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Abstract
Genetic Algorithms (GAs) have been de-
signed as general purpose optimization meth-
ods. GAs can be uniquely characterized by their
population-based search strategies and their op-
erators: mutation, selection and crossover. In
this paper, we propose a new crossover called
multi-step crossover(MSX) which utilizes a
neighborhood structure and a distance in the
problem space. Given parents, MSX succes-
sively generates their descendents along the
path connecting the both of them. MSX was ap-
plied to the job-shop scheduling problem (JSSP)
as a high-level crossover to work on the criti-
cal path. Preliminary experiments using JSSP
benchmarks showed the promising performance
of a GA with the proposed MSX.

1. Background
The crossover operator has been considered to
be the central component of genetic algorithms
(GAs) and makes GAs distinctively different
from other problem solvers. By using this oper-
ator a pair of solutions (parents) generates new
solutions (offsprings) by mutually exchanging
and recombining information. A simple GA
uses a bit string as a genotype representation
and a bit manipulation crossover e.g., a 1- or
2- point or a uniform crossover. The increasing
complexity of problems to be solved, however,
has made the simple approach difficult to use.

Now, more powerful and tailored representa-
tions and their corresponding crossover opera-
tors should be constructed to effectively solve
more difficult problems. For example, permu-
tation of the symbols denoting visiting cities
might be used for TSP (traveling salesman prob-
lem), and permutation of the symbols denot-
ing jobs or Gantt chart representations might be
used for a scheduling problem[11, 16, 4].

Recently, it has become clear that the com-

bination of a GA and local search, such as lo-
cal hill-climbing or neighborhoodsearch, works
quite well. In this case, an offspring obtained
by the crossover operator is not used in the next
generation directly but used as a seed of the sub-
sequent local search. The local search moves
the offspring from its initial point to the nearest
locally optimal point, which is used in the next
generation. This approach is called asgenetic
local search[9, 14]. In a simple GA framework,
the main role of the crossover is to function as
a search engine; by piling up goodbuilding-
blocks, better strings can be constructed. But
here, the local search plays the leading part and
the crossover helps to find new starting points
for the local search.

This paper proposes a new operator called
multi-step crossover(MSX) which is based on
the idea of transitions (or moves) of neighbor-
hood search. MSX itself can be defined in
a problem independent manner and is easy to
implement even if the problem to be solved
is complicated. To show how MSX works,
especially when combined with local search,
MSX was tailored to the job-shop scheduling
problem (JSSP) employing a critical path-based
neighborhood. A GA with this tailored high-
level MSX (GA/MSX) was evaluated by using
well-known Muth and Thompson’s benchmark
problems[10].

2. Neighborhood Search
Neighborhoodsearch is a widely used technique
to solve combinatorial optimization problems.
A solution x is represented as a point in the
search space, and a set of solutions associated
with x is defined as neighborhoodN(x). N(x)

is a set of feasible solutions capable of being
reached fromx by exactly one transition, a sin-
gle perturbation ofx.

Neighborhood search can be categorized by
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its choice criteria for selecting a new pointy
from N(x) as the next search point; for exam-
ple, a descent method selects the best point in
the neighborhood, simulated annealing proba-
bilistically selects a point and tabu search se-
lects the best point in the neighborhood that is
not on a tabu list. It is therefore very simple
and easy to implement neighborhood search, al-
though an extremely long time is taken to find
the global optima. This time requirement pre-
vents the search process from being trapped in
a deep local optimum.

The outline of the neighborhood search for
minimizingV(x) is described in Algorithm 2.1,
wherex denotes a point in the search space and
V(x) denotes its evaluation value.

Algorithm 2.1 Neighborhood search
1. Select a starting point:x = x0 = xbest.
2. If V(x) < V(xbest) then setxbest = x.
3. Select a pointy ∈ N(x) according to a given

criterion based on the valueV(y). Setx = y.
4. Repeat 2 to 3 until some termination condi-

tion is satisfied.

The differences and similarities between the
neighborhood search and the simple GA are ex-
tensively discussed by Reeves in [12]. In the
next section we propose a new crossover opera-
tor for more complicated problems such as com-
binatorial optimizations by more aggressively
adopting the idea of neighborhood search.

