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SUMMARY This paper presents a new e�cient method for

�nding an \optimal" bi-decomposition form of a logic func-

tion. A bi-decomposition form of a logic function is the form:

f(X) = �(g1(X
1); g2(X

2)). We call a bi-decomposition form op-

timal when the total number of variables in X1 and X2 is the

smallest among all bi-decomposition forms of f . This meaning of

optimal is adequate especially for the synthesis of LUT (Look-Up

Table) networks where the number of function inputs is impor-

tant for the implementation. In our method, we consider only

two bi-decomposition forms; (g1 � g2) and (g1 � g2). We can eas-

ily �nd all the other types of bi-decomposition forms from the

above two decomposition forms. Our method e�ciently �nds

one of the existing optimal bi-decomposition forms based on a

branch-and-bound algorithm. Moreover, our method can also de-

compose incompletely speci�ed functions. Experimental results

show that we can construct better networks by using optimal

bi-decompositions than by using conventional decompositions.

key words: functional decomposition, bi-decomposition, AND,

XOR, look-up table

1. Introduction

When implementing a combinational logic function us-
ing a given technology, the desired function must be de-

composed or factorized to smaller functions so that the
decomposed functions can �t onto the implementation

primitives of the technology. Many methods have been
proposed to decompose functions. Among such meth-

ods, AND/OR factoring and weak division [1] are su-
perior when expressions are in sum-of-products forms.

However, other approaches produce better results in
some cases. For example, factoring with XOR can ex-
press some logic functions simpler than AND/OR fac-

toring [2], [3]. For the synthesis of LUT (Look-Up Ta-
ble) networks, functional decomposition [4] based meth-

ods can often produce better results [5].
Most of the previously proposed functional decom-

position methods have been based on Roth-Karp de-
composition [6], and thus they decompose function f to
the following form: f = �(g1(X

B); : : : ; gt(X
B); XF ) =

�(~g(XB); XF ), where XB and XF are variable sets.
We can think of another strategy for functional decom-

position: function f is decomposed into only two func-
tions as f = �(g1(X

1); g2(X
2)). This decomposition is

called bi-decomposition [7]. Since bi-decomposition and
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Roth-Karp decomposition forms are very di�erent, bi-
decomposition is useful for some functions. If X1 and

X2 are limited to disjoint sets, the bi-decomposition
form can be found very quickly [7]. In some cases, only

a \non-disjoint" bi-decomposition form can provide the
best decomposition (an example is shown in Section 2).

Therefore, we need an e�cient method for �nding non-
disjoint bi-decomposition forms.

The methods proposed in [8], [9] can �nd non-
disjoint bi-decomposition forms using the notion of
\groupability". They can �nd a bi-decomposition form

for given X1 and X2, but they have a problem in se-
lecting the best X1 and X2.

In this paper, we propose an e�cient method
for �nding an \optimal" non-disjoint bi-decomposition

form of an incompletely speci�ed function. Here, \op-
timal" means that the total number of variables in
X1 and X2 is the smallest among all bi-decomposition

forms. This meaning is thought to be adequate for the
synthesis of LUT networks, because an LUT can realize

a complex function if the number of input variables does
not exceed the maximum number of inputs of the LUT.

Our method can provide a solution to the problem of
selecting the best X1 and X2 in a bi-decomposition

form, especially in LUT network synthesis.
This paper is organized as follows. In Section 2,

we explain non-disjoint bi-decomposition and formulate

our problem. In Section 3, we present an overview of
our strategy for the problem. We thoroughly explain

the techniques used in our strategy in Sections 4 and
5. We present experimental results in Section 6. We

conclude the paper in Section 7.

2. Preliminaries

2.1 Non-Disjoint Bi-Decomposition

The decomposition form, f = �(g1(X
1); g2(X

2)), is
called a bi-decomposition form [7]. If X1 and X2 are

disjoint, it is called a \disjoint" bi-decomposition form;
if X1 and X2 are not disjoint, it is called a \non-
disjoint" bi-decomposition form.

