
An Integrated Approach for Synthesizing LUT Networks

Shigeru Yamashita Hiroshi Sawada
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun,
Kyoto 619-0237 Japan

{ger, sawada, nagoya}@cslab.kecl.ntt.co.jp

Akira Nagoya

Abstract

This paper presents a method for synthesizing look-
up table (LUT) networks. The strategy employed by our
method is very different from the strategies of previous
methods; many decomposition methods that are not only
algebraic but also functional are integrated very well. Our
method can be thought of as a general framework for LUT
network synthesis integrating various decomposition meth-
ods. The experimental results are very encouraging.

1. Introduction
In multi-level logic synthesis, the decomposition of logic

representations is very important. Accordingly many de-
composition methods have been proposed. Most of them
are based on transforming algebraicexpressionsof switch-
ing formulas; below, we call themalgebraic decompo-
sition methods. For example, kernel extraction [1] is a
supreme method. The above decomposition methods ap-
pear to be reasonable in conjunction with the technology
mapping phase for the standard technology libraries.

To realize combinational logic functions using a lookup
table (LUT) based field programmable gate array (FPGA),
we must generate an LUT network where each LUT is a
special node which can realize any function with K (typi-
cally 4 or 5) inputs. Most LUT network synthesis methods
can be divided into the following two categories.

The methods in the first category are extended methods
for the standard technology libraries:

• First, a logic optimizer performs decomposition and
technology-independent optimization. In this phase,
algebraic decomposition methods are usually used,
and the number of literals is used for the cost consid-
ering the standard technology libraries.

• Next, a technology mapper covers nodes to K-input
nodes.

In this category, there are state-of-the-art methods such as
Chortle-d [3], MIS-pga-delay [6]1, and FlowMap [2]. For

1MIS-pga partially uses a functional decomposition method.

the covering phase, optimal algorithms have been developed
under specified conditions [3, 2]. However, the intermedi-
ate networks before the covering phase often affect the final
results; in such cases, the final results are sometimes not so
good.

The methods in the second category consist of only one
phase: they directly transform primary outputfunctions
(not expressions) in terms of primary inputs represented by
an ordered binary decision diagram (OBDD) [8, 5]. (Below,
we call transformations of functionsfunctional decompo-
sition methods.) Therefore, the final results are not affected
by intermediate results and are usually better than the re-
sults of the methods in the first category.

The decomposition form of the functional decomposi-
tion methods used in the methods in the second category
is limited to a specified form based on Roth-Karp decom-
position [7]. Therefore, in some cases the decomposition
does not work so well, and another type of functional de-
composition method may be better [11]. However, it is very
difficult to utilize various decomposition methods together
in synthesizing LUT networks because the decomposition
forms are very different between some methods.

In this paper, we propose a new method which over-
comes the drawbacks of the methods mentioned above. Var-
ious decomposition methods, such as Disjoint Decomposi-
tion [7], Non-Disjoint Bi-Decomposition [11], Weak Divi-
sion by Kernels, and Davio Expansion can be integrated into
our method. Our method can be thought of as an extension
of methods in the second category and a general framework
for LUT network synthesis integrating various decomposi-
tion methods. Although it is rather heuristic in nature, the
experimental results are very encouraging.

2. Our LUT Network Synthesis Method

Our problem is to generate the lowest cost network
where all nodes areK-feasible (the number of fanins≤ K).
The cost of a decomposed network is defined as (the number
of nodes in the network) + (W× the levels of the network),
whereW is the user defined weight.



2.1. Concept of Our Method

Our strategy is based on the following concept: “Sup-
pose we have various decomposition methods. We can find
the best decomposed network from the search space by con-
sidering all of the possible combinations of the decomposi-
tion methods and the covering effect.” However, performing
an exhaustive search for all of the possible combinations is
not practical. Therefore, we instead select a “probably best”
decomposition at an intermediate decomposition.

