A New Method to Express Functional Permissibilities for LUT based FPGAs and
Its Applications

Shigeru Yamashita, Hiroshi Sawada and Akira Nagoya
NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN
{ger, sawada, nagoy@cslab.kecl.ntt.jp

Abstract technology mappers. However, they can not treat large

This paper presents a new method to express functionalnetworks because of limited BDD power. Large networks,
permissibilities for look-up table (LUT) based field pro- therefore, must be divided and recombined to apply these
grammable gate arrays (FPGAs). The method representsmethods. In such cases, there are some functional redun-
functional permissibilities by using sets of pairs of func- dancies around the boundaries between divided networks.
tions, not by incompletely specified functions. It makes Either way, there are some functional redundancies in LUT
good use of the properties of LUTs such that their internal networks after technology mapping. Such redundancies
logics can be freely changed. The permissibilities ex- can be expressed by incompletely specified functions such
pressed by the proposed method have the desired propertyassatisfiability don’t cares (SDCs) observability don’t
that at many points of a network they can be simultaneously cares (ODCs)13] or Compatible Sets of Permissible
treated. Applications of the proposed method are also pre- Functions (CSPFs]3]. CSPFs have been used to express
sented; a method to optimize networks and a method toredundancies and optimize LUT networks[14]. Although
remove connections that are obstacles at the routing step.expressing redundancies by incompletely specified func-
Preliminary experimental results are given to show the tionsis very efficient for logic optimization[15], it does not
effectiveness of our proposed method. u}t{ilize such flexibility as freely changing the internal logic

. of an LUT.

1 Introduction 3 _ In this paper, we propose a new method to express

Because of their low cost, re-programmability and rapid functional permissibilities for LUT based FPGAs. The
turnaround times, field programmable gate arrays (FPGAs) method utilizes not incompletely specified functions, but
have emerged as an attractive means to implement lowsets of pairs of functions. The sets are callgéts of Pairs
volume applications and prototypes[1]. FPGAs also offer of Functions to be Distinguished (SPFD$) SPFDs
the possibility to design digital systems that can be easily represent functional permissibilities utilizing properties of
reconfigured. There are many types of commercially LUTs such that their internal logics can be changed, and
available FPGAs[1]. One particularly popular type, look- are suitable for expressing functional permissibilities in
up table (LUT) based FPGAs, consist of an array of LUT networks. SPFDs can be calculated as efficiently
programmable logic blocks which contain LUTs and a as CSPFs. Furthermore, the permissibilities expressed by
programmable routing network to connect the LUTs. Each SPFDs have the desired property of being able to be simul-
LUT can realize any boolean function with (typically 4 taneously treated at many points of a network as CSPFs
or5) inputs.) _ (or compatible observability don't care sets). As an appli-

The traditional design flow for LUT based FPGAs is cation of SPFDs, a method to change connections in LUT
as follows[1]. In the first step, a logic optimizer performs networks is proposed. This method can be applied to opti-

technology independent optimization[2, 3]. Next, a tech-
nology mapper[4, 5, 6, 7, 8, 9, 10, 11] maps networks to
LUTs. Finally, placement and routing are done. Networks

mize LUT networks and to remove unroutable connections
in the routing step.
This paper is organized as follows. In Section 2, we ex-

are optimized in the first step using the number of literals plain basic terminology and give an example of expressing
for the cost function expected to be realized with gate arrays don't care sets. In Section 3, the notion of SPFDs is intro-
or standard cells. In the second step, most of the technol-duced. The way to calculate SPFDs and their comparison
ogy mappers start from multi-level networks whose nodes with CSPFs are also described in Section 3. In Section 4,
are represented by sum-of-product forms obtained in the we discuss applications of SPFDs. Section 5 gives prelim-
first step. Thus LUT networks obtained by the technology inary experimental results and our observations. Finally,

mappers usually have some functional redundancies. OnSection 6 concludes this paper and mentions future work.
the other hand, some technology mappers[7, 9, 11] directly

generate LUT networks from primary output functions in 2 preliminaries

terms of primary inputs represented by an ordered binary .

decision diagram (or simply BDD)[12]. These methods 2.1 Terminology

are not effected by intermediate sum-of-product forms and In this section, we provide the terminology for the rest
usually generate better LUT networks than the former of this paper. We treat loop-free multi-level combinational

functions that are expressed by the primary inptitsz,
andzs. g1, go andgs are shown in Fig. 2. Here, the
functions realized at gates, v, andvs are f(v1), f(v2)

and f(v3) in Fig. 2, respectively. If the bit off (v1)

is don’t care wher(z,, z,, xz3) is (1,1,1) (external don’t
care), the CSPF af; is expressed ag>'SPF'(v1)" in Fig.

