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Abstract— It is well known that GAs are
not well suited for fine-tuning structures that
are very close to optimal solutions and that
it is essential to incorporate local search
methods, such as neighborhood search, into
GAs. This paper explores the use of a new
GA operator called multi-step crossover fu-
sion (MSXF), which combines a crossover
operator with a neighborhood search algo-
rithm. MSXF performs a local search es-
sentially in the region within the search
space between parent solutions to find a lo-
cally optimal solution that inherits the par-
ents’ characteristics. GA/MSXF was applied
to job-shop scheduling problem (JSSP). Ex-
periments using benchmark problems show
promising GA/MSXF performance even with
a small population.

I. Introduction

In solving combinatorial optimization prob-
lems such as job-shop scheduling problems
(JSSP), it is often more difficult to define a
crossover operator that recombines solutions and
makes global changes to them than it is to define
a transition operator of a neighborhood search
algorithm that only modifies a solution locally.
Reeves proposed a neighborhood search crossover
for Simple GA based on an extended neighboor-
hood and Hamming distance[8]. In fact, it is
rather easy to construct an example of neighbor-
hood search for JSSP by using naturally intro-
duced job permutations, and this can be further
enhanced by limiting the permutations on the
critical path and using active schedules. Unfor-
tunately, the same method provides no help in
building an effective crossover operator, which
prevents us from applying GAs.

A GA using a binary encoding scheme was
first proposed by the authors in [7]. Although
this approach is simple and straightforward, it is
not robust enough because some members in the
binary neighborhood cannot be mapped back
to job sequences or feasible schedules. Limit-
ing the search to the set of all active sched-
ules has proved to be more efficient. The

GT crossover based on Giffler and Thompson’s
active scheduler algorithm was proposed as a
high-level crossover in this higher-level solution
space[12]. A still higher-level solution space is
obtained by focusing on the critical path of a
schedule and limiting the search to the criti-
cal path level. Simulated Annealing (SA) using
the Critical Block (CB) neighborhood has been
shown experimentally to be very powerful com-
pared with other GA methods and SA methods
using other neighborhoods[15, 14].

Therefore it is quite natural to expect that
GA’s population-based search strategies and the
fine tuning mechanism of local neighborhood
search could be unified to produce a very pow-
erful optimization algorithm for JSSP. In this
paper, Multi-Step Crossover Fusion (MSXF) is
proposed as a new high-level crossover fused
with a local search method. In MSXF, a so-
lution initially set to be one of the parents is
stochastically replaced by a relatively good solu-
tion from the neighborhood, where the replace-
ment is biased toward the other parent. The bi-
ased stochastic replacement is described briefly
as follows:
1. All members in the neighborhood are indexed

in ascending order according to their distance
from the other parent.

2. A member is randomly selected from the
neighborhood, but a smaller index is preferred.
It is then probabilistically accepted according
to its evaluation value.

3. If it is rejected, its index is changed to the
largest one in the neighborhood and the pro-
cess returns to step 2.

4. Otherwise the current solution is replaced by
the selected one.

After a certain number of iterations of this pro-
cess, the best one among the generated solu-
tions is selected as an offspring. MSXF can
be viewed as a recombination operator in which
local search functionality is built in. In other
words, it acts as a single operator unifying
crossover and local search.

MSXF has been applied to JSSP, employ-



ing a critical path-based neighborhood called
the CB neighborhood. Extensive experimental
studies have established the CB neighborhood
as one of the most powerful neighborhoods for
JSSP [15]. A GA with such a tailored high-level
MSXF (GA/MSXF) was evaluated with well-
known benchmark problems.

II. Background

A. Neighborhood Search

Neighborhood search is a widely used local
search technique to solve combinatorial opti-
mization problems. A solution x is represented
as a point in the search space, and a set of so-
lutions associated with x is defined as neighbor-
hood N(x). N(x) is a set of feasible solutions
capable of being reached from x by exactly one
transition, a single perturbation of x.

An outline of a neighborhood search for mini-
mizing V (x) is described in Algorithm 1, where
x denotes a point in the search space and V (x)
denotes its evaluation value.

Algorithm 1 Neighborhood search
• Select a starting point: x = x0 = xbest.
do

1. Select a point y ∈ N(x) according to the
given criterion based on the value V (y). Set
x = y.

2. If V (x) < V (xbest) then set xbest = x.
until some termination condition is satisfied.

The criterion used in Step 1 in Algorithm 1 is
called the choice criterion, by which the neigh-
borhood search can be categorized. For exam-
ple, a descent method selects a point y ∈ N(x)
such that V (y) < V (x). A stochastic method
probabilistically selects a point according to the
Metropolis Criterion, i.e. y ∈ N(x) is selected
with probability 1 if V (y) < V (x); otherwise,
with probability:

P (y) = exp(−∆V/T ), where ∆V = V (y)−V (x) .
(1)

Here P is called the acceptance probability. Sim-
ulated Annealing (SA) is a method in which pa-
rameter T (called the temperature) decreases to
zero following an annealing schedule as the iter-
ation step increases.