Disjoint bi-decomposition forms are very useful for
logic synthesis and they can be quickly found [7]. How-

ever, there are functions that can be e�ciently decom-
posed only by non-disjoint bi-decomposition. For exam-

ple, suppose we want to decompose (x1+x2+x3) �(x2�
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Fig. 1 LUT Networks based on Non-Disjoint

Bi-Decomposition (a) and Roth-Karp Decomposition (b)

x3�x4) �(x1�x3�x5). Although we cannot decompose

the function by using disjoint bi-decomposition, we can
�nd a good decomposition form as shown in Fig. 1 (a)

by recursively using non-disjoint bi-decomposition. If
we want to realize the function by 3-input LUTs, we can
get an LUT network as shown in Fig. 1 (a). This net-

work is the same as a straightforward realization from
the expression. With a Roth-Karp decomposition based

method [5], we cannot �nd such a good decomposition
form for this example and unfortunately we get a worse

network as shown in Fig. 1 (b). (The internal logics of
LUTs are too complex to be expressed in the �gure.)

2.2 Problem Formulation

In LUT network synthesis, one of the costs of a func-
tion is the number of variables which the function

depends on. Therefore, we de�ne an \optimal" bi-
decomposition form as follows:

De�nition 1: f(X) = �(g1(X
1); g2(X

2)) is called an
\optimal" bi-decomposition form if the total number

of variables in X1 and X2 is the smallest among all
bi-decomposition forms of f . 2

If X1 (or X2) is an empty set, the decomposition is

called a trivial decomposition, which we ignore in this
paper. For example, f(X) = 1 � f(X) is a trivial de-

composition, and X1 is an empty set. A trivial decom-
position is not called optimal in this paper. Therefore,

there may be no optimal bi-decomposition forms for
some functions which have only trivial decompositions.

Note that an optimal bi-decomposition of a function
may be disjoint or non-disjoint depending on the func-
tion.

The goal of this paper is to �nd an optimal bi-
decomposition form for an incompletely speci�ed func-

tion. Although there may be more than one optimal
bi-decomposition form according to our de�nition, our

problem is to �nd just one of them.

3. Overview of Our Strategy

3.1 The Whole Strategy of Our Method

Our strategy to �nd an optimal bi-decomposition form

for f selects the best one among the following three
types of bi-decomposition forms:

� an optimal bi-decomposition whose form is (f =
g1 � g2) which we call an \AND-Decomposition"

form.

� an optimal bi-decomposition whose form is (f =

g1 + g2) which we call an \OR-Decomposition"
form.

� an optimal bi-decomposition whose form is (f =
g1 � g2) which we call an \XOR-Decomposition"

form.

Although we can think of other types of bi-

decomposition forms, we can always �nd an optimal
bi-decomposition in the above three types. The reason

is that a two-input function is always NP-equivalent to
one of two-input AND, OR and XOR, and thus any

bi-decomposition form can be treated as one of the
above three bi-decomposition forms in terms of the in-
put numbers of g1 and g2. Moreover, we can get g1
and g2 in an OR-Decomposition form by inverting g1
and g2 in an AND-Decomposition form of f . There-

fore, we must concentrate on AND-Decomposition and
XOR-Decomposition forms. The way to e�ciently �nd

optimal AND-Decomposition and XOR-Decomposition

forms will be shown in the rest of this paper.

3.2 Overview of How to Find AND-Decomposition

and XOR-Decomposition forms

The overview of our methods for �nding g1 and g2 in

optimal AND-Decomposition and XOR-Decomposition

forms for a given incompletely speci�ed function f are

as follows.

Step 1: generate an initial solution (g1; g2).

Step 2: improve the initial solution to produce an op-

timal solution based on a branch-and-bound al-
gorithm.