2. If a bit of f(v1) is 1, the corresponding bit of either
f(vp) or f(vs) must be 1, but the other’s is don't care
sincev; is an OR gate. For example, whém, x5, z3) is
(0,0, 1), the bit of f(v3) is 1; therefore, the bit of (vy)

is don't care. In this way, the CSPFs of input functions
of v; are calculated asC’SPF(v,)” and “CSPF (v3)" in

Fig. 2. For other kinds of gates, the CSPFs of the gates’
inputs are calculated by the same notion. The functional
permissibilities expressed by CSPFs are calculated from
primary outputs in the direction of primary inputs of a
network. If a gate has more than two fanouts, the CSPF
g, (v of the gate is calculated by the intersection of the fanouts’

PRI 320 S R CSPFs. In this example, the CSPFs of the connections
oo[O0]1 oo[01 oo [0]1 oo 01 concerningg, g» and gz are calculated asC'SPF(g1)”,
s e ol e “CSPF(gp)" and “CSPF(gs)" in Fig. 2, respectively.
e YT e YT “CSPF(g1)", “CSPF(g2)" and “CSPF(gs)” will be

compared with our new expression in Section 3.
(v . CSPF(v) CSPF(v2) . ey .

T 3 Functional Permissibility Expression for
0o 0190 o0l 0 11 ool 011 oo [0 1x LUT based FPGAs
o1 1L]oO 01[0]oO o1 L]0 o1 1L]O
10 [0]0 10 [0]0 10 [0]0 10 [0]0 3.1 Sets of Pairs of Functions to be Distinguished
nies RAREE nillx mielx The CSPF of; is represented by an incompletely spec-

CSPF(vs —)) ified function. This means that the alternative functions

LN o (1) s ,CS:;F(? s ,CSEF@': s ffiﬂg’: for f(L;) must be 1 or 0 when the CSPF is 1 or 0, respec-
Tol0T1] eol0T1] e l*T1] eol0l1 tively. Such expression of the conditions of alternative
o1 *]0 onf o]t o1 0]* o1 [L]0 functions is very useful in networks where the internal
10 = 10 T 10 e 0 logic of each node is fixed. In an LUT network, however,

the internal logic of each node can be changed; therefore,
another method can be used for expressing the conditions
of alternative functions. To explain such a method, some

Figure 2: Calculation of CSPFs definitions are introduced here.

Definition 1 A function f is said todistinguish a pair
of functionsg; and g, if either one of the following two
networks that consist of LUTs and connections between conditions is satisfied.
them, and call such networks as LUT networks. The .
maximum number of inputs of an LUT is fixed (typically condition1 (f = 1 wheng; = 1) and f = 0 when
4 or 5). Letf(L;) (or f(cf)) be the logic function in 92 =1).
terms of primary inputs realized at LUII; (or connection - _ _ _
¢;). The set of permissible functiong3] of an LUT condmo_n %) (f = 0 wheng, = 1) and {f = 1 when
(or a connection) is the set of functions; we can change 92 = 2)-
the function realized at the LUT (or the connection) to Note that ¢ - g») must be the function that is constantly 0.
a member of the set of the functions without changing
the functionalities of the primary outputs of the network. For example, functiorf (in Fig. 3) distinguishes a pair
CSPH3] is one of thesets of permissible functionswvith of functions f;, and f, (in Fig. 3) becausg = 1 when
the property that we can change functions of many LUTsto f;, = 1, andf = 0 whenfy, = 1. f also distinguishes a
their CSPFs at the same time. The CSPF of an LUT (or a pair of functionsf,, and fz,.
connection) is represented with an incompletely specified
function whose values are 1, 0-9{meansdon’t care). Definition 2 A set of pairs of functions{(fi., fi),

. . C (f2as fo), -+, (fna, fnp)} represents the conditions of
2.2 Expressing Functional Permissibilities by ¢ 1diond such that the functions must distingujsh and

CSPFs fi» for each pair(f.., f:») in the set.
Here, how to express functional permissibilities by
CSPFs is explained by the following example. For example, functiory (in Fig. 3) satisfies the con-

Figure 1 shows a part of a network. Lgtbe an output ditions represented bY¥(fia, f1»), (f2a, f2)} becausef
gate of the network ang;, g» and gz be intermediate distinguishesf1, andfi,, and fo, and f.

is OR; thereforef(L;) is expressed as shown in Fig. 4. If
f(L;) is used as an input of another LUT;, the role of