B. Multi-Step Crossover Fusion

It is well known that GAs are not well suited
for fine-tuning structures that are very close to
optimal solutions and that it is essential to incor-
porate local search methods, such as neighbor-

hood search, into GAs. The result of such in-
corporation is often called Genetic Local Search
(GLS) [10]. In this framework, an offspring ob-
tained by a recombination operator, such as a
crossover, is not included in the next generation
directly but is used as a “seed” for the subse-
quent local search. The local search moves the
offspring from its initial point to the nearest lo-
cally optimal point, which is included in the next
generation.

For more complicated problems to which
crossover operators are difficult to apply, this pa-
per proposes a different approach called Multi-
Step Crossover Fusion (MSXF): a new crossover
operator in which local search functionality is
built in. A stochastic local neighborhood search
algorithm is used for the base algorithm of
MSXF. Although SA is a well-known stochas-
tic method and has been successfully applied to
many problems as well as to JSSP, it would be
unrealistic to apply a full SA to our purpose be-
cause it is too time consuming to run SA many
times in a GA run. A restricted method with
a fixed temperature parameter T = c might be
a good alternative. Accordingly, the acceptance
probability used in Algorithm 1 is rewritten as:

Pc(y)=exp

(
−∆V

c

)
, ∆V =V (y)−V (x), c : const.

(2)
A crossover functionality can be incorporated

into Algorithm 1 by adding more acceptance bias
in favor of y ∈ N(x) with a small d(y, p2). The
acceptance bias in MSXF is controlled by sorting
N(x) members in ascending order of d(yi, p2) so
that yi with a smaller index i has a smaller dis-
tance d(yi, p2). Here d(yi, p2) can be estimated
easily if d(x, p2) and the direction of the transi-
tion from x to yi are known, and it is not nec-
essary to generate and evaluate yi. Then yi is
selected from N(x) randomly, but with a bias in
favor of yi with a small index i. The outline of
MSXF is described in Algorithm 2.

In place of d(yi, p2), one can also use
σ(d(yi, p2) − d(x, p2)) + rε to sort N(x) mem-
bers in Algorithm 2. Here σ(x) denotes the sign
of x: σ(x) = 1 if x > 0, σ(x) = 0 if x = 0,
σ(x) = −1 otherwise. A small random fraction
rε is added to randomize the order of members
with the same sign.

The termination condition can be given, for
example, as the fixed number of iterations in
the outer loop. MSXF is not applicable if the
distance between p1 and p2 is too small com-
pared to the number of iterations. In such a case,
a mutation operator called Multi-Step Mutation



Algorithm 2 Multi-Step Crossover Fusion
(MSXF)
• Let p1, p2 be parent solutions.
• Set x = p1 = q.
do • For each member yi ∈ N(x), calculate

d(yi, p2).
• Sort yi ∈ N(x) in ascending order of

d(yi, p2).
do 1. Select yi from N(x) randomly, but

with a bias in favor of yi with a small
index i.

2. Calculate V (yi) if yi has not yet been
visited.

3. Accept yi with probability one if
V (yi) ≤ V (x), and with Pc(yi) other-
wise.

4. Change the index of yi from i to n, and
the induces of yk (k ∈ {i+1, i+2, . . . , n})
from k to k − 1.

until yi is accepted.
• Set x = yi.
• If V (x) < V (q) then set q = x.

until some termination condition is satisfied.
• q is used for the next generation.

Fusion (MSMF) is applied instead. MSMF can
be defined in the same manner as MSXF except
for one point: the bias is reversed, i.e. sort the
N(x) members in descending order of d(yi, p2)
in Algorithm 2.

III. Job Shop Scheduling and GA/MSXF

The general n×m minimum-makespan job-
shop scheduling problem can be described by a
set of n jobs that is to be processed on a set
of m machines. Each job follows a technological
sequence of the machines in processing. Each op-
eration requires the exclusive use of one machine
for an uninterrupted duration called processing
time. The time required to complete all jobs is
called makespan. The objective when solving or
optimizing this general problem is to determine
the processing order of each machine’s opera-
tions that minimizes the makespan.

Job-shop scheduling problems are often de-
scribed by a disjunctive graph G = (V, C ∪ D),
where

• V is a set of nodes representing the operations
of all jobs together with two special nodes, a
source (0) and a sink ?, representing the begin-
ning and the end of the schedule, respectively.