Of course, Step 1 di�ers between AND-Decomposition

and XOR-Decomposition, which we will explain in Sec-

tion 4 and 5, respectively. However, the whole algo-
rithm used in Step 2 is the same. It is a normal branch-
and-bound algorithm as follows. For an initial solution,

we treat the support sets of g1 and g2 as the same one
as f . Then, at one step in our branch-and-bound al-

gorithm, we consider the following three choices to im-
prove an intermediate solution. For a variable in the

support set of f that we have not tried before,
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Fig. 2 A Search Tree for Finding an Optimal AND-Decomposition

Choice 1: try to eliminate the variable from the sup-
port set of g1 to get a new solution.

Choice 2: try to eliminate the variable from the sup-
port set of g2 to get a new solution.

Choice 3: do not eliminate the variable from the sup-
port set of either g1 or g2.

At least one of g1 and g2 depends on a variable in the

support set of f . Therefore, we do not need to con-
sider the case where a variable is eliminated from both

the support sets of g1 and g2. In an optimal solution,
there may be common variables in the support sets of
g1 and g2, and thus we must check the case where a

variable is not eliminated from the support set of ei-
ther g1 or g2. This check can be done in Choice 3.

In our branch-and-bound algorithm, we must keep the
information concerning which variable has been elimi-

nated from the support set of g1 or g2, and we use the
following variables in this paper.

� no depend g1 represents a set of variables that have

already been eliminated from the support set of g1
in our branch-and-bound process.

� no depend g2 has the same meaning for g2.

3.3 Our Branch-And-Bound Algorithm Example

Let us explain our branch-and-bound algorithm using
an example for AND-Decomposition. A search tree

is shown in Fig. 2. Suppose we want to �nd an op-
timal AND-Decomposition of function f : the ON-set
is (x2 + x4) � (x1 � x4 + x1 � x3), and the DC-set is

x3 � (x2 � x4 + x1 � x2 � x4). The truth table of f is
shown at the top left-hand corner of Fig. 2. In the

�gure, � means a usual don't care. \check var set"
represents a set of variables for which we have not tried

the above three choices. In other words, from an inter-
mediate solution we must check further the variables
in \check var set". Here, we do not explain how to

generate \Solution 0" (initial solution) and the mean-
ing of �0 in the �gure. (They will be mentioned in

Section 4.) We only want to explain the overview of
our branch-and-bound algorithm which is common be-

tween AND-Decomposition and XOR-Decomposition.
At \Solution 0", no depend g1 and no depend g2 are

set to empty sets. From \Solution 0", we must check
the above three choices for x1, x2, x3 and x4, and thus
\check var set" is set to fx1; x2; x3; x4g. From \Solu-

tion 0", we try to eliminate x1 from the support set of
g1, and we successfully get \Solution 1" in this case.

From \Solution 1", we do not need to check the above
three choices for x1 any more. Therefore, we delete x1
from \check var set" so that x1 is not be eliminated
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from the support set of g2 in a further search from \So-

lution 1".
Although there may be more than one optimal so-

lution according to our de�nition in Section 2, we only
�nd one of them. Therefore, a branch-and-bound algo-
rithm is suitable for our purpose. This is because we

successfully prune a search space as the normal branch-
and-bound algorithm. For example, if \Solution 4"

in Fig. 2 has already been found, we do not need to
search an optimal solution from \Solution 2". This is

because we know that we cannot �nd a better solu-
tion than \Solution 4" in the search space from \So-

lution 2" by only counting the numbers of variables in
\no depend g1", \no depend g2" and \check var set".
In the example, we successfully get \Solution 4" which

is an optimalAND-Decomposition, where g1 = (x2+x4)
and g2 = (x1 � x4 + x1 � x3).

In the overview, the following two points which
are important in understanding our methods were not

mentioned.

� How to generate an initial solution.

� How to eliminate a variable.

These two points are di�erent for AND-Decomposition
and XOR-Decomposition, and are explained in Section
4 and 5, respectively.