S 1, T f(L;) is to distinguish the two functiong, and f,, which

e 1 o 1 g 1 are expressed as shown in Fig. f5.and f, are the ON-set

' 80 111 30 111 30 0T 0 and the OFF-set of (L;), respectively. Therefore, the
01| 1]0 o1 [1]0 o1 [0 [1 SPFD ofL; is {(f., f»)}. Only f(L;) and f(L;) satisfy
wl0]1 10[0]0 10/0]0 the SPFD ofL;. For examplef(L;) distinguishesf, and
1]0]1 1]0]0 1/0]0 f» becausef(L;) is 1 whenf, is 1 andf(L;) is 0 when
fais 1. If f(L;) is changed tgf (L;), we only modify the

uy y internal logic ofL; to negate the input function frot; .
XL 0 1 Nl 0 1 g1 (in Fig. 4) can distinguishy;, and gy, (in Fig. 5)
0|00 oo[0TJO which are the ON-set and the OFF-seygfrespectively. If
011 0]0 011 0]0 the internal logic of; can be freely changed(L,) can be
110 o1 changed to distinguish functions that can be distinguished

:(1’ 1o 1‘1’ 1o by using bothy; andg, (how to changef (L;) is shown in

Section 4.1). Thus, if the SPFD @&f;, and functiong, are
not changedy, must distinguisly,, andg,; therefore, the
SPFD of the input connection concernig3gs {(g2., g2) }-
Figure 3: Functions to be distinguished This is because the conditions expressed iy, f»)} are
the same as those expressed {§Y1.,915), (924, 926) }-
This is an intuitive way to calculate the SPFD@f The
formal way to calculate SPFDs is shown in Section 3.2.
In LUT networks, we propose using a set of pairs of Functiongj in Fig. 5 distinguishegy, andgz,; there-
functions to represent the conditions of alternative func- fore, g, can be replaced with,. If g is replaced withys,
tions instead of incompletely specified functions and intro- ha internal logic off.; must be modified tég; + g3). How

duce the following definition. to modify the internal logic of an LUT is shown in Section
Definition 3 A set of pairs of functions that represents

the conditions of the alternative functions fé¢(L;) (or
f(c;)) is called the Set of Pairs of Functions to be

Distinguished (SPFD}) of L; (or ¢;). If a function g fa fb 814 &
satisfies the conditions represented by an SRFD,said AR 0 4 N0 1 N0 1 N0 1
to “satisfy’ the SPFD. ool 111 00910 oo|l]l 00| 010
o1 | L1901 o101 o[L1010 o101
10(0811 4o 101 4o0}O0} qo|L}1
1011 1ML1]0 11011 1M[1]0
g !/
2a ga g2
N0 1 v, 0 101
- g 01 g fl’ 01 ‘1’ (1) 01 ‘1) (1]
10 10 10
__gz_:D' 11/07]0 11110 1mL]1
L
1
8, g, f(L) Figure 5: Functions in SPFDs
0 01 R 01 xS g g . N
oo LTI 00] 10 oo L1 T1 In this example, the permissibility gf expressed by the
011110 0 [1]0 o1 (110 SPFD is the same as that expressed by the CSPF. In more
0 [0 w01 o1 complicated cases, however, the permissibilities expressed
a1 n o1 i‘l’ oI by SPFDs are different from those expressed by CSPFs,

and this is shown in Section 3.2.

3.2 Calculating SPFDs

3.2.1 Calculating the SPFDs of the Input Connections
of an LUT

Figure 4: An LUT in a network

An intuitive explanation of SPFDs is given as follows. The procedure to calculate the SPFDs of the input connec-
In Fig. 4, LUT L, has two inputs whose functions aje tions of LUT L is formally stated as follows.L hasn
andg,, which are shown in Fig. 4. The internal logic bf input connectionsdy, - - -, ¢,), and the functions realized

at (cy,---,c,) are @, - - -, gn), respectively. Let the SPFD
of L be{(f1, fo)}, which has already been calculated.

Below, a functionf is said to beéncluded in a function
g if f - gis the function that is constantly 0. Initially, let
the SPFDs ofdy, - - -, ¢,,) be empty.

step 1 Calculate 2 logical products for all possible com-
binations of g1, - -, g.), where eacly; is negated or
not (e'g'v ﬁ : §'7 Tty 97)1 (.gl g2y, gn)v and so
on). Let these products bég(.o,- -, b1...1), Where
the index ofb;, is ann bits binary number that satisfies
the following condition.

e The i-th bit (from the left) ofk is 0 or 1,
depending on whetheyf, is negated or not ify.

For example, when = 3,b011 =71 - 92 - 93-
step 2 For allb;, calculatez; = b; - (f1 + fo).

step 3 From (ag...0, - - -, a1...1), Select all of the functions
that are included irf; and not constantly 0. Let the
set of these functions bE1. From @o...0, - " -, @1...1),
select all of the functions that are includedfinand
not constantly 0. Let the set of these functiongttie

step 4 Calculate the cartesian product= F'1 x FO.

step 5 Select an element if’ as(a;, a;) one by one, and
go to step 6. If there is no element to select, halt.

step 6 If the different bits ofi andyj are theky, k», - - -, ks-
th bits (from the left), select an arbitraky from them,
add(a;, a;) to the SPFD oty,, and go to step 5.

