
New Methods to Find Optimal Non-Disjoint Bi-Decompositions

Shigeru Yamashita Hiroshi Sawada Akira Nagoya

NTT Communication Science Laboratories
2-Chome, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Tel: +81-774-95-{1867, 1866, 1860}
Fax: +81-774-95-1876

e-mail: {ger, sawada, nagoya}@cslab.kecl.ntt.co.jp

Abstract— This paper presents new efficient

methods to find “optimal bi-decomposition” forms

of logic functions. An “optimal bi-decomposition”

form of f(X) is f = α(g1(X1), g2(X2)) where the total

number of variables in X1 and X2 is the smallest

among all bi-decomposition forms of f . We consider

two methods; one’s decomposition form is (g1 · g2) and

the other’s is (g1⊕g2). The proposed methods can find

one of the existing “optimal” decomposition forms

efficiently based on the Branch-and-Bound algorithm.

These methods can decompose incompletely specified

functions. Preliminary experimental results show that

the proposed methods can construct networks with

fewer levels than conventional methods.

I. Introduction

When implementing a combinational logic function
using a given technology, the desired function must be
decomposed or factorized to smaller functions so that the
decomposed functions can fit onto the implementation
primitives of the technology. Many decomposition
methods, therefore, have been proposed. Among them,
AND/OR factoring and weak division [1] are supreme
methods when expressions are in sum-of-product forms.
In some cases, however, other approaches produce better
results. For example, factoring with XOR can express
some logic functions simpler than AND/OR factoring
[2, 3]. As for the synthesis of LUT (Look-Up Table)
networks, functional decomposition [4] based methods can
often produce better results [5].

Most of the previously proposed functional decompo-
sition methods have been based on Roth-Karp decom-
position [6], and thus they decompose function f to
the following form: f = α(g1(XB), . . . , gt(XB), XF) =
α(~g(XB),XF), where XB and XF are sets of variables.
We can think of another strategy for functional decompo-
sition: function f is decomposed into only two functions
as f = α(g1(X1), g2(X2)), where X1 and X2 are sets of
variables. This decomposition is called bi-decomposition
[7]. If X1 and X2 are disjoint, the bi-decomposition form
can be found very quickly [7]. In some cases, a “non-

disjoint” bi-decomposition form can provide the best de-
composition. (An example will be shown in Section II.)

The methods proposed in [8, 9] can find non-disjoint
bi-decomposition forms efficiently using the notion of
“groupability”. The methods can find a bi-decomposition
form for given X1 and X2, but they still have a problem
selecting the best X1 and X2.

In this paper, we propose new efficient methods to
find “optimal” non-disjoint bi-decomposition forms of
incompletely specified functions. Here, “optimal” means
that the total number of variables in X1 and X2 is
the smallest among all bi-decomposition forms. This
meaning is thought to be adequate for the synthesis of
LUT networks, because an LUT can realize a complex
function if the number of input variables does not exceed
the maximum number of inputs of the LUT. We think our
methods can provide a solution to the problem of how to
select the best X1 and X2, especially in LUT network
synthesis.

This paper is organized as follows. In Section II, we
explain non-disjoint bi-decomposition and formulate our
problem. In Section III, we propose the novel methods
to find “optimal” bi-decomposition forms. We present
preliminary experimental results in Section IV. Section
V concludes this paper.

II. Preliminaries

A. Non-Disjoint Bi-Decomposition

The decomposition form f = α(g1(X1), g2(X2)) is
called a bi-decomposition form [7]. If X1 and X2 are
disjoint, it is called a “disjoint” bi-decomposition form. If
X1 and X2 are not disjoint, it is called a “non-disjoint”
bi-decomposition form.

Disjoint bi-decomposition forms are very useful for logic
synthesis, and they can be found quickly [7]. However,
there are functions that can be decomposed efficiently
only by non-disjoint bi-decomposition. For example,
suppose we want to decompose (x1 + x2 + x3) · (x2 ⊕
x3 ⊕ x4) · (x1 ⊕ x3 ⊕ x5). With disjoint bi-decomposition,
we cannot decompose the function. With the recursive
use of non-disjoint bi-decomposition, however, we can

3-LUT3-LUT

x1

AND

x4

x3

x2
XOR

XOR AND

x5

x3

x1
XOR

XOR

x3

x2

OR
OR

3-LUT

3-LUT

3-LUT

Fig. 1. An LUT Network Obtained by Non-Disjunctive
Decomposition

decompose the function as shown in Fig. 1. If we want to
realize the function by 3-input LUTs, we can get an LUT
network as shown in Fig. 1. This network is the same as
a straightforward realization from the expression. With a
Roth-Karp decomposition based method, we can not find
such a good decomposition form of this example.

B. Problem Formulation

In LUT network synthesis, one of the costs of a function
is the number of variables which the function depends on.
Therefore, we define an “optimal” bi-decomposition form
as follows:

Definition 1 f(X) = α(g1(X1), g2(X2)) is called an
“optimal” bi-decomposition form if the total number of
variables in X1 and X2 is the smallest among all bi-
decomposition forms of f . 2

If X1 (or X2) is an empty set, the decomposition is a
trivial decomposition, which we ignore in this paper. For
example, f(X) = 1 · f(X) is a trivial decomposition,
and X1 is an empty set. Even if the total number of
variables in X1 and X2 of a trivial decomposition form is
the smallest among all bi-decomposition forms, the trivial
decomposition is not called optimal. Note that an optimal
bi-decomposition of a function may be disjoint or non-
disjoint depending on the function, and there may be no
optimal bi-decomposition forms for some functions.