4. Finding an Optimal AND-Decomposition Form

In our method for �nding an optimal AND-

Decomposition form, g1 and g2 are treated as four-
valued functions whose values are 0, 1, �0 or �. � means

a usual don't care. �0, which is introduced in this pa-
per, has a special meaning as follows:

� One of g1 or g2 can be treated as usual don't care

if the other is treated as 0.

� One of g1 or g2 must be 0 if the other is treated as
1.

In other words, �0 means that at least one of g1 and g2
must be 0. The introduction of �0 makes it possible to

�nd an optimal solution based on a branch-and-bound
algorithm.

In this paper, to explain how to transform four-
valued and three-valued functions, we characterize a
transformation of a function g as transformations of

ON(f), OFF (f), DC0(f) and DC(f) which are de-
�ned as follows. In the de�nitions, g is a four-valued

function and f is an incompletely speci�ed function
(three-valued) or a four-valued function.

� ON(f) is a characteristic function that represents
a set of minterms fa j f(a) = 1g.

� OFF (f) is a characteristic function that represents

a set of minterms fa j f(a) = 0g.

� DC0(g) is a characteristic function that represents

a set of minterms fa j g(a) = �0g.

� DC(f) is a characteristic function that represents
a set of minterms fa j f(a) = �g.

Note that all minterms must be included in one of
the sets of minterms represented by ON(f), OFF (f),
DC0(f) and DC(f). We sometimes represent a trans-

formation of such as ON(f) by adding or removing
some minterms to the set of minterms represented by

ON (f). Moreover, we say only ON(f) to represent the
set of minterms represented by ON(f) when the con-

text is clear.

4.1 Generating an Initial Solution

In our method, initial g1 is set to satisfy ON(g1) =
ON (f), DC0(g1) = OFF (f), and DC(g1) = DC(f).

Initial g2 is set to the same as g1. Clearly, this initial
solution satis�es f = g1 � g2. In the example in Fig. 2,
the initial solution is shown as \Solution 0". The truth

tables of initial g1 and g2 have �'s and �0's. The main
idea of our method is that by specifying these values to

1 or 0, we eliminate variables from the support set of
g1 or g2.

4.2 Eliminating a Variable

The procedure \ElimVarAnd" in Fig. 3 eliminates xi
from the support set of g1 in an intermediate solution
if possible. The following conditions must be kept in
ElimVarAnd so that we can utilize a branch-and-bound

algorithm.

Condition 1: f = g1 � g2.

Condition 2: g1 does not depend on the variables in

no depend g1.

Condition 3: g2 does not depend on the variables in
no depend g2.

To keep the above three conditions we must care-
fully perform the operations in ElimVarAnd . In Elim-

VarAnd , we use the following de�nitions of functions
and operations. In the de�nitions, g is a four-valued
function and h is a completely speci�ed function (two-

valued).

� hxi
and hxi

are the positive and negative cofactors

of h with respect to xi, respectively.

� Smooth(xi; h) is hxi
+ hxi

.

� SmoothSet(var set; h) is a function that is ob-
tained by successively applying Smooth(xi; h) to

h for all xi in var set.
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1 ElimVarAnd(xi; g1; g2; no depend g2)f
2 /* to check if there is a possibility of eliminating xi from g1 */
3 if ((Smooth(xi; ON(g1)) � Smooth(xi; OFF (g1))) != the constant 0 function) return FALSE ;
4 /* to calculate which minterms in DC(g1) and DC0(g1) must be moved */
5 change1 g1 = (DC(g1) +DC0(g1)) � Smooth(xi; ON(g1)); /* needs to be changed to 1 */
6 change0 g1 = (DC(g1) +DC0(g1)) � Smooth(xi; OFF (g1)); /* needs to be changed to 0 */
7 EnlargeON(g1; change1 g1);
8 EnlargeOFF (g1; change0 g1);
9 /* to calculate which minterms in DC0(g2) must be moved for Condition 1*/
10 must change0 g2 = change1 g1 �DC0(g1); /* DC0(g1) is the same as DC0(g2) */
11 /* to enlarge must change0 g2 for Condition 3*/
12 must change0 g2 = SmoothSet(no depend g2;must change0 g2) ;
13 /* to check if must change0 g2 and ON(g2) have common minterms */
14 if ((ON(g2) �must change0 g2) != the constant 0 function) return FALSE ;
15 EnlargeOFF (g2;must change0 g2);
16 EnlargeDC(g1; (DC0(g1) �OFF (g2)));
17 EnlargeDC(g2; (DC0(g2) �OFF (g1)));
18 return TRUE ;
19 g