If the SPFD ofL has more than two elements, the above
procedure is applied for all elements in the SPFDLof
and the SPFD o¢; is calculated by the union of all the
calculated SPFDs fef;,. Although the procedure consumes
0(22") time for the worst case whereis the number of
inputs of an LUT (even if the calculation time of logic

functions is thought to be constant), in practice it does

not consume so much time becausés typically a small

number (4 or 5). Therefore, this procedure is very suitable
for LUT networks whose nodes have a small nhumber of

fanins.

L 2 L A
[RN AN

Figure 6: An LUT network

The procedure is explained using the following example.

Figure 6 shows an LUT network. LUL; has three input
connectionsey, ¢ and ¢z, and the functions realized at
c1,c2 andeg are gy, g2 andgs, respectively. gi, g2 andgs

are shown in Fig. 2. The internal logic éf is expressed
as(g1-92-93+7g1-92-g3) (shown in Fig. 6). The SPFD of

L, has already been calculated{dg, fo)}, wheref; and

fo are the ON-set and the OFF-set ¢S PF'(v;)” shown

in Fig. 2. f; andfo are shown in Fig. 7. The internal logic

of Ly has the same functionalities as the network shown
in Fig. 1. Therefore, the conditions of this example are
the same as those of the example in Section 2.2. Here, the
SPFDs ofcy, ¢, andcs are calculated as follows.

oo |1
01 |0
10 |1
1[0

A1)
o0 O
o1 [1
10 |0
1 [1

=l=l=|=|*
=l=l="

a
000 %o1

=BERUTN) =g+
XX, N EFERAN XXy 2
00 00 00 00

01 01 01 01

10 10 10 10
1" 1" " 1

%n
=88, U /)

&

%o
=820 +/)

X Xy

a
110 ETH

=gg& (i +/) =88,/ +/)

Yot
=888, +h)
XN xR X, 0 X,

00 00 00 00

01 01 01 01

10 10 10 10
1" 1" " 1

al 00

=42, ([+f;)

Figure 7: Calculating SPFDs (1)

step 1 Calculate 2 logical products for all possible com-
binations ofg1, go andgs, where eacly; is negated or
no; (€.9.bo00 =91 92 * 93, b111 = g1- g2 - g3, and so
on).

step 2 For (booo, - - -, b111), calculatea; = b; - (f1 + fo)-
(aooo, - - - ,a111) are shown in Fig. 7. This step
removes don’t care bits of the SPFDbf from b;.

step 3 Since agp; and aq1; are included inf;, let F'1
be {0,001, 0,]_]_1}. Sinceaooo, ap11, @101 and ajip are
included infy, let FO be{agog, ao11, a101, @110} There
is no need to consideiy o anda;gg because they are
functions that are constantly O.

step 4 The setF is calculated from the cartesian product
F1lx FO. F1, FO andF are shown in Fig. 8F'is
a set of pairs of functions that must be distinguished
by any one of the input functions @f;. At step 5 and
step 6, the pairs itF’ are divided into the SPFDs of
the input connections af;.

step 5 For the first element i (i.e., (aoo1, @oo0)), 9o to
step 6.

step 6 The third bits 0f(001) and(000) are different from
each other, which means th@f can distinguishugoy
and agoo. This is because the difference between

(91- 92 - g3) and(91 - g2 - g3) is whetherys is negated
or not. Therefore(aoo, aooo) is added to the SPFD

of ca. SPFD(c,) SPFD(c,) SPFD(c,)
{ Cagoiaayyy), {(aool‘auu)’ {(“anwaooo),
oo @ina), (“1||"“|0|>} (alll’allo)}
(ay 120005
Fl= {“oop““.} N Fz{(“om’“«n)’(aom’“m1)’("001’”101)’(“001’“110)’} (a,, vag,)}
@ o) @y 5) (12) Conditions by SPFD(c,) | | Conditions by SPFD(c,) Conditions by SPFD(c;)
Foz{auoo’aon’aml’ano} g 4 P ol 4
oo LB 1S 00 |21 B 00 LALE
01 LALA o1 LALE 01 o tB
i . ; 10 LB LA 10 L2105 10 i b
Figure 8: Calculating SPFDs (2) N 1 [l n =
$ $
2=3 25=32 25=32
For the remaining elements i, step 5 and step 6 are
done in the same way. Féii111, agoo), all bits of (111) and | CSPFE) | CSPEC) CSPRC)
(000) are different, which means that all ¢f, g, and g3 e : R e
candistinguistu; 11 andagge. Therefore(as11, agoo) can be 01 01 * 01
added to any one of the SPFDs®f ¢, or ¢z (this selection 10 10 2 0 1=
corresponds to the selectionioffromky, ky, - - - , ks at step r " 3 r
6 in the above procedure). d¢f is selected in such cases, s v N

the SPFDs ofy, ¢, andcs are calculated as “SPFg(”",
“SPFD()” and “SPFD¢g3)” in Fig. 9. For example, the

conditions of alternative functions fap, are represented Figure 9: Comparisons of SPFDs with CSPFs
by the SPFD ot; as follows.