To find a bi-decomposition form α(g1(X1), g2(X2)),
we need to consider only three decomposition forms:
(g1(X1) · g2(X2)), (g1(X1) + g2(X2)), and (g1(X1) ⊕
g2(X2)), which we call the “AND-Decomposition”,
“OR-Decomposition”, and “XOR-Decomposition” forms,
respectively. Since f can be decomposed into an
OR-Decomposition form iff f can be decomposed into
an AND-Decomposition form, we only consider AND-
Decomposition and XOR-Decomposition in this paper.

For an incompletely specified function f , the goals of
this paper are:

1. Finding an optimal AND-Decomposition form, and

2. Finding an optimal XOR-Decomposition form.

Although there may be more than two optimal bi-
decomposition forms, our problem is to find just one of
them.

III. Optimal Non-Disjoint Bi-Decompositions

In this section, we present efficient methods to find
optimal AND-Decomposition and XOR-Decomposition
forms.

A. Optimal AND-Decomposition

Here, we present a method to decompose incompletely
specified function f into an optimal bi-decomposition
form: f(X) = g1(X) · g2(X).

First we generate an initial solution (g1, g2) as will be
mentioned later. From the initial solution, the recursive
procedure “DecompAND” shown in Fig. 2 improves
the solution to produce an optimal AND-Decomposition
form of f based on the Branch-and-Bound algorithm.
Although there may be more than two optimal solutions
according to our definition in Section II, the procedure
only finds one of them.

A.1 Definitions for DecompAND

In the procedure DecompAND , g1 and g2 are treated as
four-valued functions whose values are 0, 1, ∗0 or ∗. ∗
means a usual don’t care. ∗0, which is introduced in this
paper, means that g1 (g2) can be treated as a usual don’t
care if g2 (g1) is treated as 0, and g1 (g2) must be 0 if g2

(g1) is treated as 1. In other words, ∗0 means that at least
one of the functions must be 0. The following condition
is maintained throughout DecompAND .

• g1(a) = ∗0 iff g2(a) = ∗0. (a is a minterm.)

This conditions means that if we change g1 so that
(g1(a) = ∗0) is changed to (g1(a) = 1), we also change g2

so that (g2(a) = ∗0) is changed to (g2(a) = 0), and if we
change g1 so that (g1(a) = ∗0) is changed to (g1(a) = 0),
we also change g2 so that (g2(a) = ∗0) is changed to
(g2(a) = ∗). The introduction of ∗0 makes it possible
to find an optimal solution based on the Branch-and-
Bound algorithm. The following definitions of functions
and operations are used in our method. In the definitions,
g is a four-valued function, f is an incompletely specified
function (three-valued) or a four-valued function, and h
is a completely specified function (two-valued).

• ON(f) means a characteristic function that repre-
sents a set of minterms {a | f(a) = 1}.

• OFF (f) means a characteristic function that
represents a set of minterms {a | f(a) = 0}.

• DC0(g) means a characteristic function that repre-
sents a set of minterms {a | g(a) = ∗0}.

• DC(f) means a characteristic function that repre-
sents a set of minterms {a | f(a) = ∗}.

• hxi and hxi mean the positive and negative cofactors
of h with respect to xi, respectively.

1 best g1, best g2; /* global variables that store the best solution */
2 no depend best g1, no depend best g2; /* global variables that store the best solution */
3 DecompAND(g1, g2, no depend g1, no depend g2, elim var set) {
4 /* num(A) means the number of variables in A */
5 if ((num(elim var set) + num(no depend g1) + num(no depend g2)) ≤
6 (num(no depend best g1) + num(no depend best g2))) return; /* the search space is pruned */
7 Take out one variable as xi from elim var set;
8 back up g1 = g1; /* preserve g1 and g2 because ElimVarAnd may change g1 and g2 */
9 back up g2 = g2;
10 if ((ElimVarAnd(xi, g1, g2, no depend g2)) == TRUE){ /* Choice 1 */
11 no depend g1 = no depend g1 ∪ {xi};
12 if((num(no depend g1) + num(no depend g2)) > (num(no depend best g1) + num(no depend best g2))){
13 best g1 = g1; /* overwrite the best solution */
14 best g2 = g2;
15 no depend best g1 = no depend g1;
16 no depend best g2 = no depend g2;
17 }
18 DecompAND(g1, g2, no depend g1, no depend g2, elim var set);
19 }
20 g1 = back up g1; /* restore g1 and g2 */
21 g2 = back up g2;
22 if ((ElimVarAnd(xi, g2, g1, no depend g1)) == TRUE){ /* Choice 2 */
23 no depend g2 = no depend g2 ∪ {xi};
24 if((num(no depend g1) + num(no depend g2)) > (num(no depend best g1) + num(no depend best g2))){
25 best g1 = g1; /* overwrite the best solution */
26 best g2 = g2;
27 no depend best g1 = no depend g1;
28 no depend best g2 = no depend g2;
29 }
30 DecompAND(g1, g2, no depend g1, no depend g2, elim var set);
31 }
32 g1 = back up g1; /* restore g1 and g2 */
33 g2 = back up g2;
34 DecompAND(g1, g2, no depend g1, no depend g2, elim var set); /* Choice 3 */
35 }

Fig. 2. DecompAND

• Smooth(xi, h) means hxi + hxi .