3. Multi-Step Crossover
Multi-step crossover (MSX) is defined by using
the distance and the neighborhood structure in
the search space.

The distance is used to measure the simi-
larities between solutions and to determine the
search direction in the crossover. For example,
the Hamming distance can be defined in the bit
string space{0, 1}n (n is the number of bits). In
the search space of a sequencing problem, such
as TSP or JSSP, a permutation-based distance
can be naturally introduced. The distance in the
JSSP space will be described later. By intro-
ducing the distance, the neighborhoodN(x) of
a point x can be interpreted as a set of points
close tox. It can also be said that the closer
an offspring generated by the crossover is, the
more it inherits its parents’ characteristics.

Let the solutions of two parents bep1 and
p2, and let N(p) be the neighborhood ofp.
The basic idea of MSX is to evaluate a point
x ∈ N(p1) not by the objective functionV(x)

but by the distanced(x, p2) betweenx and p2.

Starting fromp1, x is modified in a step-by-step
manner and uni-directionally approachesp2. In
the process,x gradually loses the characteristics
of p1 and gradually obtains those ofp2. After
a certain number of iterations, the resulting new
solutions should contain parts of bothp1 andp2
although in different ratios. The outline of this
procedure is described in Algorithm 3.1.

Algorithm 3.1 Uni-directional MSX
1. Setx= p1. Initialize the offspring list

OL=∅.
2. Select a pointy ∈ N(x) according to a given

criterion based ond(y, p2). Add y to the list
OL. Setx = y.

3. Repeat 2 until some termination condition is
satisfied.

Many variations to this algorithm can be con-
sidered. The criterion used in step 2, for in-
stance, can vary according to the problem like
in neighborhood search. In this paper, the fol-
lowing simple case is considered: select a point
y ∈ N(x) deterministically such thaty =
arg minz∈N(x){d(z, p2)}. Nonetheless, stochas-
tic method using the same criterion (which
may be more appropriate from the viewpoint
of the “emergent property” of the evolutionary
computation) or another criterion such as the
weighted sum ofV andd can be considered in-
stead. In either case, one or some of the mem-
bers satisfying certain criteria are selected from
OL for the next generation. In this paper, a
member that is superior to or almost equally dis-
tant from both parents is selected fromOL as
follows:

• Select a pointy ∈ N(x) such that
y = arg minz∈N(x){V(z)},
if V(y) < min{V(p1), V(p2)}.

• Select a pointy ∈ N(x) such that
y = arg minz∈N(x){|d(p1, z) − d(z, p2)|},
otherwise.
The above uni-directional procedure can be

converted to a bi-directional one i.e., symmetric
to bothp1 and p2 as follows:

Algorithm 3.2 Bi-directional MSX
1. Seti =1. Initialize the offspring listOL=∅.
2. Select a pointpi+2 ∈ N(pi ) such thatpi+2 =

arg minz∈N(pi )
{d(z, pi+1)}.

If d(pi+2, pi+1) > d(pi , pi+1) then stop;
otherwise addpi+2 to OL.

3. Seti = i + 1 and go to step 2.

Figure 1 illustrates Algorithm 3.2. The algo-
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rithm stops when the two solutionspi andpi+1
become so close that no more moves are pos-
sible for both parents to get closer. Like in the
uni-directional case, a member that is superior
to or almost equally distant from both is selected
from OL for the next generation.

p1

p2

p3

p4
pi pi+1

Figure 1: Bi-directional MSX

If MSX is used in combination with a local
search, then because of the local optimality of
the parents, it is desirable to have an offspring
that is not very close to either parent. Other-
wise, a subsequent local search may bring it
back to the parent’s position again.

Algorithm 3.3 Multi-step mutation (MSM)
1. Setx = p. Initialize the mutant listM L = ∅.
2. Select a pointy ∈ N(x) such thaty =

arg maxz∈N(x){d(z, p)}. Add y to the list
M L. Setx = y.

3. Repeat 2 for a fixed iteration count.

A mutation operator calledmulti-step muta-
tion (MSM) is also defined based on the same
idea as MSX. Letp be an individual to which
the mutation is applied. Starting fromp, an in-
dividualx is repeatedly modified and goes away
from p. The outline of MSM is described in Al-
gorithm 3.3. A member that is superior to or the
most distant fromp is selected fromM L for the
next generation in the same way as in MSX.

