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Abstract

In this paper, the landscape for the permutation flowshop
scheduling problem (PFSP) with stochastic local search
and a critical block-based neighbourhood structure has
been investigated. Numerical experiments using small
benchmark problems show that there are good correlations
between the makespans of local optima, the average dis-
tances to other local optima and the distances to the known
global optima. These correlations suggest the existence
of a ‘big valley’ structure, where local optima occur in
clusters over the landscape. An approximation method
for PFSP that would make use of this big valley struc-
ture is proposed by using a critical block-based neighbour-
hood structure, and a genetic local search method called
MSXF-GA, previously developed for the job shop schedul-
ing problem. Computational experiments using more chal-
lenging benchmark problems demonstrate the effective-
ness of the proposed method.

1 Introduction

It is well known that Genetic Algorithms (GAs) can be en-
hanced by incorporating constructive heuristics or point-
based local search methods. The incorporation is often re-
ferred as Genetic Local Search (GLS) or population-based
local search. Basically, GLS can be viewed as a variant of
Adaptive Multi-Start (AMS) methods in which new start-
ing points are generated adaptively based on previously
found local optima. Yamada and Nakano have extended
the idea of GLS and proposed Multi-Step Crossover Fusion
(MSXF) [12]. Instead of generating a new starting point
from parents by a recombination operator, MSXF uses one
of the parents itself as a new starting point and carries out
a ‘navigated’ local search where the search direction is bi-
ased toward the other parent.

It has been shown that the success of AMS as well as
GAs strongly depends on some global structure in the cost
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surface or, in GA terminology, fitness landscape. For ex-
ample, Boese et al. [2] have suggested that, in the cases
of the travelling salesman problem (TSP) and graph bi-
section for which AMS worked well, local optima tend to
be relatively close to each other (in terms of a plausible
metric) and to the known global optimum. This structure,
where local optima occur in clusters, has been called a ‘big
valley’ structure. Jones and Forrest [4] have shown that
many GA-easy problems have strong correlation between
fitness and distance to the global optimum. More recently,
Reeves [7] has re-formulated the landscape concept in the
context of an associated neighbourhood structure and con-
firmed that the landscape of the (makespan minimizing)
permutation flowshop sequencing problem (PFSP) induced
by rather simple neighbourhood operators also exhibits a
big valley structure under a position-based metric.

In this paper, the PFSP landscape induced by a more so-
phisticated neighbourhood operator is investigated. This
neighbourhood focuses on critical blocks and uses a
stochastic local search based on the Metropolis criterion.
Section 2 gives the problem definitions and explains a crit-
ical block-based neighbourhood structure and the distance
measures. Section 3 explains the GLS approach based on
the stochastic local search and MSXF. Section 4 investi-
gates the existence of a ‘big valley structure’ for the PFSP
with stochastic local search and the representative neigh-
bourhood.

Assuming that a ‘big valley’ structure holds for a wide
range of PFSP landscapes induced by this neighbourhood
operator, it is expected that the use of an adaptive multi-
start method in which new local search is concentrated on
a region between previously found local optima should be
effective in finding near-optimal solutions even for more
difficult problems. Section 5 shows an implementation of
MSXF-GA for the PFSP. In Section 6 MSXF-GA is ap-
plied to more challenging benchmark problems. Exper-
imental results demonstrate the effectiveness of the pro-
posed method.



2 The permutation flowshop
scheduling problem

The permutation flowshop scheduling problem (PFSP) is
often designated by the symbolsn=m=P=Cmax, wheren
jobs have to be processed onmmachines in the same order.
The processing of each job on each machine is an opera-
tion which requires the exclusive use of the machine for
an uninterrupted duration called the processing time.P
indicates that only permutation schedules are considered,
where the order in which each machine processes the jobs
is identical for all machines. Hence a schedule is uniquely
represented by a permutation of jobs. The objective is to
find a schedule that minimizes the makespanCmax, the
time at which the last job is completed on the last machine.