• SmoothSet(var set, h) means a function that is
obtained by applying successively Smooth(xi, h) to
h for all xi in var set.

• EnlargeON(g, h) means an operation to change g
so that ON(g) is changed to ON(g) + h. (Note
that OFF (g), DC0(g) and DC(g) must be changed
to proper functions at the same time. Similar
operations are also needed at EnlargeOFF (g, h) and
EnlargeDC(g, h).)

• EnlargeOFF (g, h) means an operation to change g
so that OFF (g) is changed to OFF (g) + h.

• EnlargeDC(g, h) means an operation to change g so
that DC(g) is changed to DC(g) + h.

Note that ON(g), OFF (g), DC0(g) and DC(g) are
completely specified functions, whereas g is a four-valued
function.

The definitions of the variables used in DecompAND
are as follows.

• best g1 and best g2 represent g1 and g2 in an optimal
solution, respectively.

• no depend (function) represents a set of variables
that have already been eliminated explicitly from the
dependency of function.

• elim var set represents a set of variables that
have the possibility of being eliminated from the
dependency of g1 or g2.

A.2 DecompAND

Now, we explain the procedure DecompAND using an
example. Suppose we want to find an optimal AND-
Decomposition of function f : the ON-set is (x2 +x4) ·(x1 ·
x4 + x1 · x3) and the DC-set is x3 · (x2 · x4 + x1 · x2 · x4).
The truth table of f is shown at the top left-hand corner
of Fig. 3. At first best g1 and best g2 are set to null.
no depend best g1 and no depend best g2 are set to ∅.
elim var set is set to the set of variables which f depends
on. In the example, it is set to {x1, x2, x3, x4}. Initial g1

(g2 is the same) is produced to satisfy ON(g1) = ON(f),
DC0(g1) = OFF (f), and DC(g1) = DC(f). Clearly,

•f = 1 ³ g1 = 1, g2 = 1
•f = 0 ³ g1 =∗0, g2 =∗0
•f = ∗ ³ g1 = ∗, g2 = ∗

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

0
0

1 1
1
0

0 0

1
∗

0 ∗
∗
0

f

initial solution

Solution 0

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

∗0
∗0

1 1
1

∗0

∗0 ∗0

1
∗

∗0 ∗
∗
∗0

g1

no_depend_g1 = {}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

∗0
∗0

1 1
1
∗0

∗0 ∗0

1
∗

∗0 ∗
∗

∗0

g2

no_depend_g2 = {}

elim_var_set = {x1, x2 , x3 , x4}

x1 is not
eliminated

x1 is
eliminated

from g2

x1 is
eliminated

from g1

Solution 2

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

∗0
∗0

1 1
1
∗0

∗0 ∗0

1
∗

∗0 ∗
∗

∗0

g1

no_depend_g1 = {}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

∗0
∗0

1 1
1

∗0

∗0 ∗0

1
∗

∗0 ∗
∗

∗0

g2

no_depend_g2 = {}

elim_var_set = {x2 , x3 , x4}

x2 is not
eliminated

x2 is
eliminated

from g2

x2 is
eliminated

from g1

Solution 1

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

1
1

1 1
1

∗0

∗0 ∗0

1
∗

1 ∗
∗

∗0

g1

no_depend_g1 = {x1}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 ∗0

0
0

1 1
1

∗0

∗0 ∗0

1
∗

0 ∗
∗

∗0

g2

no_depend_g2 = {}

elim_var_set = {x2 , x3 , x4}

x2 is not
eliminated

x2 is
eliminated

from g2

x2 is
eliminated

from g1

Solution 3

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

1
1

1 1
1
0

∗ ∗0

1
∗

1 ∗
∗

∗0

g1

no_depend_g1 = {x1}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

0
0

1 1
1
1

0 ∗0

1
1

0 ∗
∗

∗0

g2

no_depend_g2 = {x2}

elim_var_set = { x3 , x4}

x3 is not
eliminated

x3 is
eliminated

from g2

x3 is
eliminated

from g1

Solution 4

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

1
1

1 1
1
0

0 1

1
0

1 1
1
1

g1

no_depend_g1 = {x1 , x3}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

0
0

1 1
1
1

0 0

1
1

0 0
0
0

g2

no_depend_g2 = {x2}

elim_var_set = {x4}

Further searches are pruned
if Solution 4 has already been found.

Optimal Solution

Fig. 3. A Search Tree for Finding an Optimal AND-Decomposition

this initial solution satisfies f(X) = g1(X) · g2(X). In
the example, the initial solution is shown as “Solution
0” in Fig. 3. In the initial solution, no depend g1 and
no depend g2 are ∅. Initial g1 and g2 have ∗s and ∗0s. By
specifying these values to 1 or 0, DecompAND eliminates
variables from the dependency of g1 or g2. The search
tree of the example is shown in Fig. 3. For instance, from
“Solution 0” to “Solution 1” x1 is eliminated from the
dependency of g1, and x1 is added to no depend g1. If
x1 is eliminated from the dependency of g1, x1 cannot
be eliminated from the dependency of g2, because f
depends on x1. Therefore, when x1 is eliminated from
the dependency of g1, we delete x1 from elim var set.