Fig. 3 ElimVarAnd

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 0

1
1

1 1
1
0

0 1

1
0

1 1
1
1

new_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
1 1

0
0

1 1
1
1

0 0

1
1

0 ∗
∗
0

half-finished 
new_g2

 first  
must_change0_g2
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 0
0
1

 must_change0_g2
after SmoothSet
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 1
1
1

change1_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

0 1

0
0

0 1
1
1

change0_g1
x3 x4

x1 x2

00
01
11
10

11 1000 01
0 0

0
0

0 0
0
0

1 0

0
1

0 0
0
0

To eliminate x3 from g1 of Solution 3

x3 x4
x1 x2

00
01
11
10

11 1000 01
1 1

0
1

0 0
0
1

0 0

0
0

0 0
0
0

obstacle

To eliminate x4
from g1 of Solution 3

(a) (b)

Fig. 4 Functions Explaining ElimVarAnd

� EnlargeON(g; h) is an operation changing g so
that ON(g) is enlarged to ON(g) + ON(h). In

other words, this operation adds all minterms in
ON(h) to ON(g) and at the same time removes the
corresponding minterms from OFF (g), DC0(g) or

DC(g).

� EnlargeOFF (g; h) is an operation changing g so
that OFF (g) is enlarged to OFF (g) +ON(h).

� EnlargeDC(g; h) is an operation changing g so
that DC(g) is enlarged to DC(g) +ON(h).

ElimVarAnd consists of four steps as follows.

Step 1: transform g1 so that x1 is eliminated from the
support set of g1 if possible (at lines 2 to 8 in Fig.

3).

Step 2: transform g2 to satisfy Condition 1 after the
change of g1 at Step 1 (at lines 9 to 10, and line
15 in Fig. 3).

Step 3: transform g2 to satisfy Condition 3 if possible
(at lines 11 to 15 in Fig. 3).

Step 4: transform g1 and g2 to enlarge their don't

cares (at lines 16 to 17 in Fig. 3).

[Step 1]
The transformation of g1 at Step 1 is characterized as

follows: we move some minterms in the sets of minterms
represented by DC(g1) and DC0(g1) to ON(g1) or
OFF (g1) so that ON(g1) and OFF (g1) do not de-

pend on xi. We cannot do such a transformation if
(Smooth(xi; ON(g1))�Smooth(xi; OFF (g1))) is not the

constant 0 function. This is checked at line 3 in Fig.
3, and FALSE is returned if xi cannot be eliminated.

For example, we cannot eliminate x4 from the support
set of g1 in \Solution 3" in Fig. 2. This is because
Smooth(x4; ON(g1)) �Smooth(x4; OFF (g1)) (shown as

\obstacle" in Fig. 4 (a)) is not the constant 0 function.
Indeed, we notice that x4 cannot be eliminated from

the support set of g1 in \Solution 3" when we pay at-
tention to the part of the truth table of g1 in \Solution

3" which is masked by ON(\obstacle").
change1 g1 and change0 g1 do not depend on the

variables in no depend g1, because g1 does not depend
on the variables in no depend g1. Therefore, g1 still
does not depend on the variables in no depend g1 after

Step 1, that is, Condition 2 is satis�ed after Step 1.
[Step 2]

After Step 1, g1 is changed to a function that does not
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depend on xi. We need more operations in Step 2 to

satisfy Condition 1. This is because �0 is not a usual
don't care, and therefore, if a minterm in DC0(g1) is

moved to ON(g1) by EnlargeON(g1; change1 g1), the
corresponding minterm in DC0(g2) must be moved to
OFF (g2).