e The bits ofg;, corresponding to the bits of4” and
“A” in “Conditions by SPFD(c1)” (in Fig. 9) must

be different from each other. of L; can be filtered to have less elements. For example,

the SPFD ofZ; in the above example can be filtered to be
{(f11+ fo1, fio+ f20)} in the following cases (we can also

e The bits ofg; corresponding to the bits ofB” and do the same type of filtering in other cases).

“B” in “Conditions by SPF D(c;)” (in Fig. 9) must

be different from each other. e when f1; and f»; are both included irf(L;), and f1o
Thus, the bits of either” or “ A" must be 1, but the bits of and fo are both included irf (L;).
the other must be 0. There are two assignments of 1 and 0 to —

w gn W : when f11 and f»; are both included irf(L;), and
A” and “A". In the same way, there are two assignments ~ * andfzglére bcﬁzhlincluded inf (L), (L) fro

of 1 and 0 to ‘B” and “B”. There are two assignments of

1 and 0 to %" in “Conditions by SPFD(c1)” in Fig. 9. Note that f11, fio, f21 and foo are always included in
Therefore, the number of functions that satisfy the SPFD either f(L;) or f(L;). By this filtering, the number of

of ¢, is 8. The CSPF ot is shown as CSPF(cy)” in elements in SPFDs becomes smaller, which contributes
Fig. 9 (Itis the same asC'SPF(gy)" in Fig. 2). The toward reducing the calculation time.

number of functions that satisfy”'SPF'(c;)” is 2 because

the CSPF has one don't care bit. In this example, we can4 Applications of SPFDs
find more alternative functions fay; using SPFDs than In this section, we discuss about applications of SPFDs.
using CSPFs. Comparisons of the SPFDs and the CSPFSSPFDs at many points of a network can be simultaneously

of 1, ¢ andez are shown in Fig. 9. In this example, the treated as CSPFs. Therefore, SPFDs can be used in the
internal logic of L, is not redundant. If the internal logic ~ same way as CSPFs.

of an LUT is redundant, the difference between SPFDs and 4.1 Changing Connections Using SPFDs

CSPFs becomes larger. In LUT networks, we can exchange connectigmwith
the output ofL;, if f(L;) satisfies the SPFD af.

3.2.2 Calculating the SPFD of an LUT In the example mentioned in Section 3.2.1, the con-
The SPFD of LUTL; is obtained by the union of all the 981;);];“?%8;;&?23{0t)hueinSEiSDg%f a,resﬁgv[?lrne?nstla:ciigas
SPFDs of the output connectionsiof. For example, if; 10 satisfies th d't'3 b o fﬁ‘ bits/of '
has two fanouts; andc,, and the SPFDs af, andc; are sausties e conditions because the bitgptorre-
{(f11, f10)} and{(fa1, f20)} respectively, the SPFD df; sponding to the bits of A” and “A” in “Conditions by
is calculated a$(f11, f10), (f21, f20) } uniess(f11, f10) and SPFD(c3)" are 0 and 1, and the bits gf, corresponding
(f21, f20) are the same. There are some cases where theto the bits of ‘B” and “B” are 1 and 0. Therefore, if
number of elements in the SPFD bf obtained by such LUT L, realizes functioryj, cz can be replaced with the
a calculation becomes too large. In such cases, the SPFDoutput of L;. If CSPFs are used;g can not be replaced

4.2 Optimization Using SPFDs
9 The following procedure optimizes an LUT network
RN using SPFDs.
00
01
10
11

step 1 Calculate the SPFDs of all LUTs and connections
in the network.