From an intermediate solution, we have three choices
to search further:

Choice 1 We eliminate a variable (xi) in elim var set
from the dependency of g1, and then search further.
(This corresponds to line 18 in Fig. 2 and the left
arrow from each solution in Fig. 3.)

Choice 2 We eliminate a variable (xi) in elim var set
from the dependency of g2, and then search further.
(This corresponds to line 30 in Fig. 2 and the middle
arrow from each solution in Fig. 3.)

Choice 3 We do not eliminate a variable (xi) in
elim var set from the dependency of either g1 and
g2, and then search further. (This corresponds to line
34 in Fig. 2 and the right arrow from each solution
in Fig. 3.)

If we select Choice 1 or 2, we must eliminate xi from
the dependency of g1 or g2, respectively. This is done
by the procedure ElimVarAnd which is mentioned in the
next section.

If we successfully eliminate a variable from an
intermediate solution, and a new solution is better than
the best solution: (best g1, best g2), we overwrite the best
solution at lines 13 to 16, and 25 to 28 in Fig. 2.

Let us consider when a search is pruned. For example,
if “Solution 4” in Fig. 3 has already been found, we do not
need to search further from “Solution 2”. The reason is
as follows. The total number of variables in no depend g1

and no depend g2 of “Solution 4” and that of “Solution
2” are three and zero, respectively. From “Solution 2”, we
can eliminate three variables from the dependency of g1 or
g2 at best because the number of variables in elim var set
of “Solution 2” is three. Therefore, we cannot find a
better solution than “Solution 4” in the search space from
“Solution 2”. This check is done at lines 5 and 6 in Fig.
2.

A.3 ElimVarAnd

The procedure ElimVarAnd(xi, g1, g2, no depend g2)
used in DecompAND eliminates xi from the dependency
of g1. This is shown in Fig. 4. Of course, the following

conditions must be kept throughout the operations of
ElimVarAnd .

Condition 1 f = g1 · g2.

Condition 2 g1 does not depend on the variables in
no depend g1.

Condition 3 g2 does not depend on the variables in
no depend g2.

For example, from “Solution 3” in Fig. 3, x3 is
eliminated from the dependency of g1 to get “Solution 4”
as follows. At first we calculate what parts of DC(g1)
and DC0(g1) must be changed to ON(g1) so that g1

does not depend on xi. This calculation corresponds
to change1 g1 at line 5 in Fig. 4. Next, we calculate
what parts of DC(g1) and DC0(g1) must be changed
to OFF (g1) so that g1 does not depend on xi. This
calculation corresponds to change0 g1 at line 6 in Fig.
4. In the example, these functions are calculated as
“change1 g1” and “change0 g1” in Fig. 5, respectively.

Then, we change g1 by EnlargeON(g1, change1 g1)
and EnlargeOFF (g1, change0 g1) at lines 13 and 14 in
Fig. 4. Although we change g1 by the above operations,
we cannot eliminate xi from the dependency of g1 when
(Smooth(xi, ON(g1)) · Smooth(xi, OFF (g1))) is not the
constant 0 function. This is checked at line 3 in Fig. 4,
and FALSE is returned if xi cannot be eliminated. For
example, we cannot eliminate x4 from g1 of “Solution
3” in Fig. 3. This is because Smooth(x4, ON(g1)) ·
Smooth(x4, OFF (g1)) (shown as “obstacle” in Fig. 5)
is not the constant 0 function. Therefore, ElimVarAnd
returns FALSE in this case. Indeed the parts of
ON(g1) and OFF (g1) masked by ON(“obstacle′′) make
it impossible to eliminate x4 from the dependency of g1

of “Solution 3”.
After these operations, g1 is changed to a func-

tion which does not depend on x3. This function is
shown as “new g1” in Fig. 5. However, remember that
∗0 is not a usual don’t care, and therefore, we need
some more operations as follows to satisfy Condition
1. If a part of DC0(g1) is changed to ON(g1) by
EnlargeON(g1, change1 g1), the corresponding part of
DC0(g2) must be changed to OFF (g2). The correspond-
ing part of DC0(g2) is calculated as must change0 g2 =
change1 g1 ·DC0(g1) (at line 8 in Fig. 4). This function
is shown as “first must change0 g2” in Fig. 5. Therefore,
EnlargeOFF (g2,must change0 g2) at line 15 in Fig. 4 is
needed.

By the operations mentioned above, we can get a
new solution: (new g1, half-finished new g2), where
new g1 does not depend on x3 and the solution sat-
isfies Condition 1. new g1 and half-finished new g2

are shown in Fig. 5. Here, let us check Conditions
2 and 3. Since g1 does not depend on the vari-
ables in no depend g1, change1 g1 and change0 g1 do

1 ElimVarAnd(xi, g1, g2, no depend g2){
2 /* to check if there is a possibility of eliminating xi from g1 */
3 if ((Smooth(xi, ON(g1)) · Smooth(xi, OFF (g1))) != the constant 0 function) return FALSE ;
4 /* to calculate what parts of DC(g1) and DC0(g1) must be changed */
5 change1 g1 = (DC(g1) +DC0(g1)) · Smooth(xi, ON(g1)); /* needs to be changed to 1 */
6 change0 g1 = (DC(g1) +DC0(g1)) · Smooth(xi, OFF (g1)); /* needs to be changed to 0 */
7 /* to calculate what parts of DC0(g2) must be changed for Condition 1*/
8 must change0 g2 = change1 g1 ·DC0(g1); /* DC0(g1) is the same as DC0(g2) */
9 /* to enlarge must change0 g2 for Condition 3*/
10 must change0 g2 = SmoothSet(no depend g2,must change0 g2) ;
11 /* to check if must change0 g2 includes ON(g2) */
12 if ((ON(g2) ·must change0 g2) != the constant 0 function) return FALSE ;
13 EnlargeON(g1, change1 g1);
14 EnlargeOFF (g1, change0 g1);
15 EnlargeOFF (g2,must change0 g2);
16 EnlargeDC(g1, (DC0(g1) ·OFF (g2)));
17 EnlargeDC(g2, (DC0(g2) ·OFF (g1)));
18 return TRUE ;
19 }

Fig. 4. ElimVarAnd

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

1
1

1 1
1
0

0 1

1
0

1 1
1
1

new_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
1 1

0
0

1 1
1
1

0 0

1
1

0 ∗
∗
0

half-finished
new_g2

 first
must_change0_g2
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 0
0
1

 must_change0_g2
after SmoothSet
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 1
1
1

change1_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 1
1
1

change0_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

1 0

0
1

0 0
0
0

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

0
1

0 0
0
1

0 0

0
0

0 0
0
0

obstacle

To eliminate x3 from g1 of Solution 3
To eliminate x4

from g1 of Solution 3

Fig. 5. Functions to Explain ElimVarAnd

not depend on the variables in no depend g1. There-
fore, new g1 still does not depend on the variables
in no depend g1 after EnlargeON(g1, change1 g1) and
EnlargeOFF (g1, change0 g1), that is, Condition 2 is sat-
isfied. However, Condition 3 is not satisfied because
there is no guarantee that must change0 g2 does not
depend on the variables in no depend g2. In the ex-
ample, must change0 g2 (see “first must change0 g2”
in Fig. 5) and half-finished new g2 indeed depend on
x2 which is a variable in no depend g2. Thus, if we
need to change a part of DC0(g2) to OFF (g2), we
must also change the corresponding part obtained by
SmoothSet(no depend g2, the part) to OFF (g2) so that
g2 does not depend on the variables in no depend g2. In
the example, SmoothSet(no depend g2,must change0 g2)
is calculated as “must change0 g2 after SmoothSet” in
Fig. 5. Therefore, the calculation at line 10 in Fig. 4 is
needed.

In some cases, must change0 g2 after SmoothSet is
a function that includes a part of ON(g2). In such
cases, we cannot do EnlargeOFF (g2,must change0 g2)
at line 15 in Fig. 4 while keeping Condition 1. Therefore,
in such cases, xi cannot be eliminated from g1 while

keeping the above three conditions, and ElimVarAnd
returns FALSE (at line 12 in Fig. 4). If during the above
operations a part of DC0(g1) (DC0(g2)) is changed to
OFF (g1) (OFF (g2)), the corresponding part of DC0(g2)
(DC0(g1)) can be changed to don’t care (usual don’t
care). Therefore, we can enlarge the don’t cares of g1

and g2 by EnlargeDC(g1, (DC0(g1) · OFF (g2))) at line
16 in Fig. 4 and EnlargeDC(g2, (DC0(g2) ·OFF (g1))) at
line 17 in Fig. 4, respectively. In the example, finally we
get g1 and g2 of “Solution 4” in Fig. 3.

In this way, DecompAND eliminates variables one by
one from the dependency of g1 and g2 to find an optimal
AND-Decomposition. In the example, “Solution 4” is an
optimal AND-Decomposition where g1 = (x2 + x4) and
g2 = (x1 · x4 + x1 · x3).

It is clear that DecompAND can find one of the existing
optimal solutions by elimination of any order of variables.
The order only affects the execution time and which
solution is found among the optimal solutions if there are
more than two optimal solutions.

B. Optimal XOR-Decomposition

Here, we present a method to decompose incompletely

1 ElimVarXor(xi, g1, g2, no depend g1, no depend g2){
2 /* to calculate what parts of ON(g1) and OFF (g1) must be changed */
3 depending xi g1 = Smooth(xi, ON(g1)) · Smooth(xi, OFF (g1));
4 no depend All = no depend g1 + no depend g2;
5 /* to enlarge depending xi g1 for Conditions 2 and 3*/
6 depending xi g1 = SmoothSet(no depend All, depending xi g1) ;
7 /* to check if depending xi g1 after SmoothSet includes the part where g1 must not be reversed to eliminate xi */
8 if (((depending xi g1) · Consensus(xi, ON(g1))) != the constant 0 function) return FALSE ;
9 if (((depending xi g1) · Consensus(xi, OFF (g1))) != the constant 0 function) return FALSE ;
10 must reverse = {depending xi g1}xi ;
11 Reverse(g1,must reverse);
12 Reverse(g2,must reverse);
13 change0 = Smooth(xi, OFF (g1)) ·DC(g1);
14 change1 = Smooth(xi, ON(g1)) ·DC(g1);
15 EnlargeOFF (g1, change0);
16 EnlargeON(g1, change1);
17 return TRUE ;
18 }

Fig. 6. ElimVarXor

specified function f into an optimal bi-decomposition
form: f(X) = g1(X) ⊕ g2(X). The whole procedure
is called DecompXOR, which is almost the same as
DecompAND . The different points are as follows:

• How to eliminate the variable dependency from g1

and g2 is different. Therefore, in DecompXOR, Elim-
VarAnd is replaced with “ElimVarXor” (mentioned
later).