[Step 3]
After Step 2, we get a solution where g1 does not

depend on xi, and Conditions 1 and 2 are satis-
�ed. However, Condition 3 is not always satis-

�ed after Step 2 because there is no guarantee that
must change0 g2 does not depend on the variables in

no depend g2. Thus, when we need to move a minterm
mi in DC0(g2) to OFF (g2), we must also move the
minterms in ON(SmoothSet(no depend g2; ON(mi)))

to OFF (g2) so that g2 does not depend on the vari-
ables in no depend g2. Therefore, we must modify

must change0 g2 at line 12 in Fig. 3. In some cases, the
modi�ed must change0 g2 and ON(g2) have common

minterms. In such cases, we cannot do the operation at
line 15 in Fig. 3 while keeping Condition 1. Therefore,
in such cases ElimVarAnd returns FALSE (at line 14

in Fig. 3).
[Step 4]

If the minterms in DC0(g2) are moved to OFF (g2)
during the above steps, the corresponding minterms in

DC0(g1) can be moved to DC(g1). Therefore, we can
enlarge the don't cares of g1 by the operation at line 16

in Fig. 3. We can also enlarge the don't cares of g2 by
the operation at line 17 in Fig. 3.

4.3 An Example of ElimVarAnd

Here, we explain how to eliminate x3 from the
support set of g1 in \Solution 3" to get \Solu-
tion 4" in Fig. 2. At �rst, \change1 g1" and

\change0 g1" are calculated as shown in Fig. 4 (b).
Then, we change g1 by EnlargeON(g1; change1 g1)

and EnlargeOFF (g1; change0 g1) to get new g1 that
does not depend on x3. This is shown as \new g1"

in Fig. 4 (b). Next, we calculate which minterms
in DC0(g2) must be moved to OFF (g2) to sat-
isfy Condition 1. We get the function which rep-

resents the minterms as \�rst must change0 g2" in
Fig. 4 (b). If we adopt this for must change0 g2
for EnlargeOFF (g2;must change0 g2) at line 15 in
Fig. 3, we get new g2 as \half-�nished new g2" in

Fig. 4 (b). As previously mentioned, this new g2
may not satisfy Condition 3. Indeed \half-�nished

new g2" in Fig. 4 (b) depends on x2, which is a
variable in no depend g2. Therefore, we must mod-
ify \�rst must change0 g2" to \must change0 g2 after

SmoothSet" in Fig. 4 (b) (at line 12 in Fig. 3). By
adopting \must change0 g2 after SmoothSet" in Fig.

4 (b) for EnlargeOFF (g2;must change0 g2) at line 15
in Fig. 3, we successfully get the correct g2 in \Solution

4" in Fig. 2.

In this way, we eliminate variables one by one from

the support sets of g1 and g2 to �nd an optimal AND-
Decomposition. Clearly our method can �nd one of the

existing optimal solutions by elimination of any order of
variables. The order only a�ects the execution time and
which solution is found among the optimal solutions, if

there is more than one optimal solution.

5. Finding an Optimal XOR-Decomposition Form

In our method for �nding an optimal XOR-

Decomposition form, unlike in the case of AND-

Decomposition, we only use � (usual don't care) and

not �0. Therefore, g1 and g2 are treated as usual incom-
pletely speci�ed functions (three-valued) in this section.

Although the main idea is almost the same as the case
of AND-Decomposition, the way of generating an ini-

tial solution and eliminating a variable are apparently
di�erent from those in the case of AND-Decomposition

because of the functional di�erence between AND and
XOR. Therefore, we explain the above two points in
this section.