4. Job-Shop Scheduling Problem
Then×m minimum-makespangeneral job-shop
scheduling problem can be described by a set of
n jobs that is to be processed on a set ofm ma-
chines. Each job has a technological sequence
of machines to be processed. Eachoperation
requires the exclusive use of each machine for
an uninterrupted duration called theprocessing
time. The time required to complete all jobs is

calledmakespan. The objective when solving
or optimizing this general problem is to deter-
mine the processing order of all operations on
each machine that minimizes the makespan.

The JSSP is not onlyNP-hard , but is ex-
tremely difficult to solve optimally. To solve
JSSPs, exhaustive search algorithms based on
branch and bound methods have been exhaus-
tively studied. Recently, approximation algo-
rithms such as simulated annealing (SA), ge-
netic algorithms (GAs) and tabu search have
also been applied with good success [1, 11, 16,
17, 13].

4.1. JSSP Solution Space and the Distance
A JSSP is often described by a disjunctive graph
G = (V, C ∪ D), where

• V is a set of nodes representing operations
of the jobs together with two special nodes,
asource(0) and asink?, representing the be-
ginning and end of the schedule, respectively.

• C is a set of conjunctive arcs representing
technological sequences of the operations.

• D is a set of disjunctive arcs representing
pairs of operations that must be performed on
the same machines.

The processing time for each operation is the
weighted value attached to the corresponding
nodes.

sink
source

conjunctive arc (technological sequences)
disjunctive arc  (pair of operations on the same machines)

O11 O12 O13

O21 O22O23

O31O32 O33

P11 P12 P13

P21 P22P23

P31P32 P33

?(0)

Oij : an operation of jobi on machinej

Pi j : processing time ofOij

Figure 2: Disjunctive graphG of a 3× 3 prob-
lem

Scheduling is to define the ordering between
all operations that must be processed on the
same machine, i.e., to fix precedences be-
tween these operations. In the disjunctive graph
model, this is done by turning all undirected
(disjunctive) arcs into directed ones. The set of
all directed arcs selected from disjunctive arcs
is called aselection.

A selection S defines a feasible schedule
if and only if the resulting directed graph is
acyclic. For such a case,S is called acomplete
selection. A complete selection and its corre-
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sponding feasible schedule can be used inter-
changeably and represented by the same sym-
bol S.

Makespan is given by the length of the
longest weighted path from source to sink in this
graph. This pathP is called thecritical path
and is composed of a sequence ofcritical oper-
ations. A sequence of consecutive critical oper-
ations on the same machine is called acritical
block.

The distance between the two schedulesS
and T can be measured by the number of dif-
ferences in the processing orders of operations
on each machine. In other words, it can be cal-
culated by summing the disjunctive arcs whose
directions are different betweenS and T . We
call this distance thedisjunctive graph(DG)dis-
tance.

4.2. Critical Block Neighborhood
A set of solutions of a JSSP can be mapped to
the space of bit strings[11]. In this case the
neighborhood of a scheduleS can be defined
as a set of all bit strings whose DG distances
from Sare exactly one. Although this approach
is simple and straightforward, it is not very ef-
ficient because the map is not surjective and the
image is limited to some subspace of the bit
string space. Some members in the neighbor-
hood cannot be mapped to job sequences or fea-
sible schedules. It is more efficient to limit the
search to the space of all feasible schedules such
as the set of all active schedules[16].

It might be still more efficient to limit the
search to the critical path level. In fact, a transi-
tion operator that exchanges a pair of consec-
utive operations in a critical block and forms
a neighborhood has been used in literature[8].
The transition operator was originally defined
by Balas in his branch and bound approach[2].
In this neighborhood, the distance betweenS
and any element inN(S) is always one (soN(S)

is a subset of the bit string neighborhood de-
scribed above). We call this theadjacent swap-
ping (AS) neighborhood.