If we must think of the covering effect after the de-
composition phase, it becomes very difficult to determine
a “probably best” decomposition at an intermediate decom-
position, because the decomposition forms are likely to be
very different between some of the decomposition methods,
and so it is very difficult to predict the covering effect when
the decomposition is being done.

Considering the above discussion, we evaluate the “cost”
of a decomposition form with the following strategy.

• We evaluate the cost of a decomposition including the
covering effect at the same time.

• We predict the cost of nodes whose supports are more
than K by using a “cost database file,” which describes
decomposition costs of functions from past design re-
sults.

From the above strategy, we can utilize various decomposi-
tion methods in our method.

2.2. Outline of Our Method

The overall procedure to generate a network whose
nodes are all K-feasible is as follows.

Step 1: Construct nodes corresponding to the primary out-
put functions of the network. We prepare an expression
for each node from the given specifications of the in-
put network in order to utilize algebraic decomposition
methods. We also prepare an OBDD, which represents
the primary output function for each node, to utilize
functional decomposition methods.

Step 2: As long as there remains a node that is not K-
feasible, we decompose the node by using a decom-
position method selected from the prepared methods.

Step 3: Generate a new “cost database file” from the de-
composed network as will be mentioned in Section 2.4.

2.3. How to Handle Various Decomposition Meth-
ods Uniformly

We characterize a decomposition form of various decom-
position methods used in our method as follows: a decom-
position form of a nodeni is characterized as a noden′i,
which is a replacement ofni, and newly introduced nodes

ni1, · · ·nin which are fanins ofn′i. We can treat most de-
composition methods in this form. Figure 1(b) shows an
example of this for Bi-Decomposition based methods. We
call the set of nodes introduced at the decomposition “De-
compArea” (the dotted rectangle in Fig. 1(b)).

(a) (b) After decomposition (c) After merging nodes 

ni n' i

ni1 ni2

n' i

ni1

ni2

DecompArea 

Merged nodes

Figure 1. Decomposition Form of a Node.

We select a “possibly best” decomposition form of a
nodeni by evaluating the “cost” of the decomposition. Be-
cause we want to treat various decomposition methods, we
consider the case where the number of fanins of a node in
the DecompArea is less than K. For example, the number
of fanins ofn′i is two when a decomposition method based
on Bi-Decomposition is used. Such a node may be able to
be merged into a node not in the DecompArea. Since our
strategy does not perform the covering phase after the de-
composition phase, we try to merge such a node, which is at
the boundary of the DecompArea, into a node not in the De-
compArea to form a newly merged node if the merged node
is still K-feasible as shown in Fig. 1(c). In this example,n′i
andni2 can be merged into other nodes, and therefore we do
not consider them in the decomposition cost. Accordingly,
the cost evaluation after the merging of the nodes includes
the covering effect at the same time.

For the DecompArea after the merging (the dotted
rectangle in Fig. 1(c)), our cost is defined as follows:
cost of a decomposition=

{
∑

nj∈DecompArea
CostLUT (nj)}+

W ×{ max
nj∈DecompArea

LEV (nj)},

whereW is the user defined weight.LEV (ni) is recur-
sively defined as follows, and it becomes 0 for a primary
input node.

LEV (nj) = { max
nk is a fanin of nj

LEV (nk)}+CostLEV (nj).

CostLUT (ni) and CostLEV (ni) denote the predicted
numbers of K-LUTs and levels to implement the internal
function ofni, respectively. They become 1 for a K-feasible
node. However, we cannot know the precise values of
CostLUT (ni) andCostLEV (ni) if ni is not K-feasible.
Therefore, we determine their values by looking up a cost
database file as mentioned in Section 2.4.



2.4. Cost Database File

In most of the previous logic synthesis methods, the cost
of a function is usually measured only by the number of
supports of the function or literals in the logic expression
of the function. Our strategy differs greatly from this strat-
egy: we prepare a cost database file to store the statisti-
cal relationships between the three parameters characteriz-
ing the output function of a nodeni, andCostLUT (ni)
andCostLEV (ni). In the present implementation of our
method, we use the number of supports of the function, the
numbers of cubes and literals in an expression for the func-
tion.