• In ElimVarXor , we do not use ∗0 but only ∗ (usual
don’t care). Therefore, in DecompXOR, g1 and g2 are
usual incompletely specified functions (three-valued).

• The initial solution is different. Initial g1 is the same
as f . Initial g2 is the constant 0 function with the
same don’t cares as f . Clearly, this initial solution
satisfies f(X) = g1(X)⊕ g2(X).

From the initial solution, we eliminate the variable
dependency from g1 or g2 by ElimVarXor in Fig. 6.
We explain procedure DecompXOR using an example.
Suppose we want to find an optimal XOR-Decomposition
of function f : the ON-set is (x2 + x4)⊕ (x1 · x4 + x1 · x3)
and the DC-set is x3 · (x2 · x4 + x1 · x2 · x4). The truth
table of f is shown at the top left-hand corner of Fig.
7. The search tree of the example is shown in Fig. 7.
The following additional definitions of a function and an
operation are used in procedure ElimVarXor .

• Consensus(xi, h) means hxi · hxi .

• Reverse(g, h) means an operation to reverse the
values of g’s part which is masked by ON(h).
(reverse is an operation to change 1 to 0, 0 to 1,
and ∗ to ∗.)

Here, we explain procedure ElimVarXor . Of course,
the following conditions must be kept throughout the
operations of ElimVarXor .

Condition 1 f = g1 ⊕ g2.

Condition 2 g1 does not depend on the variables in
no depend g1.

Condition 3 g2 does not depend on the variables in
no depend g2.

To satisfy Condition 1, we can only do a pair of
operations: Reverse(g1, h) and Reverse(g2, h). This is
because although we reverse the values of some parts of
g1, (g1 ⊕ g2) does not change if the values of the same
parts of g2 are also reversed. Of course, we can freely
change ∗s of g1 and g2 to 1 or 0.

At first, we calculate what parts of ON(g1) and
OFF (g1) cause g1 to depend on xi. This calculation
corresponds to depending xi g1 at line 3 in Fig. 6. xi
can be eliminated from the dependency of g1, if we do
Reverse(g1,must reverse), where must reverse satisfies
the following two conditions which we call “Conditions
for must reverse”:

• Smooth(xi,must reverse) = depending xi g1.

• Consensus(xi,must reverse) = the constant 0
function.

There are many candidates for must reverse that satisfy
the “Conditions for must reverse”. Among them we
chose {depending xi g1}xi at line 10 in Fig. 6. For
example, when we eliminate x3 from the dependency
of g1 of “Solution 3” in Fig. 7, depending x3 g1 and
{depending x3 g1}x3 are calculated as shown in Fig. 8.
Then, we change g1 and g2 by Reverse(g1,must reverse)
and Reverse(g2,must reverse) at lines 11 and 12 in Fig.
6. To add to these operations, we must change a part
of DC(g1) to ON(g1) or OFF (g1) so that g1 does not
depend on xi. This is done at lines 13 to 16 in Fig. 6.
For example, when we eliminate x3 from the dependency

•f = 1 ³ g1 = 1, g2 = 0
•f = 0 ³ g1 = 0, g2 = 0
•f = ∗ ³ g1 = ∗, g2 = ∗

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 1

1
1

0 0
0
1

∗ 1

0
1

1 ∗
∗
1

f

initial solution

Solution 0

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 1

1
1

0 0
0
1

∗ 1

0
1

1 ∗
∗
1

g1

no_depend_g1 = {}

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

∗ 0

0
0

0 ∗
∗
0

g2

no_depend_g2 = {}

elim_var_set = {x1, x2 , x3 , x4}

x1 is not
eliminated

x1 is
eliminated

from g2

x1 is
eliminated

from g1

Solution 2

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 1

1
1

0 0
0
1

∗ 1

0
1

1 ∗
∗
1

g1

no_depend_g1 = {}

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

∗ 0

0
0

0 ∗
∗
0

g2

no_depend_g2 = {}

elim_var_set = {x2 , x3 , x4}

x2 is not
eliminated

x2 is
eliminated

from g2

x2 is
eliminated

from g1

Solution 1

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

1
1

1 0
0
1

1 1

1
1

1 ∗
∗
1

g1

no_depend_g1 = {x1}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

0
0

1 0
0
0

∗ 0

1
0

0 ∗
∗
0

g2

no_depend_g2 = {}

elim_var_set = {x2 , x3 , x4}

x2 is not
eliminated

x2 is
eliminated

from g2

x2 is
eliminated

from g1

Solution 3

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

1
1

1 0
0
1

0 1

1
0

1 ∗
∗
1

g1

no_depend_g1 = {x1}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

0
0

1 0
0
0

0 0

1
1

0 0
0
0

g2

no_depend_g2 = {x2}

elim_var_set = { x3 , x4}

x3 is not
eliminated

x3 is
eliminated

from g2

x3 is
eliminated

from g1

Solution 4

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

1
1

1 1
1
0

0 1

1
0

1 1
1
1

g1

no_depend_g1 = {x1 , x3}

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

0
0

1 1
1
1

0 0

1
1

0 0
0
0

g2

no_depend_g2 = {x2}

elim_var_set = {x4}

Further searches are pruned
if Solution 4 has already been found.