In general, a neighbourhoodN(x) of a point x in a
search space can be defined as a set of new points that
can be reached fromx by exactly one transition or move
(a single perturbation ofx). Several transition operators
have been proposed for PFSP. The simplest one is the adja-
cent pairwise exchange operator which exchanges the po-
sitions of two adjacent jobs. The shift operator which takes
a job from its current position and re-inserts it to another
position is shown to be the most efficient among simple
operators[6]. More sophisticated operators are obtained by
limiting the size of the neighbourhood by using the notion
of critical blocks. Nowicki and Smutnicki have proposed
the representative neighbourhood method[5], where a re-
duced neighbourhood is generated from the original criti-
cal block-based neighbourhood by clustering its members
and picking up the best move (representative) from each
cluster. A new neighbourhood is the set of all represen-
tative moves. They proposed a sophisticated tabu search
algorithm using this neighbourhood structure and an inten-
sification mechanism called ‘back jump tracking’.

In this paper, a simplified form of their representative
neighbourhood is adopted. For each jobj in a critical
block, letSa

j be a set of moves that shift the jobj to some
position in the next block; similarlySb

j shiftsj to the previ-
ous block. Evaluate schedules obtained from each move in
Sa
j and denote the best one bysaj . Similarly sbj is obtained

fromSb
j . Then the representative neighbourhood is defined

as a set of all schedules obtained by representative moves
fsaj ; s

b
jg for all jobsj in all critical blocks (see Figure 1).

This corresponds to the case of� = 1 in the notation of [5].
The difference between two permutation schedulesS

andT can be measured by an appropriately defined dis-
tance. For example, an adjacency-based distance is most
commonly used for TSP, where relative ordering is more
important than absolute position in the sequence. On the
other hand, a distance which respects absolute position
more than relative ordering is more suitable for PFSP. In
this paper two well-known distances are considered as fol-
lows:

precedence-based distance:This distance counts the

the best move is selected
as a representative move

the job moved to
the next block

the job moved to
the previous block

j

Sa
j

Sb
j

sbj
saj

Figure 1: The best move to the next/previous block is se-
lected as a representative.

number of job pairsfi; jg in whichj is preceded byi
in S but not inT .

position-based distance:This distance sums up the posi-
tional differences for each job inS andT .

As shown in the later section, these two distances are
strongly correlated with each other, and also with an ap-
proximation to the minimal number of steps of the neigh-
bourhood operator to move fromS to T . In this paper the
precedence-based distance is used.

3 Genetic local search

It is well known that GAs are not well suited for fine-
tuning structures that are very close to optimal solutions,
and that it is essential to incorporate local search meth-
ods, such as neighbourhood search, into GAs. The re-
sult of such incorporation is often calledGenetic Local
Search(GLS) [10]. This approach can be viewed as a vari-
ant of Adaptive Multi-Start (AMS) methods in which local
search is applied repeatedly, each time a new starting point
being generated adaptively based on previously found local
optima [2]. The Multi-Step Crossover Fusion (MSXF) GA
proposed by Yamada and Nakano [12] is one such GLS
method, and it has been applied successfully to job-shop
scheduling problems. This section briefly reviews neigh-
bourhood search and the MSXF.

3.1 Neighbourhood search

An outline of a neighbourhood search (NS) for minimiz-
ing V (x) is described in Algorithm 3.1, wherex denotes a
point in the search space,V (x) denotes its objective func-
tion value andN(x) its neighbourhood. The termination
condition can be given, for example, as a fixed number of
iterationsL.

Step 1 in Algorithm 3.1 defines the NS operator: the
main part of NS. This operator is categorized by the way
a point is selected fromN(x), which is called thechoice
criterion. For example, a descent method selects a point
y 2 N(x) such thatV (y) < V (x). A stochastic method
probabilistically selects a point according to the Metropolis



Algorithm 3.1 Neighbourhood search

� Select a starting point:xbest = x = x0.

do 1. Select a pointy 2 N(x) according to the given
criterion based on the valueV (y). Setx = y.