We generated a cost file as follows, but clearly this is not
the only method.

• We make a first cost database file in which
CostLUT (ni) and CostLEV (ni) take the same
value as follows.{

1, if ni is K-feasible
(the number of fanins of ni)−K+1, otherwise

This value is taken from [5]. In this first cost database
file, the numbers of cubes and literals are not consid-
ered.

• Using the first cost database file, we generate various
networks by our method. We then make a second cost
database file in which each entry describes a statisti-
cal relationship between the above three parameters
for the output function of each node in the decom-
posed networks, and the numbers of transitive fanins
of the node and levels of the node, which correspond
toCostLUT (ni) andCostLEV (ni), respectively.

From the cost database file, we calculateCostLUT (ni)
andCostLEV (ni) as follows.

• Extract three parameters from the internal function of
ni.

• Find the values ofCostLUT (ni) andCostLEV (ni)
in the entry that produces the best fit for the three pa-
rameters in the cost database file.

2.5. Additional Operations in Our Method

Some decomposition methods should always be applied
first if possible. For example, simple disjunctive decompo-
sition provides good decomposition forms that can be found
relatively fast [9]. Such decomposition methods should be
applied before the decomposition of a node in Step 2. This
process reduces the total computation time.

Our strategy takes almost no account of the sharing of
common functions between some functions. Therefore, we
have prepared operations called algebraic resubstitution and

boolean resubstitution as the decomposition methods in our
method, to check whether an existing node can be used for
the decomposition of another node.

In our method, we have also prepared another operation
to share common functions: after all decompositions, the
minimization method proposed in [10] is performed to re-
place the output of a node with that of another node.

2.6. Advantages of Our Method

To sum up, our method has the following features.

• Various decomposition methods can easily be inte-
grated into our method. If a new decomposition al-
gorithm has been developed, we can easily check its
effectiveness.

• We can get various results from the various imple-
mentations of our method; the implementation of our
method varies depending on what types of decomposi-
tion methods are integrated and what cost database file
is used. Therefore, we are able to obtain various de-
composed networks for a given specification, and con-
sequently we can explore a large design space.

Our method can treat various decomposition methods,
and can generate various decomposed networks. This
means that our strategy inherently takes a large amount of
time. However, the checking of each decomposition method
in Step 2 can be done independently; we can perform de-
composition methods in parallel on different processors,
and this reduces the computation time.

3. Experimental Results

Table 1 shows a comparison of mapping results for 5-
LUT networks between our method and several of the well-
known level-optimized LUT network synthesis methods.
The sub-columns “]lut” and “]lvl” show the numbers of 5-
LUTs and network levels, respectively. “CPU” indicates the
CPU run-time (sec.) on a Sun Ultra 2 2200. To compare our
results with the other results, the total numbers for the same
circuits are presented in the lower part of the table. From the
results, we can observe that our method is the most robust
because various decomposition methods are utilized in it. It
is very interesting that we can get various results from the
various implementations of our method; an implementation
of our method varies depending what type of decomposi-
tion methods are integrated and what cost database file is
used. Our result shown in Table 1 were produced by the
implementation as follows:

• Disjoint Decompositions, Non-Disjoint Bi-
Decompositions and Davio Expansion were used.

• We used the second cost database file produced by the
method in Section 2.4.