5.1 Generating an Initial Solution

The initial g1 is set to the same as f . The initial g2 is

set to the constant 0 function with the same don't cares
as f . Clearly, this initial solution satis�es f = g1 � g2.

5.2 Eliminating a Variable

The procedure \ElimVarXor" in Fig. 5 eliminates xi
from the support set of g1 in an intermediate solution

if possible. The following additional de�nitions of op-
erations are used in this section.

� Consensus(xi; h) means hxi
� hxi

.

� Reverse(g; h) means an operation to reverse the

values of a part of the truth table of g as follows
(reverse is an operation to change 1 to 0, 0 to 1,

and � to �).
For each minterm mi in ON(h):

{ if mi is in ON(g), move mi to OFF (g).

{ if mi is in OFF (g), move mi to ON(g).

Of course, the following three conditions must be kept

as the case of AND-Decomposition.

Condition 1: f = g1 � g2.

Condition 2 and 3 are the same as the case of AND-
Decomposition.

To satisfy Condition 1, we can only do a pair of op-
erations: Reverse(g1; h) and Reverse(g2; h). This is

because although we reverse the values of a part of the
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1 ElimVarXor(xi; g1; g2; no depend g1; no depend g2)f
2 /* to calculate which minterms in ON (g1) and OFF (g1) must be moved */
3 depending xi g1 = Smooth(xi; ON(g1)) � Smooth(xi; OFF (g1));
4 no depend All = no depend g1 + no depend g2;
5 /* to enlarge depending xi g1 for Conditions 2 and 3*/
6 depending xi g1 = SmoothSet(no depend All; depending xi g1);
7/* to check if depending xi g1 after SmoothSet includes the part where g1 must not be reversed to eliminate xi */
8 if ( ((depending xi g1) � Consensus(xi; ON(g1))) != the constant 0 function) return FALSE ;
9 if ( ((depending xi g1) � Consensus(xi; OFF (g1))) != the constant 0 function) return FALSE ;
10 must reverse = depending xi g1 � xi;
11 Reverse(g1;must reverse);
12 Reverse(g2;must reverse);
13 change0 = Smooth(xi; OFF (g1)) �DC(g1);
14 change1 = Smooth(xi; ON(g1)) �DC(g1);
15 EnlargeOFF (g1; change0);
16 EnlargeON(g1; change1);
17 return TRUE ;
18 g

Fig. 5 ElimVarXor

truth table of g1, (g1 � g2) does not change if the val-
ues of the same part of the truth table of g2 are also

reversed. Of course, we can freely change �'s of g1 and
g2 to 1's or 0's. The main idea in ElimVarXor is that we

restrict ourselves to only using the reverse operations
for eliminating a variable.

First, we calculate which minterms in ON(g1) and

OFF (g1) cause g1 to depend on xi. This calculation
corresponds to depending xi g1 at line 3 in Fig. 5. xi
can be eliminated from the support set of g1, if we do
Reverse(g1;must reverse), where must reverse satis-

�es the following two conditions, which we call \Con-
ditions for must reverse":

� Smooth(xi;must reverse) = depending xi g1.

� Consensus(xi;must reverse) = the constant 0
function.

There are many candidates for must reverse that
satisfy the \Conditions for must reverse". Among

these candidates, we choose depending xi g1 � xi as
must reverse at line 10 in Fig. 5. Then, we change g1
and g2 by the operations at lines 11 and 12 in Fig. 5.

To add to these operations, we must change a part of
DC(g1) to ON(g1) or OFF (g1) so that g1 does not

depend on xi. This is done at lines 13 to 16 in Fig. 5.
For Conditions 2 and 3, must reverse must

not depend on the variables in no depend g1 and
no depend g2. Therefore, line 6 in Fig. 5 is needed.