• C is a set of conjunctive arcs representing the
technological sequences of operations.

• D is a set of disjunctive arcs representing pairs

of operations that must be performed on the
same machine.

The processing time for each operation is the
weighted value attached to the corresponding
nodes.
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Figure 1: Disjunctive graph G of a 3×3 problem

Scheduling defines the ordering between all
operations that must be processed on the same
machine, i.e. to fix precedences between oper-
ations. In the disjunctive graph model, this is
done by turning all undirected (disjunctive) arcs
into directed ones. The set of all directed arcs
selected from disjunctive arcs is called a selec-
tion.

A selection S defines a feasible schedule if and
only if the resulting directed graph is acyclic.
In such a case, S is called a complete selection.
A complete selection and its corresponding fea-
sible schedule can be used interchangeably and
represented by the same symbol S.

Makespan is given by the length of the longest
weighted path from source to sink in this graph.
This path P is called the critical path and is
composed of a sequence of critical operations.
A sequence of consecutive critical operations on
the same machine is called a critical block.

The distance between two schedules S and T
can be measured by the number of differences in
the processing order of operations on each ma-
chine [7]. In other words, it can be calculated by
summing the disjunctive arcs whose directions
are different between S and T . We call this dis-
tance the disjunctive graph (DG) distance.

A. Active schedules

A schedule’s makespan may often be reduced
by shifting an operation to the left without de-
laying other jobs. When no such shifting can be
applied to a schedule, it is called an active sched-
ule. An optimal schedule is clearly active, so it
is safe and efficient to limit search space to the
set of all active schedules. An active schedule is
generated by the GT algorithm proposed in [5].



An extension of the CB neighborhood using the
GT algorithm is proposed in [13], which is called
the active CB neighborhood. It was experimen-
tally shown in [14] that SA using the active CB
neighborhood is very robust.

Algorithm 3 GA/MSXF for JSSP
• Initialize population: randomly generate a set

of left and right active schedules in equal num-
ber and apply the local search to each of them.

do 1. Randomly select two schedules p1, p2 from
the population with some bias depending on
their makespan values.

2. Change the direction (left or right) of p1 by
reversing the job sequences with probability
Pr.

3. Do step (3a) with probability Pc, or other-
wise do step (3b).
(a) If the DG distance between p1, p2 is

shorter than some predefined small
value, apply MSMF to p1 and gener-
ate q.
Otherwise, apply MSXF to p1, p2 us-
ing the active CB neighborhood N(p1)
and the DG distance and generate a
new schedule q.

(b) apply Algorithm 1 with accepting prob-
ability given by Equation 2 and active
CB neighborhood.

4. If q’s makespan is shorter than the worst in
the population, and no one in the popula-
tion has the same fitness value as q, replace
the worst individual with q.

until some termination condition is satisfied.
• Output the best schedule in the population.

A given problem of JSSP can be converted to
another problem by reversing all the technolog-
ical sequences. The new problem is equivalent
to the old one in the sense that reversing the
job sequences of any feasible solution from the
original problem results in a feasible solution for
the reversed problem with the same critical path
and makespan. It can be seen, however, that an
active schedule from the original problem is not
necessarily active in the reversed problem. we
call a schedule left active if it is an active sched-
ule for the original problem and right active if it
is an active schedule for the reversed problem.
Searching only in the set of left (or right) active
schedules may bias the search toward the wrong
direction and result in poor local minima.

B. GA/MSXF for Job-shop Scheduling

The MSXF is applied to JSSP by using the
active CB neighborhood and the DG distance
previously defined. Algorithm 3 describes the
outline of the GA/MSXF routine for JSSP us-
ing the steady state model proposed in [11, 9].
To avoid premature convergence even under a
small-population condition, an individual whose
fitness value is equal to someone in the popula-
tion is not inserted into the population in step
4.

A mechanism to search in the space of both
left and right active schedules is introduced in
the GA/MSXF as follows. First, there are equal
numbers of left and right active schedules in
the initial population. The schedule q gener-
ated from p1 and p2 by MSXF ought to be left
(or right) active if p1 is left (or right) active,
but with some probability (0.1 for example) this
property is reversed.

IV. Experimental Results

The performance of GA/MSXF was tested
by running several simulation trials using
well-known benchmark problems of Muth and
Thompson (MT)[6].

Table 1 summarizes the makespan perfor-
mance of the GA/MSXF method together with
a simulated annealing method using the CB
neighborhood structure (CBSA) [15], and per-
formances of other GA methods published
so far in the literature for MT10×10 and
MT20×5 problems. The GA methods include
GA/GT+ECO [2], PGA+SBP [3], GVOT [4]
and GA/MSX[13]. For GA/MSXF, population
size = 10, constant temperature c = 10 and
number of iterations for each MSXF = 1000,
Pr = 0.1 and Pc = 0.5 are used. The GA/MSXF
experiments were performed on a DEC Alpha
600 5/226 which is about four times faster than
a Sparc Station 10, and the programs were writ-
ten in C language. It should be noted that all of
the GA/MSXF experiments successfully found
optimal solutions in about one and a half min-
utes for each problem.

Figure 2 shows all of the solutions (in small
dots) generated by an application of (a) MSXF
and (b) a stochastic local search computation-
ally equivalent to (a) for comparison. Both (a)
and (b) started from the same solution (the same
parent p1), but in (a) transitions were biased
toward the other solution p2. The x-axis repre-
sents the number of disjunctive arcs whose direc-
tions are different from those of p2 on machines
with odd numbers, i.e. the DG distance was



Table 1: Performance comparisons using MT benchmark problems
Prob Method Best Avg Var Pop cpu time machine runs

MT10×10 CBSA 930 930.8 2.4 - 44m36s SS2 10
GA/GT+ECO 930 963 14 2025 5m SS2 200

Opt. 930 PGA+SBP 930 947 8.2 100 2.3m SS10 200
GVOT 949 977 ? 500 25m SUN4 ?

GA/MSX 930 934.5 5.1 500 11m39s SS10 10
GA/MSXF 930 930 0 10 3m44s SS10 10

MT20×5 CBSA 1178 1178 0 - 38m18s SS2 5
GA/GT+ECO 1181 1213 16 5041 30m SS2 200

Opt. 1165 PGA+SBP 1165 1188 10.3 100 2.3m SS10 200
GVOT 1189 1215 ? 500 25m SUN4 ?

GA/MSX 1165 1177.3 4.2 100 10m54s SS10 10
GA/MSXF 1165 1165 0 10 55s DECα 10

Pop: population size; cpu time: average cpu time; machine: machine used
for the experiments; runs: number of runs; SS2(SS10): SUN SPARC Sta-
tion 2(10); DECα: DEC Alpha 600 5/266
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Figure 2: Distribution of solutions generated by
an application of (a) MSXF and (b) a short-term
stochastic local search

restricted to the odd machines. Similarly, the y-
axis representing the DG distance was restricted
to the even machines.

Table 2 shows the makespan performances
of GA/MSXF for the ten difficult benchmark
JSSPs[1]. The parameters used here are the
same as those of the MT benchmark except for
population size = 20. The algorithm was ter-
minated when an optimal solution was found or
after 40 minutes of cpu time on the DEC Alpha
600 5/266. In the table, the column named lb
shows the known lower bound or known optimal
value (for la40) of makespan, and the columns
named bst, avg and wst show the best, average,
variance and worst makespan values obtained,
respectively. The columns named nopt and topt

show the number of runs in which the optimal
schedules are obtained and their average cpu
times.

The optimal solutions were found for half of
the ten problems, and four of them were found
very quickly. The small variances in the solution
qualities indicate the stableness of GA/MSXF as
an approximation method.

Table 2: Results of 10 touch JSSPs
prob lb bst avg var wst nopt topt

abz7 655 678 692.5 0.94 703 – –
abz8 638 686 703.1 1.54 724 – –
abz9 656 697 719.6 1.53 732 – –
la21 – ?1046 1049.9 0.57 1055 9 687.7
la24 – ?935 938.8 0.34 941 4 864.1
la25 – ?977 979.6 0.40 984 9 765.6
la27 – ?1235 1253.6 1.56 1269 1 2364.75
la29 1130 1166 1181.9 1.31 1195 – –
la38 – ?1196 1198.4 0.71 1208 21 1051.3
la40 ?1222 1224 1227.9 0.43 1233 – –

V. Conclusion

The multi-step crossover fusion (MSXF) is
proposed as a unified operator of a local search
method and a recombination operator in GLS.
MSXF uses a neighborhood structure and a dis-
tance measure in the problem space. Starting
from one parent, MSXF carries out a local neigh-
borhood search with a limited number of itera-
tions, where the search direction is navigated by
the other parent. MSXF searches for a good so-
lution in the problem space by concentrating its
attention on the area between the parents.

We applied GA/MSXF to the job-shop
scheduling problem. Experiments using Muth
and Thompson’s benchmark demonstrated that
GA/MSXF outperforms other GA methods de-
scribed in the literature. GA/MSXF could find
near-optimal solutions for ten difficult bench-
mark problems, including optimal solutions for
five problems.

Further research, including the application of
GA/MSXF to other kinds of combinatorial prob-



lems, is necessary to show the full capabilities of
MSXF.
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