= = =] ™ S
= G =)

step 2 Select a connection asone by one, and go to step

Figure 10: An alterative function fass 3. If there is no connection to select, halt.

step 3 If the SPFD ofc; is empty, remove; and go to step
5. Otherwise, go to step 4.

becausgy; does not satisfyC'SPF(gs)” in Fig. 2. When step 4 If ¢; can be replaced with the output bf, replace
cs is replaced with the output of;, f(L1) is changed it and go to step 5. Otherwise, go to step 2.

and does not satisfy the SPFD bf anymore. Therefore,

the internal logic ofL; must be modified as follows so step 5 If the logic functions of some LUTs are changed

that f(L,) still satisfies the SPFD aof;. ObservingF'l owing to removing or replacing; with the output of
and F'0 obtained at step 3 in the example of calculating L;, change the internal logics of such LUTs properly
the SPFDs of input connections @f; in Section 3.2.1 (by the method mentioned in Section 4.1). Go to step
(F'1 = {aoo1, a111}, F'0 = {aooo, ao11, a101, @110}), We can 2.

see thatf (L;) must satisfy the following two conditions. _
The order to select; in step 2 and the order to select

condition 1 f(L1) = 1 whenagoy = 1, andf(L1) =0 [in step 4 are based on heuristics. For example, if the
when @ooo = 1, ap11 = 1,a101 = 1 andayzo = 1). optimized networks should have lower levels, the LUT
condition 2 f(L1) = 1 whenaiy, = 1, and f(L1) = O whose number of levels is the smallest is selectell;as

step 4. If the optimized networks should have less LUTSs,
the output of the LUT that has one fanout is selected first
The internal logic ofL; must be modified so that(L;) asc; in step 2. This is because if the output of the LUT

when @ooo = 1, ap11 = 1,a101 = 1 andagi0 = 1).

satisfies the above two conditiong = 1 whenago1 = 1, that has one fanout is replaced with another LUT's output,

andgz = 0 when o1 = 1 andagio = 1). g5 = 1 when the LUT can be immediately removed.

agor = 1, andgy = 0 when (oo = 1 andason = 1). 4.3 Removal of Unroutable Connections Using
SPFDs

Therefore, the functiottgs - g5) satisfies condition 1. In Because of limited routing resources in FPGAs, auto
the same way, the functidg, - g, - gs) satisfies condition matic routing may fail in a congested area, even though

2. Therefore, the functio(y: - 9 - 95+ 72 - g5) satisfiesthe royting resources are available in a non-congested area. In

of Ls. . . . the routing is tried again. We propose removing unroutable
_ The procedure to modify the internal logic of LUT' connections or replacing them with other connections by
is formally stated as follows.L, hasn input connections ysing our method mentioned in Section 4.1, and routing
whose functions areg(, - --, g»). Note that i, -,) again automatically. This approach raises the possibility
may be changed by replacing connections. EgétandF'0 of successful automatic routing.

be the sets obtained at step 3 of the procedure to calculate
the SPFDs of input connections bfimentioned in Section 5§ Experimental Results

321) The modified internal |OgiC is calculated as a sum- We have imp|emented the methods presented here and

of-product form, and the i-th productis Initially, let all performed preliminary experiments on MCNC[16] bench-
l; be the function that is constantly 1. mark circuits. BDD was used for representing functions,
step 1 Select the i-th element if'1 asa;, and go to step ~ @nd the maximum number of usable BDD nodes was lim-

2. If there is no element to select, halt. ited to 1,000,000. Therefore, some large circuits, e.g.,

C3540, C7552, C2670, etc., could not be treated. In the
step 2 Select an element if'0 asa; one by one, and go experiments, a 5-input LUT architecture was assumed. The
to step 3. If there is no element to select, go to step 1. SIS (A System for Sequential Circuit Synthesisof UC

. - Berkeley) technology mapper commands were used to gen-
step 3 From (g1, - - -, gn), Select the function that distin- grate initial networks, i.e., eliminate 2, gkx -ac, simplify -d,
guishesz; anda; asg, and go to step 4. xl_partcoll -m -g 2, xLcoll_ck, xl_partition -m, simplify,

: : : [.imp, x|_partition -t, xL.cover -e 30 -u 200, xtoll ck -k.
step 4 If g, is 1 whena, is 1, modifyl; to (I; - gi). If gx X
is 0 whena; is 1, modify!; to (I; - gr). go to step 2. These commands are recommended by the SIS package

document.
Finally, the modified logic is obtained & +15, - - - , +1.), Two preliminary experiments were done on the initial
wherem is the number of elements 1. networks to check the effectiveness of the proposed ap-

The output functions of the LUTs that are the transitive plications of SPFDs. One was to optimize networks and
fanouts ofL; may also change. The internal logics of such the other was to count the number of connections that
LUTs must be changed in the same way. could be removed or replaced with other connections. In