Although we do the above operations, we cannot
eliminate xi from the support set of g1 while keeping
Conditions 1, 2 and 3. This check is done at lines 8 and

9 in Fig. 5.
There are many candidates for must reverse that

satisfy the \Conditions for must reverse". Among
these candidates, we choose depending xi g1 � xi. If

we choose anothermust reverse among the candidates,

we get another solution (g01; g
0
2). However, the variables

which g0
1 and g02 depend on are the same for all candi-

dates. Therefore, we can �nd one of the existing opti-
mal solutions even though we choose depending xi g1 �

xi among the many candidates for must reverse.

6. Experimental Results

We know the method presented here �nds an \optimal"
bi-decomposition form of a logic function. However, it

is not certain that our method is really useful for logic
synthesis. It is di�cult to check whether it is good

or not by itself because it might be a part of a logic
synthesis system. Therefore, to compare only the de-

composition power of our method with that of SIS 1.3
[10], we performed the following simple experiment on

MCNC [11] benchmark circuits.

� First, we selected an output function with the
largest number of variables and made a node whose
function was an irredundant sum-of-products form

of the selected function.

� We decomposed the nodes into 5-input LUTs by
using \xl imp -b" for SIS's script.

� For our results, we decomposed the node recur-

sively to two-input nodes by �nding optimal bi-
decompositions. There are some functions that

do not have optimal bi-decompositions. In other
words, some functions do not have decomposition
forms: f(X) = �(g1(X

1); g2(X
2)) where the num-

ber of variables in X1 and that in X2 are both less
than the number in X . We cannot decompose such

functions by bi-decomposition, thus we only apply
Shannon expansion for such functions.

Nodes with less than �ve inputs remained after the

above decompositions. We merged such nodes to 5-
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Table 1 Decomposition to 5-input LUTs

Circuits SIS's results Our results
(Nin) LUT/lev/CPU LUT/lev/CPU

alu2 (10) 33/6/12.68 12/5/1.83
b9 (14) 6/3/0.19 5/4/1.86
c8 (13) 7/3/0.23 4/3/0.66

cordic (23) 11/5/8.37 10/4/178.72
f51m (8) 12/3/0.83 3/3/0.21
frg1 (25) 30/7/10.41 17/4/1986.56
i8 (17) 12/8/0.75 11/6/26.39
lal (13) 5/3/0.25 4/3/1.75
pm1 (9) 3/3/0.13 3/2/0.05
sct (14) 4/4/0.22 7/3/1.78

t481 (16) 12/4/78.24 5/3/9.62
ttt2 (14) 7/4/0.44 4/3/2.9
x1 (25) 9/5/0.51 9/3/711.34
x3 (24) 11/5/0.83 14/5/161.59
x4 (15) 4/3/0.19 5/3/2.37

total 166/66/114.27 113/54/3087.63
ratio 1.00/1.00/1.00 0.68/0.82/27.02

input LUTs using a simple covering as shown in Fig.
1 (a).

Table 1 shows a comparison of our results and SIS's

results. In Table 1, \LUT", \lev" and \CPU" show
the number of LUTs, the network levels and the CPU

run-time (sec.) on a Sun Ultra 2 2200, respectively.
The ratios of our results to those of SIS are shown at

the bottom. The numbers in the parentheses after the
circuit names show the input numbers of the selected

functions.
Although we only considered the aspect of de-

composition in the experiment, we observed that good

decompositions can be found by using optimal bi-
decompositions. However, in some cases, our method

took too much time. We think the main reason for this
is the variable order which a�ects the pruning search

space in our branch-and-bound algorithm as well as the
e�ciency of the BDD calculation used in our program.

Therefore, we must develop a heuristic to �nd a bet-
ter variable order in the future. We did not consider
sharing common logics among several functions in the

experiment, so we decomposed only one output func-
tion. We must extend the method to treat multi-output

functions. We consider the following strategies for this
purpose.

� When f is decomposed to �(g1(X
1); g2(X

2)), we
can check whether an existing function can be used

as g1 (or g2) by the boolean resubstitution and the
support minimization technique proposed in [5].

� After all decompositions, we can check whether a
node can be replaced with another node by the

method proposed in [12].

7. