an acquired
one. Note that the repairing stated above is only used for the fitness evaluation of
the original bit string; that is, the repairing does not mean the replacement of bit
strings.

Forcing means the replacement of the original string with a feasible one. Hence
forcing can be considered as the inheritance of an acquired character, although it
is not widely believed that such inheritance occurs in nature. Since frequent forc-
ing may destroy whatever potential and diversity of the population, it is limited to
a small number of elites. Such limited forcing brings about at least two merits: a
significant improvement in the convergence speed and the solution quality. Experi-
ments have shown how it works [19].

7.4 Permutation representation

As described in Section 7.2, the JSSP can be viewed as an ordering problem just like
the Traveling Salesman Problem (TSP). For example, a schedule can be represented
by the set of permutations of jobs on each machine, in other words,m-partitioned
permutations of operation numbers, which is called ajob sequence matrix. Table 7.6
shows a job sequence matrix of the same solution as that given in Figure 7.1. The
advantage of this representation is that the GA operators used to solve the TSP can
be applied without further modifications, because each job sequence is equivalent
to the path representation in the TSP.

M1 M2 M3

1 2 3 3 1 2 2 1 3

Figure 7.6: A job sequence matrix for a3 × 3 problem
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7.4.1 Subsequence exchange crossover

A crossover operator called theSubsequence Exchange Crossover(SXX) was pro-
posed by Kobayashi, Ono and Yamamura [15]. The SXX is a natural extension of
the subtour exchange crossover for TSPs presented by the same authors [14]. Let
two job sequence matrices bep0 andp1. A pair of subsequences, one fromp0 and
the other fromp1 on the same machine, is calledexchangeableif and only if they
consist of the same set of jobs. The SXX searches for exchangeable subsequence
pairs inp0 andp1 on each machine and interchanges each pair to produce new job
sequence matricesk0 andk1. Figure 7.7 shows an example of the SXX for a6 × 3
problem.

123456 321564 235614

621345 326451 635421

p0

p1

M1 M2 M3

213456 325164 263514

612345 326415 356421

k0

k1

Figure 7.7: Subsequence Exchange Crossover (SXX)

If all jobs in a job subsequences0 in p0 on a machine are positioned consecu-
tively in s1 in p1, s0 ands1 are exchangeable. By checking for alls0 in p0 systemat-
ically, if there exists a correspondings1 in p1, all of the exchangeable subsequence
pairs inp0 andp1 on the machine can be enumerated inO(n2) [29], so the SXX
requires a computational complexity ofO(mn2).

Although a job sequence matrix obtained from the SXX always represents valid
job permutations, it not necessarily represents a schedule. To obtain a schedule
from illegal offspring, some repairing mechanism such as the global harmonization
described in Section 7.3 is also required. Instead of using the global harmonization,
the GT algorithm is used as a repairing mechanism together with the described forc-
ing, to modify any job sequence matrix into an active schedule. A small number of
swap operations designated by the GT algorithm are applied to repair job sequence
matrices.

7.4.2 Permutation with repetition

Instead of using anm-partitioned permutation of operation numbers, like the job
sequence matrix defined in the previous subsection, another representation that uses
anunpartitioned permutation withm-repetitionsof job numbers was employed by
Bierwirth [6]. In this permutation, each job number occursm times. By scanning
the permutation from left to right thek-th occurrence of a job number refers to
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the k-th operation in the technological sequence of this job (see Figure 7.8). In
this representation, it is possible to avoid schedule operations whose technological
predecessors have not been scheduled yet. Therefore any individual is decoded to
a schedule, but two or more different individuals can be decoded to an identical
schedule.

1 3 2 1 3 2 2 1 3

1   2   3        M1
  3   1     2    M2
          2   1 3M3

A job permutation
is decoded

a schedule
 to

Figure 7.8: A job sequence (permutation with repetition) for a3 × 3 problem is
decoded to a schedule, which is equivalent to the one in Figure 7.1.