Table 1: Results of the optimization methods

Circuits [nitial Area Level

LOT conn| lev | LUT conn| lev CPU | LUT conn| lev CPU
C1908| 103 4291 13 98 389 13 48.54 98 393 11| 32.95
C432 66 275 17 63 257 16 12.25 63 257 16| 10.03
alu2| 109 4821 19 97 378 17 1.75 97 378 17 1.45
alud| 208 862 24| 192 7231 26 21.23] 198 7451 22 55
apex6| 194 894 10| 181 803 | 10 5.23] 181 803 | 10 472
apex’ 73 292 6 67 247 11 1.19 68 255 6 0.78
cordic 17 76 8 12 52 8 0.17 12 52 8 0.17
dalu| 331| 1393| 16| 286| 1115| 10 15.79| 287| 1125 9 10.97
des| 1118| 4663| 11| 1104| 4407| 22| 3585.08] 1111| 4508| 11| 681.79
exampleZ| 105 451 51 100 396 8 47147 101 415 5 2.04
frg2 | 339 | 1307 8| 278 1019 9 22.08| 278 | 1039 8 15.21
i9 138 679 51 137 675 5 6.88 137 675 5 4.75
k2 | 536 2325 9 528 2144 13| 156.04| 533| 2267 9 19.66
[al 36 142 4 30 102 8 0.46 31 121 3 0.17
rot | 192 753 14| 187 707 13 502.3| 187 707 13| 409.9
t481 404 1738 21| 379| 1505| 21 13.75] 379 1505 21| 11.75
terml 69 303 7 45 186 6 0.68 45 186 6 0.68
tooJarge| 188 882 12| 179 805 12 36.65| 179 805| 12| 36.65
ttt2 53 237 4 46 189 5 0.28 47 196 4 0.36
vda| 246 1043 8| 239 941 25| 280.19| 246 992 8 3.42
x1 | 111 455 6 96 383 7 2.4 99 393 6 3.19
X2 13 56 3 12 48 3 0.04 12 48 3 0.04
x3 | 205 938 6| 189 825 6 7471 189 830 5 3.43
x4 | 140 598 41 110 441 4 1.2 110 441 4 1.2
total | 4994 | 21273 | 240 | 4655 | 18737 | 278 | 4723.79] 4688 | 19136 | 222 | 1260.8

ratio | 1.00 1.00| 1.0] 0.93 0.88] 1.1 0.94 0.90] 0.9

this section, “LUT", “conn” and “lev” mean the number in implementing the program). Therefore, we expect that
of LUTs, the number of connections and the number of better results can be obtained if the method is applied many
network levels. times and no filter is used.

5.1 Results of the Optimization Methods 5.2 Possibility of Removing a Connection

We did an experiment to check the effectiveness of the ~ We did another preliminary experiment to check the
optimization method proposed in Section 4.2. Table 1 effectiveness of the method proposed in Section 4.3. In
shows the results of this experiment. In Table 1, “CPU” the experiment, the number of connections that could
shows the CPU run-time (sec.) on a SPARC station 20. be removed or replaced with other connections (called
For the procedure mentioned in Section 4.2, two kinds of “changeable connections”) was counted. The column
heuristics were tried. In one, the output of the LUT having “Num.” in Table 2 shows the number of changeable
one fanout was selected first gsin step 2; the objective ~ connections in a network, and the column “Ratio” in Table
was to reduce “LUT”. In the other, the LUT whose number 2 shows the ratio(%) of changeable connections to all
of levels was the smallest was selected.aén step 4; the connections in the network. The mean value of the ratios
objective was to reduce “lev’. The results are shown inthe was 73.8%. The column “CPU” in Table 2 shows the
columns “Area” and “Level” in the table, respectively. The CPU run-time (sec.) on a SPARC station 20 to check
row “total” shows the total numbers of “LUT”, “conn”, all connections in the network. From this experiment,
“lev” and “CPU”. The row “ratio” shows the ratios of both ~ we could observe that most of the connections could be
“Area” and “Level” to “Initial”. Comparing the columns removed or replaced with other connections by our method.
“Area” and “Level”, we can observe the following. The We plantointegrate our method into routing tools and check
method “Area” increases “lev” in some cases, while the the effectiveness of our method in the routing step.
method “Level” does not increase “lev”. In addition, the .
method “Level” consumes less CPU time than the method 6 Conclusion and Future Work
“Area”. We have presented a new method to express functional

In the implemented method, the optimization method permissibilities for LUT based FPGAs. The method uti-
was applied only once and all of the SPFDs of LUTs lizes “sets of pairs of functions” that are call&PFDs
were filtered to have one element (because of simplicity The SPFD of an LUT (or a connection) is a set of pairs