Optimal Solution

Fig. 7. A Search Tree for Finding an Optimal XOR-Decomposition

depending_x3 _g1

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 1

0
0

0 1
1
1

1 0

1
1

1 0
0
0

 must_reverse
(Solution 1)
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

1 0

0
1

0 0
0
0

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 0

0
0

0 1
1
0

change1
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 1

0
0

0 1
1
1

0 0

0
0

0 0
0
0

{depending_x3 _g1} x3

 depending_x2 _g2

after SmoothSet
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

1 0

1
1

1 0
0
0

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 0

1
1

0 0
0
0

depending_x2 _g2

x3 x4
x1 x2

00
01
11
10

11 1000 01
0 0

0
1

0 1
0
0

0 0

0
0

1 0
0
1

obstacle
x3 x4

x1 x2

00
01
11
10

11 1000 01
1 0

0
1

0 1
1
0

0 1

1
0

1 0
0
1

depending_x3 _g2

after SmoothSet

To eliminate x3 from g2 of Solution 1To eliminate x2 from g2 of Solution 1To eliminate x3 from g1 of Solution 3

Fig. 8. Functions to Explain ElimVarXor

of g1 of “Solution 3” in Fig. 7, change0 is the constant
0 function and change1 is calculated as shown in Fig. 8.
After these operations we get “Solution 4” in Fig. 7, which
is an optimal solution in the example.

For Conditions 2 and 3, must reverse must not depend
on the variables in no depend g1 and no depend g2.
Therefore, line 6 in Fig. 6 is needed. For example, when
we eliminate x2 from the dependency of g2 of “Solution 1”
in Fig. 7, depending x2 g2 at line 3 in Fig. 6 is calculated
as “depending x2 g2” in Fig. 8. This function depends
on x1, and therefore, we must Smooth this function with
respect to x1 and get depending x2 g2 at line 6 in Fig. 6
as “depending x2 g2 after SmoothSet” in Fig. 8. In this
case, must reverse at line 10 in Fig. 6 is calculated as
“must reverse (Solution 1)” in Fig. 8 and we successfully
eliminate x2 from the dependency of g2 to get “Solution
3”.

Here, we consider a case where ElimVarXor fails.
If we want to eliminate x3 from the dependency of
g2 of “Solution 1” in Fig. 7, depending x3 g2 at line
6 in Fig. 6 is calculated as “depending x3 g2 after
SmoothSet” in Fig. 8. In this case, ((depending x3 g2) ·
Consensus(x3, OFF (g2))) is calculated as “obstacle”
in Fig. 8. obstacle is not the constant 0 func-
tion. Therefore, there is no must reverse, where
must reverse satisfies the “Conditions for must reverse”
and Reverse(g2,must reverse) can eliminate x3 from the
dependency of g2. This check is done at line 9 in Fig. 6.
Line 8 in Fig. 6 is also needed.

There are many candidates for must reverse that
satisfy the “Conditions for must reverse”. Among them
we chose {depending xi g1}xi . If we choose another
must reverse among the candidates, we get another
solution (g′1, g′2). However, the variables which g′1 and
g′2 depend on are the same for all candidates. Therefore,
DecompXOR can find one of the existing optimal solutions
even though we choose {depending xi g1}xi among the
many candidates for must reverse. (The proof is
omitted due to space limitations.) Like DecompAND ,
DecompXOR can find one of the existing optimal solutions
by elimination of any order of variables. (The proof is also
omitted due to space limitations.)

IV. Experimental Results

We know the methods presented here find optimal bi-
decomposition forms of logic functions. However, it is not
certain that the methods can produce good circuits in
reasonable time. Therefore, we performed a preliminary
experiment on MCNC [10] benchmark circuits. The
experiment was to generate a network with two-input
nodes as [9] to compare the proposed methods with the
other bi-decomposition method proposed in [9]. For each
output function of a benchmark circuit, we decomposed
the function recursively to two-input functions. The
decomposition of function f was done as follows:

• Find an optimal AND-Decomposition of f .

• Find an optimal AND-Decomposition of f . (This
means an OR-Decomposition of f .)

• Find an optimal XOR-Decomposition of f .

• Select the best decomposition among the above three.

• If there is no non-trivial bi-decomposition of f , f is
decomposed by Shannon Expansion.

Table I shows a comparison of our results and other
results. The other results were taken from [9] and
generated by MIS [1]. (The network levels were not
reported in [9], therefore, we produced networks by MIS
to examine the network levels. The script of MIS was the
same as in [9].) In Table I, “nodes”, “lev” and “CPU”
show the number of two-input nodes, the network levels
and the CPU run-time (sec.) on a Sun Ultra 2 2200,
respectively. “ratio” shows the ratios of the results of [9]
and our method to those of MIS.