The well used Order Crossover and Partially Mapped Crossover for TSP are
naturally extended for this representation (they are called theGeneralized Order
Crossover(GOX) andGeneralized Partially Mapped Crossover(GPMX)). A new
Precedence Preservative Crossover(PPX) is also proposed in [7]. The PPX per-
fectly respects the absolute order of genes in parental chromosomes. A template bit
stringh of lengthmn is used to define the order in which genes are drawn fromp0

andp1. A gene is drawn from one parent and it is appended to the offspring chromo-
some. The corresponding gene is deleted in the other parent (See Figure 7.9). This
step is repeated until both parent chromosomes are empty and the offspring con-
tains all genes involved. The idea of forcing described in Section 7.3 is combined
with the permissible left shift described in Subsection 7.2.1: new chromosomes are
modified to active schedules by applying permissible left shifts.

3 2 1 1 2 1 2 3 3k

0 0 1 1 1 1 0 0 0h

3 2 2 2 3 1 1 1 3p0

1 1 3 2 2 1 2 3 3p1

Figure 7.9: Precedence Preservative Crossover (PPX)

7.5 Heuristic crossover

The earlier sections were devoted to representing solutions in generic forms such
as bit strings or permutations so that conventional crossover operators could be
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Algorithm 7.5.1 GT crossover

1. Same as Step 1. of Algorithm 7.2.1.

2. Same as Step 2. of Algorithm 7.2.1.

3. Select one of the parent schedules{p0, p1} according to the value ofHir as
p = pHir

. Select an operationO ∈ C[Mr, i] that has been scheduled inp
earliest amongC[Mr, i].

4. Same as Step 4. of Algorithm 7.2.1.

applied without further modifications. Because of the complicated constraints of a
problem, however individuals generated by a crossover operator are often infeasible
and require several steps of a repairing mechanism. The following properties are
common to these approaches:

• Crossover operators are problem independent and they are separated from
schedule builders.

• An individual does not represent a schedule itself but its gene codes give a
series of decisions for a schedule builder to generate a schedule.

Obviously one of the advantages of the GA is its robustness over a wide range
of problems with no requirement of domain specific adaptations. Therefore the
crossover operators should be domain independent and separated from domain spe-
cific schedule builders. However from the viewpoint of performance, it is often
more efficient to directly incorporate domain knowledge into the algorithm to skip
wasteful intermediate decoding steps. Thus the GT crossover proposed by Yamada
and Nakano [30] has the following properties instead.

• The GT crossover is a problem dependent crossover operator that directly
utilizes the GT algorithm. In the crossover, parents cooperatively give a series
of decisions to the algorithm to build new offsprings, namely active schedules.

• An individual represents an active schedule, so there is no repairing scheme
required.

7.5.1 GT crossover

Let H be a binary matrix of sizen × m [30, 10]. HereHir = 0 means that the
i-th operation on machiner should be determined by using the first parent and
Hir = 1 by the second parent. The role ofHir is similar to that ofh described in
Section 7.4.2. Let the parent schedules bep0 andp1 as always. The GT crossover
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can be defined by modifying Step 3 of Algorithm 7.2.1 as shown in Algorithm 7.5.1.
It tries to reflect the processing order of the parent schedules to their offspring. It
should be noted that if the parents are identical to each other, the resulting new
schedule is also identical to the parents’. In general the new schedule inherits partial
job sequences of both parents in different ratios depending on the number of 0’s and
1’s contained inH.

The GT crossover generates only one schedule at once. Another schedule is
generated by using the sameH but changing the roles ofp0 and p1. Thus two
new schedules are generated that complement each other. The outline of the GT
crossover is described in Figure 7.10.
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Figure 7.10: GT crossover

Mutation can be put in Algorithm 7.5.1 by occasionally selecting then-th (n >
1) earliest operation inC[Mr∗ , i] with a low probability inversely proportional ton
in Step 3 of Algorithm 7.5.1.

7.6 Genetic enumeration

A method to use bit string representation and simple crossover used in simple GAs,
and at the same time to incorporate problem specific heuristics was proposed by
Dorndorf and Pesch [12, 22]. They interpret an individual solution as a sequence
of decision rules for domain specific heuristics such as the GT algorithm and the
shifting bottleneck procedure.

7.6.1 Priority rule based GA

Priority rules are the most popular and simplest heuristics for solving the JSSP.
They are rules used in Step 3 of Algorithm 7.2.1 to resolve a conflict by selecting
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Algorithm 7.6.1 The shifting bottleneck procedure (SB I)

1. SetS = ∅ and make all machines unsequenced.

2. Solve a one-machine scheduling problem for each unsequenced machine.

3. Among the machines considered in Step 2, find the bottleneck machine and
add its schedule toS. Make the machine sequenced.

4. Reoptimize all sequenced machines inS.

5. Go to Step 3 unlessS is completed; otherwise stop.

an operationO from the conflict setC[Mr, i]. For example, a priority rule called
“SOT-rule” (shortest operation time rule) selects the operation with the shortest
processing time from the conflict set. Twelve such simple rules are used in [12, 22]
including the SOT-rule, LRPT-rule (longest remaining processing time rule) and
FCFS-rule (first come first serve rule) such that they are partially complementary in
order to select each member in the conflict set.

Each individual of thepriority rule based GA(P-GA) is a string of lengthmn−
1, where the entry in thei-th position represents one of the 12 priority rules used
to resolve the conflict in thei-th iteration of the GT algorithm. A simple crossover
that exchanges the substrings of two cut strings are applied.

7.6.2 Shifting bottleneck based GA

The Shifting bottleneck (SB) proposed by Adams et al. [1] is a powerful heuristic
for solving the JSSP. In the method, a one-machine scheduling problem (a relax-
ation of the original JSSP) is solved for each machine not yet sequenced, and the
outcome is used to find a bottleneck machine, i.e. a machine having the longest
makespan. Every time a new machine has been sequenced, the sequence of each
previously sequenced machine is subject to reoptimization. The SB consists of two
subroutines: the first one (SB I) repeatedly solves one-machine scheduling prob-
lems; the second one (SB II) builds a partial enumeration tree where each path from
the root to a leaf is similar to an application of SB I. The outline of the SB I is
described in Algorithm 7.6.1. Please refer to [1, 2, 33] as well as [12, 22] for more
details.

Besides using the genetic algorithm as a metastrategy to optimally control the
use of priority rules, another genetic algorithm described in Dorndorf and Pesch [12,
22] controls the selection of nodes in the enumeration tree of the shifting bottleneck
heuristic; it is called theshifting bottleneck based genetic algorithm(SB-GA). Here
an individual is represented by a permutation of machine numbers1 . . .m, where
the entry in thei-th position represents the machine selected in Step 3 in place of
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a bottleneck machine in thei-th iteration of Algorithm 7.6.1. A cycle crossover
operator is used as the crossover for this permutation representation.

7.7 Genetic local search

It is well known that GAs can be enhanced by incorporating local search methods,
such as neighborhood search into them. The result of such an incorporation is often
calledGenetic Local Search (GLS)[26]. In this framework, an offspring obtained by
a recombination operator, such as crossover, is not included in the next generation
directly but is used as a “seed” for the subsequent local search. The local search
moves the offspring from its initial point to the nearest locally optimal point, which
is included in the next generation.

This section briefly reviews the basics of neighborhood search, neighborhood
structures for the JSSP and an approach to incorporate a local neighborhood search
into a GA to solve the problems.

7.7.1 Neighborhood search

Neighborhood search is a widely used local search technique to solve combinatorial
optimization problems. A solutionx is represented as a point in the search space,
and a set of solutions associated withx is defined as neighborhoodN(x). N(x) is
a set of feasible solutions reachable fromx by exactly one transition, i.e. a single
perturbation ofx.

An outline of a neighborhood search for minimizingV (x) is described in Al-
gorithm 7.7.1, wherex denotes a point in the search space andV (x) denotes its
evaluation value.

Algorithm 7.7.1 Neighborhood search

• Select a starting point:x = x0 = xbest.

do 1. Select a pointy ∈ N(x) according to the given criterion based on the
valueV (y). Setx = y.

2. If V (x) < V (xbest) then setxbest = x.

until some termination condition is satisfied.

The criterion used in Step 1 in Algorithm 7.7.1 is called thechoice criterion,
by which the neighborhood search can be categorized. For example, a descent
method selects a pointy ∈ N(x) such thatV (y) < V (x). A stochastic method
probabilistically selects a point according to the Metropolis Criterion, i.e.y ∈ N(x)
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Algorithm 7.7.2 Multi-Step Crossover Fusion (MSXF)

• Let p0, p1 be parent solutions.

• Setx = p0 = q.

do • For each memberyi ∈ N(x), calculated(yi, p1).

• Sortyi ∈ N(x) in ascending order ofd(yi, p1).

do 1. Selectyi from N(x) randomly, but with a bias in favor ofyi with a
small indexi.

2. CalculateV (yi) if yi has not yet been visited.

3. Acceptyi with probability one ifV (yi) ≤ V (x), and withPc(yi)
otherwise.

4. Change the index ofyi from i to n, and the indexes ofyk (k ∈ {i+1, i+

2, . . . , n}) from k to k − 1.

until yi is accepted.

• Setx = yi.

• If V (x) < V (q) then setq = x.

until some termination condition is satisfied.

• q is used for the next generation.

is selected with probability 1 ifV (y) < V (x); otherwise, with probability:

P (y) = exp(−∆V/T ), where∆V = V (y) − V (x) . (7.1)

HereP is called theacceptance probability. Simulated Annealing (SA) is a method
in which parameterT (called thetemperature) decreases to zero following an an-
nealing schedule as the iteration step increases.

7.7.2 Multi-Step Crossover Fusion

Reeves has been exploring the possibility of integrating local optimization directly
into a Simple GA with bit string representations and has proposed the Neighborhood
Search Crossover (NSX) [23]. Let any two individuals bex andz. An individualy
is calledintermediatebetweenx andz, written asx � y � z, if and only if d(x, z) =
d(x, y)+d(y, z) holds, wherex, y andz are represented in binary strings andd(x, y)
is the Hamming distance betweenx andy. Then thekth-order 2 neighborhoodof x
andz is defined as the set of all intermediate individuals at a Hamming distance of
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k from eitherx or z. Formally,

Nk(x, z) = {y | x � y � z and(d(x, y) = k or d(y, z) = k)}.

Given two parent bit stringsp0 andp1, the neighborhood search crossover of order
k (NSXk) will examine all individuals inNk(p0, p1), and pick the best as the new
offspring.

Yamada and Nakano extended the idea of the NSX to make it applicable to more
complicated problems such as job-shop scheduling and proposed the Multi-Step
Crossover Fusion (MSXF): a new crossover operator with a built-in local search
functionality [31, 34, 32]. The MSXF has the following characteristics compared
to the NSX.

• It can handle more generalized representations and neighborhood structures.

• It is based on a stochastic local search algorithm.

• Instead of restricting the neighborhood by a condition of intermediateness, a
biased stochastic replacement is used.

A stochastic local search algorithm is used for the base algorithm of the MSXF.
Although the SA is a well-known stochastic method and has been successfully ap-
plied to many problems as well as to the JSSP, it would be unrealistic to apply the
full SA to suit our purpose because it would consume too much time by being run
many times in a GA run. A restricted method with a fixed temperature parameter
T = c might be a good alternative. Accordingly, the acceptance probability used in
Algorithm 7.7.1 is rewritten as:

Pc(y)=exp
(
−∆V

c

)
, ∆V =V (y)−V (x), c : const. (7.2)

Let the parent schedules bep0 and p1, and let the distance between any two
individualsx and y in any representation bed(x, y). If x and y are schedules,
thend(x, y) is the DG distance. Crossover functionality can be incorporated into
Algorithm 7.7.1 by settingx0 = p0 and adding a greater acceptance bias in favor of
y ∈ N(x) having a smalld(y, p1). The acceptance bias in the MSXF is controlled
by sortingN(x) members in ascending order ofd(yi, p1) so thatyi with a smaller
index i has a smaller distanced(yi, p1). Hered(yi, p1) can be estimated easily if
d(x, p1) and the direction of the transition fromx to yi are known; it is not necessary
to generate and evaluateyi. Thenyi is selected fromN(x) randomly, but with a
bias in favor ofyi with a small indexi. The outline of the MSXF is described in
Algorithm 7.7.2.