Table 2: The number of changeable connections

Circuits Initial Num. | Ratio CPU
LUT] connT| lev

C1908| 103| 429 13 357 83.2 32.7

C432 66| 275| 17 2451 89.1 8.79

alu2| 109| 4821 19 464 96.2 1.18

alu4| 208 862 24 831| 96.4 3.46

apex6| 194| 894 10 447 50.0 4.08

apex7’ 73| 292 6 159 | 544 0.15

cordic 17 76 8 69| 90.7 0.05

dalu| 331 1393| 16| 1335| 95.8 7.8

des| 1118 4663 11| 3780| 81.1] 422.32

example2| 105| 451 5 171 37.9 1.31

frg2 | 339 | 1307 8 883 | 67.5] 11.89

i9 138 679 5 364 | 53.6 3.43

k2 | 536 2325 9| 2184 93.9| 13.17

[al 36| 142 4 77 54.2 0.06

rot | 192] 753 14 380 | 50.4] 334.48

1481 404 | 1738 21| 1735| 99.8| 10.56

terml 69| 303 7 268 | 88.4 0.17

toolarge| 188 | 882 12 868 98.4| 3201

ttt2 53| 237 4 148 62.4 0.1

vda| 246 | 1043 8 917 | 87.9 2.35

x1 111 | 455 6 345 75.8 2.48

x2 13 56 3 30| 535 0.02

x3 | 205 938 6 497 52.9 1.97

x4 | 140 598 4 342 57.1 0.4

of functions that must belistinguished by the function

realized at the LUT (or the connection). SPFDs make good
use of properties of LUTs such that their internal logics can

(5]

(6]

[7]

(8]

9]

[10]

[11]

be changed. We have also proposed applications of SPFDs

and presented preliminary experimental results to show the

effectiveness of SPFDs. SPFDs used in large networks[12]

could not be calculated because of limited BDD power.
Therefore, we plan to treat larger networks by methods
such as network division. We also plan to integrate the

method of removing connections into routing tools and [13]

check the effectiveness of SPFDs in the routing step.
References

[1] S.D.Brown, R.J.Francis, J. Rose, and Z. G. Vranesic,

FIELD-PROGRAMMABLE GATE ARRAYKluwer
Academic Publishers, 1992.

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,
and A. R. Wang, “MIS: A Multiple-Level Logic
Optimization System,lEEE Trans. Computer-Aided
Design vol. CAD-6, pp. 1062—1081, Nov. 1987.

(2]

3]
Culliney, “The Transduction Method-Design of Logic
Networks Based on Permissible FunctiontEEE

Trans. Computetsrol. 38, pp. 1404-1424, Oct. 1989.

R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Improved Logic Syn-
thesis Algorithms for Table Look Up Architectures,”
in International Conference on CApp. 564-567,
Nov. 1991.

(4]

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N.

[14]

[15]

[16]

R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf:
Fast Technology Mapping for Lookup Table-Based
FPGAs,” in28th ACM/IEEE Design Automation Con-
ference pp. 227-233, June 1991.

K. Karplus, “Xmap: a Technology Mapper for Table-
lookup Field-Programmable Gate Arrays,” &8th
ACM/IEEE Design Automation Conferengp. 240—
243, June 1991.

M. Tsai, T. Hwang, and Y. Lin, “Technology Mapping
for Field Programmable Gate Arrays Using Binary
Decision Diagram,” inProc. of the Synthesis and
Simulation Meeting and International Interchange
pp. 84-92, 1992.

S. Chang and M. Marek-Sadowska, “Technology
Mapping via Transformations of Function Graphs,”
in International Conference on Computer Design
pp. 159-162, Oct. 1992.

T. Sasao, “FPGA design by generalized functional
decomposition,” inLogic Synthesis and Optimiza-
tion (T. Sasao, ed.), pp. 233-258, Kluwer Academic
Publishers, 1993.

J. Cong and Y. Ding, “FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization
in Lookup-Table Based FPGA DesignEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systemsol. 13, pp. 1-11, Jan. 1994.

H. Sawada, T. Suyama, and A. Nagoya, “Logic Syn-
thesis for Look-up Table Based FPGAs Using Func-
tional Decomposition and Support Minimization,” in
International Conference on CAPp. 353-358, Nov.
1995.

R. E. Bryant, “Graph-based algorithm for Boolean
function manipulation,” IEEE Trans. Computers
vol. C-35, pp. 667-691, Aug. 1986.

K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M.
Jacoby, and C. R. Wang, “Multi-level Logic Mini-
mization Using Implict Don’t Cares,” imternational
Conference on CApp. 723—-740, June 1988.

S. Yamashita, Y. Kambayashi, and S. Muroga, “Opti-
mization Methods for Lookup-Table-Based FPGAs
Using Transduction Method,” inASP-DAC '95
pp. 353-356, Aug. 1995.

H. Savoj and R. K. Brayton, “The Use of Observ-
ability and External Don’t Cares for Simplification of
Multi-Level Networks,” in27th ACM/IEEE Design
Automation Conferen¢@p. 297-301, June 1990.

S. Yang, Logic synthesis and optimization bench-
marks user guide version 3.MCNC, Jan. 1991.