2. If V (x) < V (xbest) then setxbest = x.

until some termination condition is satisfied.

criterion, i.e. y 2 N(x) is selected with probability 1 if
V (y) < V (x); otherwise, with probability:

PT (y) = exp(��V=T ); where�V = V (y)� V (x) :
(1)

HerePT is called theacceptance probability. Simulated
Annealing (SA) is a method in which the parameterT
(called thetemperature) decreases to zero following an an-
nealing schedule as the number of iterations increases.

Although SA is a well-known stochastic method and
has been successfully applied to many problems includ-
ing scheduling problems, it would be unrealistic to apply
a full SA search within a GA because it would consume
too much time. Therefore a restricted search with a fixed
temperature parameterT = c is used in MSXF.

3.2 Multi-step crossover fusion

The genetic crossover operator has two functions, which
we denote by F1 and F2. Firstly (F1) it focuses attention
on a region between the parents in the search space; sec-
ondly (F2), it picks up possibly good solutions from that
region. Unlike traditional crossover operators, MSXF is
more search oriented: it is designed as an extension of lo-
cal search algorithm described in Algorithm 3.1, but has
the functions F1 and F2, and it is still called ’crossover’.

MSXF carries out a short term ‘navigated’ local search
starting from one of the parent solutions to find new good
solutions (F2), where the other parent is used as a reference
point so that the search direction is biased toward it and
therefore the search is limited between the parents (F1). A
stochastic local search algorithm is used for its base algo-
rithm. A similar idea is described under the title ‘path re-
linking’ [3] in the context of tabu search. MSXF is defined
in a problem-independent manner using a neighbourhood
structure and a distance measure, both of which are very
common for most combinatorial optimization problems.

Let the parent solutions bep0 andp1, and let the distance
between any two individualsx andy in any representation
be d(x; y). A short term local search is carried out start-
ing from p0 and usingp1 as a reference point as follows.
First x is set top0. All members inN(x) are sorted so
that yi 2 N(x) with a smaller indexi has a smaller dis-
tanced(yi; p1). Hered(yi; p1) can be estimated easily if
d(x; p1) and the direction of the transition fromx to yi are

Algorithm 3.2 Multi-Step Crossover Fusion (MSXF)

� Let p0; p1 be parent solutions.

� Setx = q = p0.

do � For each memberyi 2 N(x), calculated(yi; p1).

� Sortyi 2 N(x) in ascending order ofd(yi; p1).

do 1. Selectyi from N(x) probabilistically ac-
cording to a probability inversely propor-
tional to the indexi.

2. CalculateV (yi) if yi has not yet been vis-
ited.

3. Acceptyi with probability one ifV (yi) �
V (x), and withPc(yi) otherwise.

4. Change the index ofyi from i to n, and the
indices ofyk (k 2 fi+1; i+2; : : : ; ng) fromk to
k � 1.

until yi is accepted.

� Setx = yi.

� If V (x) < V (q) then setq = x.

until some termination condition is satisfied.

� q is used for the next generation.

known; it is not necessary to generate and evaluateyi. One
of the membersyi 2 N(x) is selected with a probability
inversely proportional to the indexi. Thenyi is accepted
according to the Metropolis criterion usingT = c in Equa-
tion (1). MSXF is described in outline in Algorithm 3.2.
As previously suggested, the termination condition can be
given by, for example, a fixed number of iterationsL in the
outer loop. The best solutionq is used for the next genera-
tion.

MSXF is not applicable if the distance betweenp0 and
p1 is too small compared to the number of iterations. If
this happens very often, it means that the population has
already converged to a specific region of the search space.
In such a case, a mutation operator calledMulti-Step Muta-
tion Fusion(MSMF) is applied to help diversify the search
again. MSMF can be defined in the same manner as MSXF
except thatN(x) members are sorted in descending order
of d(yi; p1) in Algorithm 3.2, and the most distant solution
is stored and used in the next generation instead ofq, if q
does not improve the parent solutions.

4 Landscape analysis

According to Höhn and Reeves [7], a landscape is defined
by a triple of a search space, an objective function and a
distance measure. The link between landscape and search
algorithm is given by the NS operators used in the algo-
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Figure 2: 1841 distinct local optima obtained from 2500 short term local search for the ta011 (20� 10) problem and 2313
distinct local optima for the ta021 (20� 20) problem are plotted in terms of (a) average distance from other local optima
and (b) distance from global optima (x-axis), against their relative objective function values (y-axis).

rithm. Because these operators generate new points in the
search space relative to a given point, they define a distance
dN (s; t) on the search space given by the minimum num-
ber of applications of operatorN that will convert element
t into elements.

One can understand the degree of difficulty of the given
combinatorial optimization problem by looking at its land-
scape: if the landscape is simple and has only one peak,
it is very easy to find the global optimum by using simple
best ascent search. Unfortunately mostNP -hard combi-
natorial optimization problems, including PFSP, have very
‘rugged’ landscapes with many false peaks under any NS
operator.

Recently, Boese et al. [2] have shown that an appropri-
ate choice of NS operator introduces some neat structure
into the landscape. In this ‘big valley’ structure, local op-

tima occur in clusters – good candidate solutions are usu-
ally to be found ‘fairly close’ to other good solutions. If
a landscape has this structure, it would support the idea
of generating new starting points for search from a previ-
ous local optimum rather than from a random point in the
search space.

Before we apply our GLS method to PFSP, we investi-
gate whether there is a big valley structure for the PFSP
and the NS operator using the representative neighbour-
hood and a stochastic search based on Equation (1) at
T = c (constant temperature). For the same PFSP but
with simpler NS operators, similar experiments reported
in Reeves [6] found such a landscape did occur.

As discussed in [4, 2, 6], the existence of a big valley
structure can be examined by first generating a set of ran-
dom local optima and then observing the correlation be-



tween their objective function values and their distances to
the nearest global optimum, and/or their average distances
to other local optima. The distance used here should be
dN for an operatorN . However this distance is difficult to
compute, and precedence-based distance is used here as an
approximation.

Figure 2 shows a scatter plot of random local optima
for problems ta011 and ta021, being respectively the first
of Taillard’s20� 10 and20� 20 groups of problems [9].
Each local optimum is generated by running the neighbour-
hood search described in Algorithm 3.1 withL = 5000
based on the stochastic method with acceptance probabil-
ity Pc, c = 5. Extensive preliminary experiments found
only two distinct global optima for the ta011 problem, very
close to each other in terms of the precedence-based dis-
tance (the distance is two) and only one global optimum
for ta021 problem; however one cannot rule out the possi-
bility of finding other different global optima by continuing
the search. However, more than 2500 global optima were
found for the smaller ta001 (20� 5) problem by spending
the same amount of CPU time.

The x-axis in Figure 2 represents (a) the average
precedence-based distance from other local optima (ME-
AND), and (b) the precedence-based distance from one of
the nearer global optima (BESTD). They-axis represents
their objective function values relative to the global opti-
mum. These plots clearly show that there are good corre-
lations between the distances and objective function val-
ues. The calculated correlation coefficients for each plot
are: ta011(a): 0.74, ta011(b): 0.50, ta021(a): 0.62 and
ta021(b): 0.44. These values are statistically significant
at the 0.1% level, on the basis of 1000 replications in a
randomization test [6]. These high correlations suggest
that the local optima are radially distributed in the problem
space with the global optima as the centre, and the more
distant are the local optima from the centre, the worse are
their objective function values. Hence, by tracing local op-
tima step by step, moving from one optimum to nearby
slightly better one, without being trapped, one can eventu-
ally reach a near global optimal solution.

In the analysis above, the precedence-based distance is
used as a surrogate fordN , because the minimum number
of steps for the neighbourhood operator to reach the global
optimum is difficult to compute. Although the precedence-
based distance seems to be a good alternative, the approx-
imation still need to be justified. For this purpose, the ap-
proximate number of steps to reach the global optimum
from each local optimum was calculated by choosing the
closest move to the global optimum each time from the
neighbourhood. While this does not necessarily give the
best distance between two points, it seems likely to give a
fairly close upper bound.

Figure 3 (a) shows the correlation between the
precedence-based distance and the approximate number
of steps for the local optima shown in Figure 2 ta011(a)
(correlation coefficient is 0.66). Figure 3 (b) shows that
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Figure 3: analysis of 1000 random local optima for20 �
10 flowshop problem. The x-axis shows precedence-based
distance from the global minimum and the y-axis shows
the makespan.

there is a strong correlation between the precedence-based
distance and the position-based distance for the same lo-
cal optima (correlation coefficient is 0.91). Thus it does
not matter which distance is used. The same kind of ex-
periments were carried out for all Taillard’s20 � 10 and
20 � 20 benchmarks, and similar results were obtained
in every case. Therefore, the use of the easily-computed
precedence-based distance appears to be justified, and the
‘big valley’ structure can be assumed to hold for this neigh-
bourhood.

5 MSXF-GA for PFSP

As described in Section 3.2, the MSXF operator is de-
signed to find a new local optimum based on previous ones.
MSXF-GA provides a framework for traversing local op-



tima without being trapped, by concentrating its attention
on the area between the parent solutions and thus eventu-
ally finding a very good solution under the assumption of
a ‘big valley’. MSXF-GA was applied to PFSP using the
representative neighbourhood described in Section 2 and
the precedence-based distance.

Algorithm 5.1 describes the outline of the MSXF-GA
routine for the PFSP using the steady state model proposed
in [8, 11]. In this model, the population is ranked according
to the makespan values, and the parents are selected from
the population with a probability inversely proportional to
their ranks. The newly generated solutionq is inserted into
the population only if its makespan is better than the worst
in the current population. To avoid premature convergence
even under a small-population condition, if an individual
with the same makespan already exists in the population,
thenq is not inserted into the population in Step 3.

Algorithm 5.1 MSXF-GA for the PFSP

� Initialize population: randomly generate a set of permu-
tation schedules. Sort the population members in de-
scending order of their makespan values.

do 1. Select two schedulesp0; p1 probabilistically
from the population with a probability inversely
proportional to their ranks.

2. Do step (2a) with probabilityPx, or otherwise
do Step (2b).

(a) If the precedence-based distance between
p1; p2 is less thandmin, apply MSMF top1
and generateq.
Otherwise, apply MSXF top1; p2 using the
representative neighbourhoodN(p1) and
the precedence-based distance and generate
a new scheduleq.

(b) Apply Algorithm 3.1 with acceptance prob-
ability Pc and the representative neighbour-
hood.

3. If q’s makespan is less than the worst in the pop-
ulation, and no member of the current popula-
tion has the same makespan asq, replace the
worst individual withq.

until some termination condition is satisfied.

� Output the best schedule in the population.

6 Experimental results

In Section 4, the existence of a big valley structure became
clear for the relatively small-size PFSP instances. An adap-
tive multi-start method (AMS) in which new local search

Parent0 Parent1

Offspring

MSXF

Figure 4: Navigated local search by MSXF-GA: A new
search is started from one of the parents and while no
other good solutions are found, the search ‘navigates’ to-
wards the other parent. In the middle of the search, good
solutions would be eventually found somewhere between
the parents. That direction is then pursued to the top of
a hill (or a bottom of the valley, if it is a minimization
problem)—a new local optimum.

is concentrated in a region between previously found lo-
cal optima should be effective at least for these problems.
MSXF-GA for PFSP is especially designed as one of the
AMS approaches for PFSP. Preliminary experiments show
that MSXF-GA is very effective for the problem instances
discussed in Section 4, and the global optima are found
very quickly. In this section we will extend our investi-
gations to larger-size problems and apply MSXF-GA to a
subset of Taillard’s benchmark problems.

Table 1 summarizes the performance statistics of
MSXF-GA for a subset of Taillard’s benchmark problems
together with the results found by Nowicki and Smutnicki
using their tabu search implementation[5] and the lower
and upper bounds, taken from the OR-library [1]. (Upper
bounds are the currently best-known makespans, most of
them found by a branch and bound technique with compu-
tational time unknown). In all, 30 runs were completed for
each problem under the same conditions but with differ-
ent random number seeds. For each MSXF-GA run, pop-
ulation size= 15, constant temperaturec = 3, number
of iterations for each MSXF= 1000, dmin = n=2 and
Px = 0:5 are used. Each run is terminated after 700 iter-
ations, which takes about 12, 21 and 47 minutes of CPU
time respectively for each50� 20, 100� 20 and200� 20
problems on a DEC Alpha 600 5/226.

It can be seen that the results for50 � 20 problems are
remarkable: the solution qualities of our best results are
improved over those found in [5] for most of the problems,
and some results (marked in bold letters) are even better
than the existing best results reported in the OR-library.
The results for larger problems are not as impressive as
those of50�20 problems, but still good enough to support
our hypothesis. The degradation is probably due to the in-
creasing complexity of the neighbourhood calculation. In
fact for problems where the ration=m > 3, Nowicki and
Smutnicki abandoned their representative neighbourhood



and used a simple one instead: just moving a job to the
beginning or the end of its critical block. They also imple-
mented an efficient way of evaluating all the members in
the neighbourhood in a specific order, which is useful for
the tabu search but not directly applicable to our stochastic
search. (Their paper [5] provides more details.)

7 Conclusions

The landscape for the Permutation Flowshop Scheduling
Problem with stochastic local search and the representa-
tive neighbourhood structure has been investigated. The
experimental analysis using20� 10 and20� 20 Taillard
benchmark problems shows the existence of a ‘big valley’
structure for PFSP. This suggests a well-designed AMS
method, such as MSXF-GA in which new local search is
concentrated in a region between previously found local
optima should be effective in finding near-optimal solu-
tions. MSXF-GA for the PFSP is implemented using the
neighbourhood operator and applied to more challenging
benchmark problems. Experimental results demonstrates
the effectiveness of the proposed method.
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Table 1: Results of the Taillard benchmark problems
50� 20 100� 20 200� 20

No. best avg. nowi lb – ub best avg. nowi lb – ub best avg. nowi lb – ub
1 3861 3880 3875 3771–3875 6242 6259 6286 6106–6228 11272 11316 11294 11152–11195
2 3709 3716 3715 3661–3715 6217 6234 6241 6183–6210 11299 11346 11420 11143–11223
3 3651 3668 3668 3591–3668 6299 6312 6329 6252–6271 11410 11458 11446 11281–11337
4 3726 3744 3752 3631–3752 6288 6303 6306 6254–6269 11347 11400 11347 11275–11299
5 3614 3636 3635 3551–3635 6329 6354 6377 6262–6319 11290 11320 11311 11259–11260
6 3690 3701 3698 3667–3687 6380 6417 6437 6302–6403 11250 11288 11282 11176–11189
7 3711 3723 3716 3672–3706 6302 6319 6346 6184–6292 11438 11455 11456 11337–11386
8 3699 3721 3709 3627–3700 6433 6466 6481 6315–6423 11395 11426 11415 11301–11334
9 3760 3769 3765 3645–3755 6297 6323 6358 6204–6275 11263 11306 11343 11145–11192

10 3767 3772 3777 3696–3767 6448 6471 6465 6404–6434 11335 11409 11422 11284–11313
best, avg.: our best and average makespan values
nowi: results of Nowicki and Smutnicki
lb, ub: theoretical lower bounds and best known makespans taken from OR-library