In place ofd(yi, p1), one can also usesign(d(yi, p1)−d(x, p1))+rε to sortN(x)
members in Algorithm 7.7.2. Heresign(x) denotes the sign ofx: sign(x) = 1 if
x > 0, sign(x) = 0 if x = 0, sign(x) = −1 otherwise. A small random fraction
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rε is added to randomize the order of members with the same sign. The termination
condition can be given, for example, as the fixed number of iterations in the outer
loop.

The MSXF is not applicable if the distance betweenp0 andp1 is too small com-
pared to the number of iterations. In such a case, a mutation operator called the
Multi-Step Mutation Fusion(MSMF) is applied instead. The MSMF can be defined
in the same manner as the MSXF is except for one point: the bias is reversed, i.e.
sort theN(x) members in descending order ofd(yi, p1) in Algorithm 7.7.2.

7.7.3 Neighborhood structures for the JSSP

For the JSSP, a neighborhoodN(S) of a scheduleS can be defined as a set of
schedules that can be reached fromS by exactly one transition (a single perturbation
of S).

exchange a pair of consecutive operations

moving an operation to the beginning
or the end of the block

critical block

AS neighborhood

CB neighborhood

k p h

Figure 7.11: Permutation of operations on a critical block

As shown in Section 7.3, a set of solutions of the JSSP can be mapped to a space
of bit strings by marking each disjunctive arc as 1 or 0 according to its direction.
The DG distance and the Hamming distance in the mapped space are equivalent,
and the neighborhood of a scheduleS is a set of all (possibly infeasible) schedules
whose DG distances fromS are exactly one. Neighborhood search using this binary
neighborhood is simple and straightforward but not very efficient.

More efficient methods can be obtained by introducing a transition operator that
exchanges a pair of consecutive operations only on the critical path and forms a
neighborhood [16, 25]. The transition operator was originally defined by Balas in
his branch and bound approach [4]. We call this theadjacent swapping(AS) neigh-
borhood. DG distances between a schedule and members of its AS neighborhood
are always one, so the AS neighborhood can be considered as a subset of the bit
string neighborhood.
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k p

SM,p,k

SM,p,h

h

Bk,h,M

M

Figure 7.12:SM,p,k andSM,p,h generation

Another very powerful transition operator was used in [9, 11]. The transition
operator permutes the order of operations in a critical block by moving an operation
to the beginning or end of the critical block, thus forming aCB neighborhood.

A schedule obtained fromS by moving an operation within a block to the front
of the block is called abefore candidate, and a schedule obtained by moving an
operation to the rear of the block is called anafter candidate. A set of all before and
after candidatesN ′C(S) may contain infeasible schedules. The CB neighborhood
is given as:

NC(S) = {S ′ ∈ N ′C(S) | S ′ is a feasible schedule}.
It has been experimentally shown by [35] that the CB neighborhood is more

powerful than the former one.

Active CB neighborhood

As explained above, before or after candidates are not necessarily executable. In
the following, a new neighborhood similar to the CB neighborhood is used, each
element of which is not only executable, but also active and close to the original.
Let S be an active schedule andBk,h,M be a critical block ofS on a machineM ,
where the front and the rear operations ofBk,h,M are thek-th and theh-th operations
onM , respectively. LetOp,M be an operation inBk,h,M that is thep-th operation on
M . Algorithm 7.7.3 generates an active scheduleSM,p,k (or SM,p,h) by modifying
S such thatOp,M is moved to the position as close to the front positionk (or the
rear positionh) of Bk,h,M as possible. Parts of the algorithm are due to [11]. The
new active CB neighborhoodANC(S) is now defined as a set of allSM,p,k’s and
SM,p,h’s over all critical blocks:

ANC(S) =
⋃

Bk,h,M

{S ′ ∈ {SM,p,k}k<p<h ∪ {SM,p,h}k<p<h, S
′ 6= S}.

7.7.4 Scheduling in the reversed order

Algorithm 7.2.1 and all its variations determine the job sequences from left to right
in temporal order. This is because active schedules are defined to have no extra idle
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Algorithm 7.7.3 Modified GT algorithm generatingSM,p,k or SM,p,h

1. Same as Step 1. of Algorithm 7.2.1.

2. Same as Step 2. of Algorithm 7.2.1.

3. DoCASE 1 (or CASE 2) to generateSM,p,k (or SM,p,h).

CASE 1: SM,p,k generation

• If k≤ i ≤ p andOp,M ∈ C[Mr, i], then setO = Op,M .

• Otherwise, select an operationO ∈ C[Mr, i] that has been scheduled in
S earliest amongC[Mr, i].

CASE 2: SM,p,h generation

• If i = h or C[Mr, i] = {Op,M}, then setO = Op,M .

• Otherwise, select an operationO ∈ C[Mr, i]\Op,M that has been sched-
uled inS earliest amongC[Mr, i] \ Op,M .

4. Same as Step 4. of Algorithm 7.2.1.

periods of machinesprior to their operations. However the idea described below
enables the same algorithms to determine the job sequences from right to left with
only small modifications.

In general, a given problem of the JSSP can be converted to another problem
by reversing all of the technological sequences. The new problem is equivalent to
the original one in the sense that reversing the job sequences of any schedule for
the original problem results in a schedule for the reversed problem with the same
critical path and makespan. It can be seen, however, that an active schedule for
the original problem may not necessarily be active in the reversed problem: the
activeness is not necessarily preserved.

job Routing
1 2(3) 1(4)
2 2(2) 1(4)

Figure 7.13: A simple2 × 2 problem

For example, the simple2 × 2 problem described in Table 7.13 is consid-
ered. Figure 7.14(1) shows a solution of this problem, which is active and no
more left shifts can improve its makespan. Figure 7.14(2), obtained by reversing
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Figure 7.14: Schedule reversal and activation

Figure 7.14(1), is not active and can be improved by a left shift that moves job 1
prior to job 2 on machine 2, resulting in Figure 7.14(3). Finally Figure 7.14(4) is
obtained by reversing Figure 7.14(3) again, which is optimal. As things turn out,
Figure 7.14(1) is improved by moving job 1posteriorto job 2 on machine 2, result-
ing in Figure 7.14(4).

Although repairing a semi-active schedule to the active one improves the makespan,
it can be seen from the example above that there sometimes are obvious improve-
ments that cannot be attained only by left shifts. We call a scheduleleft active if it
is an active schedule for the original problem andright active if it is such for the
reversed problem. It sometimes happens that a reserved problem is easier to solve
compared to the original. Searching only in the set of left (or right) active schedules
may bias the search toward the wrong direction and result in poor local minima.
Therefore left active schedules as well as right active ones should be taken into
account together in the same algorithm. In most local search methods, many sched-
ules are generated in a single run; therefore it would be better to apply this reversing
and repairing method periodically to change the scheduling directions rather than
to reverse and repair every schedule each time it is generated.

7.7.5 MSXF-GA for Job-shop Scheduling

The MSXF is applied to the JSSP by using the active CB neighborhood and the DG
distance previously defined. Algorithm 7.7.4 describes the outline of the MSXF-
GA routine for the JSSP using the steady state model proposed in [28, 24]. To
avoid premature convergence even under a small-population condition, an individ-
ual whose fitness value is equal to someone’s in the population is not inserted into
the population in Step 4.

A mechanism to search in the space of both the left and right active schedules
is introduced into the MSXF-GA as follows. First, there are equal numbers of left
and right active schedules in the initial population. The scheduleq generated from
p0 andp1 by the MSXF ought to be left (or right) active ifp0 is left (or right) active,
and with some probability (0.1 for example) the direction is reversed.
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Algorithm 7.7.4 MSXF-GA for the JSSP

• Initialize population: randomly generate a set ofleft andright active schedules in
equal number and apply the local search to each of them.

do 1. Randomly select two schedulesp0, p1 from the population with some
bias depending on their makespan values.

2. Change the direction (left or right) of p1 by reversing the job sequences
with probabilityPr.

3. Do step (3a) with probabilityPc, or otherwise do Step (3b).

(a) If the DG distance betweenp1, p2 is shorter than some predefined
small value, apply MSMF top1 and generateq.
Otherwise, apply MSXF top1, p2 using the active CB neighbor-
hoodN(p1) and the DG distance and generate a new scheduleq.

(b) Apply Algorithm 7.7.1 with acceptance probability given by Equa-
tion 7.2 and the active CB neighborhood.

4. If q’s makespan is shorter than the worst in the population, and no one in
the population has the same makespan asq, replace the worst individual
with q.

until some termination condition is satisfied.

• Output the best schedule in the population.

Figure 7.15 shows all of the solutions generated by an application of (a) the
MSXF and (b) a stochastic local search computationally equivalent to (a) for com-
parison. Both (a) and (b) started from the same solution (the same parentp0), but
in (a) transitions were biased toward the other solutionp1. Thex axis represents
the number of disjunctive arcs whose directions are different from those ofp1 on
machines with odd numbers, i.e. the DG distance was restricted to odd machines.
Similarly, they axis representing the DG distance was restricted to even machines.

7.8 Benchmark problems

The two well-known benchmark problems with sizes of10× 10 and20× 5 (known
as mt10 and mt20) formulated by Muth and Thompson [18] are commonly used as
test beds to measure the effectiveness of a certain method. The mt10 problem used
to be called a “notorious” problem, because it remained unsolved for over 20 years;
however it is no longer a computational challenge.

Applegate and Cook proposed a set of benchmark problems called the “ten
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Figure 7.15: Distribution of solutions generated by an application of (a) MSXF and
(b) a short-term stochastic local search

tough problems” as a more difficult computational challenge than the mt10 prob-
lem, by collecting difficult problems from literature, some of which still remain
unsolved [3].

7.8.1 Muth and Thompson benchmark

Table 7.2 summarizes the makespan performance of the methods described in this
chapter. This table is partially cited from [6]. The Conventional GA has only lim-
ited success and is outdated. It would be improved by being combined with the GT
algorithm and/or the schedule reversal. The other results excluding the MSXF-GA
results are somewhat similar to each other, although the SXX-GA is improved over
the GT-GA in terms of speed and the number of times needed to find optimal so-
lutions for the mt10 problem. The SB-GA produces better results using the very
efficient and tailored shifting bottleneck procedure. The MSXF-GA which com-
bines a GA and local search obtains the best results.

For the MSXF-GA, the population size= 10, constant temperaturec = 10,
number of iterations for each MSXF= 1000, Pr = 0.1 andPc = 0.5 are used.
The MSXF-GA experiments were performed on a DEC Alpha 600 5/226 which is
about four times faster than a Sparc Station 10, and the programs were written in
the C language. The MSXF-GA finds the optimal solutions for the mt10 and mt20
problems almost every time in less than five minutes on average.

7.8.2 The ten tough benchmark problems

Table 7.3 shows the makespan performance statistics of the MSXF-GA for the ten
difficult benchmark problems proposed in [3]. The parameters used here were the
same as those for the MT benchmark except for the population size= 20. The algo-
rithm was terminated when an optimal solution was found or after 40 minutes of cpu
time passed on the DEC Alpha 600 5/266. In the table, the column named lb shows
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Table 7.2: Performance comparison using the MT benchmark problems

1963 Muth-Thompson Test problems 10 × 10 20 × 5
1991 Nakano/Yamada Conventional GA 965 1215
1992 Yamada/Nakano Giffler-Thompson GT-GA 930 1184

Dorndorf/Pesch Priority-Rule based P-GA 960 1249
Dorndorf/Pesch Shifting-Bottleneck SB-GA 938 1178

1995 Kobayashi/Ono Subsequence Exchange Crossover 930 1178
/Yamamura SXX-GA

1995 Bierwirth Generalized-Permutation GP-GA 936 1181
1996 Yamada/Nakano Multi-step Crossover Fusion MSXF-GA 930 1165

the known lower bound or known optimal value (for la40) of the makespan, and the
columns named bst, avg, var and wst show the best, average, variance and worst
makespan values obtained, over 30 runs respectively. The columns namednopt and
topt show the number of runs in which the optimal schedules are obtained and their
average cpu times in seconds. The problem data and lower bounds are taken from
the OR-library [5]. Optimal solutions were found for half of the ten problems, and
four of them were found very quickly. The small variances in the solution qualities
indicate the stability of the MSXF-GA as an approximation method.

Table 7.3: Results of the 10 tough problems

prob size lb bst avg var wstnopt topt

abz7 20×15 655 678 692.5 0.94 703 – –
abz8 20×15 638 686 703.1 1.54 724 – –
abz9 20×15 656 697 719.6 1.53 732 – –
la21 15×10 – ?1046 1049.9 0.57 1055 9 687.7
la24 15×10 – ?935 938.8 0.34 941 4 864.1
la25 20×10 – ?977 979.6 0.40 984 9 765.6
la27 20×10 – ?1235 1253.6 1.56 1269 1 2364.75
la29 20×10 1130 1166 1181.9 1.31 1195 – –
la38 15×15 – ?1196 1198.4 0.71 1208 21 1051.3
la40 15×15 ?1222 1224 1227.9 0.43 1233 – –

Figure 7.16 shows a performance comparison of with and without the MSXF
using the la38 problem. A total of 100 runs were done for each under the same
conditions used in Table 7.3. The solid line gives the MSXF-GA’s results and the
dotted line gives the equivalent GLS’s results using a short-term stochastic local
search. They axis shows the cpu time at which each run is terminated and thex
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Figure 7.16: Performance comparison using the la3815 × 15 problem

axis shows the run numbers which are sorted in ascending order according to the
cpu times. The cpu time value= 2400 means that the run was terminated before it
found the optimal schedule. The experiments with the MSXF outperformed those
without the MSXF both in terms of the cpu time and in the number of successful
runs.

7.9 Other heuristic methods

Local search based meta-heuristics are commonly applied to the JSSP such as sim-
ulated annealing (SA) and tabu search (TS). Van Laarhoven et al. [16] proposed a
SA approach by using the AS neighborhood described in Subsection 7.7.3. Matsuo
et al. proposed a similar SA approach but with more control. Taillard proposed a TS
approach that uses the same neighborhood. Dell’Amico and Trubian extended and
improved Taillard’s TS method using CB neighborhood. More recently, Nowicki
and Smutnicki [20] proposed a still more powerful TS method. Yamada and Nakano
proposed a SA approach combined with the shifting bottleneck and improved the
best solutions for the two problems abz9 and la29 of the 10 tough problems [33].
Balas and Vazacopoulos proposed the guided local search procedure and combined
it with the shifting bottleneck, which at present outperforms most existing methods.
For more comprehensive reviews, please refer to [17], [27] and [8].

7.10 Conclusions

The first serious application of GAs to solve the JSSP was proposed by Nakano
and Yamada using a bit string representation and conventional genetic operators.
Although this approach is simple and straightforward, it is not very powerful. The
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idea to use the GT algorithm as a basic schedule builder was first proposed by Ya-
mada and Nakano [30] and by Dorndorf and Pesch [12, 22] independently. The
approaches by both groups and other active schedule-based GAs are suitable for
middle-size problems; however, it seems necessary to combine each with other
heuristics such as the shifting bottleneck or local search to solve larger-size prob-
lems.

To solve larger-size problems effectively, it was crucial to incorporate local
search methods that use domain specific knowledge. The multi-step crossover fu-
sion (MSXF) was proposed by Yamada and Nakano as a unified operator of a local
search method and a recombination operator in genetic local search. The MSXF-
GA outperforms other GA methods in terms of the MT benchmark and is able to
find near-optimal solutions for the ten difficult benchmark problems, including op-
timal solutions for five of them.
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