Another very powerful transition operator in
the critical path level is proposed in [7, 3]. The
transition operator permutes the order of opera-
tions in a critical block by moving an operation
to the beginning or end of the critical block, thus
forming theCB neighborhood. In this neighbor-
hood, the distance betweenS and any element
in N(S) can vary depending on the position of
the moving operation. It has been experimen-
tally shown in [17] that SA using the CB neigh-
borhood is more powerful than SA using the AS

exchange a pair of consecutive operations

moving an operation to the beginning
or the end of the critical block

critical block

AS neighborhood

CB neighborhood

Figure 3: Permutation of operations on a critical
block

neighborhood. Thus, the CB neighborhood may
as well be investigated in the GA context. Fig-
ure 3 illustrates how the two transition operators
work.

4.3. GA/MSX for JSSP
The bi-directional MSX is applied to JSSP us-
ing the CB neighborhood and the DG distance
previously defined. Algorithm 4.1 describes the
outline of the GA/MSX routine for a JSSP us-
ing the steady state model proposed by Whitely
[15]. The local search used in the algorithm
is the neighborhood search described in Algo-
rithm 2.1 with a descent method using the CB
neighborhood.

Algorithm 4.1 GA/MSX for JSSP
1. Initialize population: generate a set of ran-

domly generated schedules and apply the lo-
cal search to each member in the set.

2. Select two schedulesS, T from the popula-
tion randomly with some bias depending on
their makespan values.

3. If the DG distance betweenS, T is shorter
than some predefined small value, apply
MSM to S and generateU , then go to step
5.

4. Apply MSX to S, T using the CB neighbor-
hoodN(S) and the DG distance, and generate
a new scheduleU .

5. Apply the local search toU and generateU ′.
6. If U ′’s makespan is shorter than the worst in

the current population, replace the worst indi-
vidual withU .

7. Repeat steps 2 to 6 until no improvement is
observed after a certain number of evalua-
tions.

4



S T

U
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MSX

Local search

Figure 4:U ′ is generated fromSandT by MSX
followed by a local search.

Aarts et. al also proposed a crossover that
works on the critical path in a simpler manner
with limited success[1]. Figure 4 illustrates how
GA/MSX searches for a new local optimum in
a problem space.

5. Experimental Results

The performance of GA/MSX was tested by
running several simulation trials using well-
known Muth and Thompson’s (MT) benchmark
problems[10].

Table 1 summarizes the makespan perfor-
mance of GA/MSX, a simulated annealing
method using the same CB neighborhood struc-
ture (CBSA)[17], and other GA methods pub-
lished so far in literature for MT10×10 and
MT20×5 problems. The GA methods include
GA/GT+ECO [4], PGA+SBP[5] and GVOT[6].
For GA/MSX, all runs were done on a SUN
SPARC station 10 (SS10) and the programs
were written in C language. As the table shows,
GA/MSX outperformed the other methods in
terms of the best and average performance ex-
cept for the MT10×10 problem with CBSA. It
should be noted, however, that the superiority
of GA/MSX cannot be unconditionally claimed
because the machines used, the cpu times re-
quired and the numbers of runs differed.

Figure 5 shows the average time evolution
of the makespan for GA/MSX applied to the
MT10×10 problem with population sizes of
100 and 500 respectively. The abscissa shows
the cpu time in seconds, and the ordinate shows
the best makespan of the current population
averaged over ten runs with different random
number seeds.

6. Discussion

The multi-step crossover (MSX) is proposed to
solve combinatorial optimization problems by
being used in a GA. MSX uses a neighborhood
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Figure 5: Average time evolution of ten runs for
MT10×10 problem with population sizes (P)
of 100 and 500.

structure and a distance in the problem space.
Although the evaluation cost of the crossover
operation increases with MSX, it carefully re-
combines the characteristics of both parents in
a step-by-step manner and generates a new indi-
vidual that is better than or almost equally dis-
tant from both of the parents. MSX is especially
useful when combined with a local search, be-
cause it exploits a good new starting point for
the subsequent local search.

We applied GA/MSX to the job-shop
scheduling problem, one of the most difficult
NP-hard combinatorial problems known to-
day. The preliminary experiments demonstrated
that GA/MSX is comparable to or outperforms
SA using the same neighborhood structure and
other GA methods. However, further research
including the application of GA/MSX to more
difficult JSSP benchmark problems or to other
kinds of combinatorial problems is necessary to
show the full capabilities of MSX.
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