Although our results were produced without the
multiple use of internal nodes, unlike [9] and MIS, the
number of nodes is almost the same. Moreover, as for the
network levels, the networks obtained by our method had
fewer levels than those obtained by MIS.

In the experiment, our method could not find non-
trivial bi-decompositions in some cases. In other words,
for some functions, we cannot find a decomposition form:
f(X) = α(g1(X1), g2(X2)) where the number of variables

TABLE I
Decomposition to Two-Input Nodes

Circuits [9] MIS Ours
nodes nodes lev nodes lev CPU

5xp1 73 100 22 77 7 0.28
9symml 199 243 14 202 10 1.04

con1 15 17 4 16 4 0.03
duke2 550 641 26 759 11 30.80

e64 390 877 11 655 7 5.53
f51m 60 99 26 65 6 0.12

misex1 56 42 12 74 6 0.11
misex2 109 127 8 158 5 0.16

misex3c 757 457 45 820 18 78.36
rd53 21 32 9 30 5 0.05
rd73 64 93 15 100 8 0.32
rd84 80 169 18 172 10 0.70
sao2 117 144 28 158 10 1.01
z4ml 16 46 13 69 9 0.18
total 2507 3087 251 3355 116 -
ratio 0.81 1.00 1.00 1.08 0.46 -

in X1 and that in X2 are both less than the number
in X. We cannot decompose such functions by bi-
decomposition. In the experiment, therefore, we only used
Shannon Expansion for such functions. Unfortunately,
we think this use of Shannon Expansion made our
results worse. In such cases we must use another
decomposition method, such as general decomposition:
f = α(~g(XB), XF).

In the proposed methods, we do not share internal
nodes among several functions. We think this was another
reason causing our results to be worse. Therefore, we
must combine the proposed methods with the multiple
use of internal nodes. We believe the sharing of internal
nodes is not so difficult. For example, we can think of the
following two strategies.

• After all decompositions, we can check whether a
node can be replaced with another node by the
method proposed in [11].

• When f is decomposed to α(g1(X1), g2(X2)), we can
check whether an existing function can be used as g1

(or g2) by the boolean resubstitution and the support
minimization technique proposed in [5].

V. Conclusion and Future Work

We have presented new efficient methods to find
“optimal” non-disjoint bi-decomposition AND and XOR
forms. Our methods have the following properties.

• They can decompose incompletely specified func-
tions.

• They eliminate variables one by one from the
dependency of g1 and g2 of an intermediate solution.

• The Branch-and-Bound algorithm is used to find an
optimal solution.

In this paper, a decomposition: f(X) = α(g1(X1), g2(X2))
is “optimal” if the total number of variables in X1 and
X2 is the smallest. Of course, there is no guarantee that
the final decomposed networks are optimal even if we
adopt “optimal” decompositions at intermediate decom-
positions. We think, however, our meaning of “optimal”
is adequate if we want to decompose functions to LUTs.

There are some functions that do not have non-
trivial bi-decompositions. These functions cannot be
decomposed by bi-decomposition; in the experiment, only
Shannon Expansion was used for them, which is not such a
good strategy. Therefore, we must develop the proposed
methods by combining them with other decomposition
methods. According to the experimental results, we think
the proposed methods decompose functions to networks
with few levels. Therefore, we plan to utilize the proposed
methods to generate initial LUT networks with few levels.
At this time, we do not share internal nodes among several
functions in the proposed methods. Therefore, we have
yet to combine the proposed methods with the multiple
use of internal nodes.

References

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: a multiple-level logic optimization system,” IEEE
Trans. CAD, vol. CAD-6, pp. 1062–1081, Nov. 1987.

[2] G. Lee, D. Bang, and J. Saul, “Synthesis of LUT-type FPGAs
using AND/OR/EXOR representations,” in Proc. SASIMI,
pp. 74–77, Nov. 1996.

[3] Y. Matsunaga, “An attempt to factor logic functions using
exclusive-or decomposition,” in Proc. SASIMI, pp. 78–83, Nov.
1996.

[4] R. L. Ashenhurst, “The decomposition of switching functions,”
in Proceedings of an International Symposium on the Theory
of Switching, pp. 74–116, Apr. 1957.

[5] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for
look-up table based FPGAs using functional decomposition and
support minimization,” in Proc. ICCAD, pp. 353–358, Nov.
1995.

[6] J. P. Roth and R. M. Karp, “Minimization over boolean
graphs,” IBM journal, pp. 227–238, Apr. 1962.

[7] T. Sasao and J. T. Butler, “On bi-decompositions of logic
functions,” in Notes of International Workshop on Logic
Synthesis (IWLS’97), May 1997.

[8] D. Bochmann, F. Dresig, and B. Steinbach, “A new
decomposition method for multilevel circuit design,” in Proc.
EDAC, pp. 374–377, Feb. 1991.

[9] B. Steinbach and A. Wereszczynski, “Synthesis of multi-
level circuits using EXOR-gates,” in Proc. of Reed-Muller’95,
pp. 161–168, Aug. 1995.

[10] S. Yang, “Logic synthesis and optimization benchmarks user
guide version 3.0,” MCNC, Jan. 1991.

[11] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to
express functional permissibilities for LUT based FPGAs and
its applications,” in Proc. ICCAD, pp. 254–261, Nov. 1996.