Table 1. Comparison of Mapping Results for 5-LUT Networks.
circuit ALTO[4] mispga-d chortle-d FlowMap-r BoolMap-D[5] Ours
name ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl CPU
5xp1 19 2 21 2 26 3 23 3 13 2 11 2 0.33
9sym 7 3 7 3 63 5 61 5 7 3 5 4 0.55
alu2 61 6 122 6 227 9 148 8 43 4 33 4 5.44
alu4 259 8 155 11 500 10 245 10 268 7 85 7 77.33
apex4 - - - - 1112 6 - - - - 302 4 32.67
apex6 229 4 274 5 308 4 232 4 189 4 161 4 691.89
apex7 77 4 95 4 108 4 80 4 78 3 61 4 204.98
clip 33 3 54 4 - - - - - - 11 3 2.39
count 47 3 81 4 91 4 73 4 42 2 30 4 732.5
duke2 156 4 164 6 241 4 187 4 193 5 150 4 162.75
f51m 15 3 23 4 - - - - - - 10 3 0.34
misex1 14 2 17 2 19 2 15 2 15 2 10 2 0.22
misex3 251 6 - - - - - - - - 166 6 196.64
rd73 8 2 8 2 - - - - - - 6 2 0.21
rd84 13 3 13 3 61 4 43 4 10 2 7 3 0.54
sao2 38 3 45 5 - - - - - - 21 3 3.56
vg2 26 3 39 4 55 4 38 4 30 4 21 4 120.16
z4ml 5 2 10 2 25 3 13 3 5 2 5 2 0.13
Total 1258 61 1128 67 2836 62 1158 55 893 40 1095 65 -
ALTO 1258 61 793 61
mispga-d 1128 67 627 55
chortle-d 2836 62 881 48
FlowMap-r 1158 55 579 44
BoolMap-D 893 40 579 44

4. Conclusion

We have proposed an efficient method for synthesizing
LUT networks. In our method, many decomposition meth-
ods that are not only algebraic but also functional are inte-
grated very well. Our method can be thought of as a general
framework for LUT network synthesis integrating various
decomposition methods.

Our method inherently takes a large amount of time.
However, this is not a serious problem because our method
can easily be performed in parallel on different processors
and the cost of processors has recently been decreasing.

As future work, we would like to evaluate the final
routing results from the LUT networks generated by our
method.

References

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang. MIS: A Multiple-Level Logic Optimization
System. IEEE Trans. CAD, CAD-6(6):1062–1081, Nov.
1987.

[2] J. Cong and Y. Ding. An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs. InProc. ICCAD, pages 48–53, Nov. 1992.

[3] R. J. Francis, J. Rose, and Z. Vranesic. Technology Mapping
of Lookup Table-Based FPGAs for Performance. InProc.
ICCAD, pages 568–571, Nov. 1991.

[4] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen. An Itera-
tive Area/Performance Trade-Off Algorithm for LUT-Based
FPGA Technology Mapping. InProc. ICCAD, pages 13–17,
Nov. 1996.

[5] C. Legl, B. Wurth, and K. Eckl. A Boolean Approach to
Performance-Directed Technology Mapping for LUT-Based
FPGA Designs. In33rd ACM/IEEE Design Automation
Conference, pages 730–733, June 1996.

[6] R. Murgai, N. Shenoy, and R. K. Brayton. Performance Di-
rected Synthesis for Table Look Up Programmable Gate Ar-
rays. InProc. ICCAD, pages 572–575, Nov. 1991.

[7] J. P. Roth and R. M. Karp. Minimization Over Boolean
Graphs.IBM Journal, pages 227–238, Apr. 1962.

[8] H. Sawada, T. Suyama, and A. Nagoya. Logic Synthesis for
Look-up Table Based FPGAs Using Functional Decompo-
sition and Support Minimization. InProc. ICCAD, pages
353–358, Nov. 1995.

[9] H. Sawada, S. Yamashita, and A. Nagoya. Restructuring
Logic Representations with Easily Detectable Simple Dis-
junctive Decompositions. InProc. of the Design, Automa-
tion and Test in Europe (DATE'98), pages 755–759, Feb.
1998.

[10] S. Yamashita, H. Sawada, and A. Nagoya. A New Method to
Express Functional Permissibilities for LUT based FPGAs
and Its Applications. InProc. ICCAD, pages 254–261, Nov.
1996.

[11] S. Yamashita, H. Sawada, and A. Nagoya. New Methods
to Find Optimal Non-Disjoint Bi-Decompositions. InASP-
DAC '98, pages 59–68, Feb. 1998.


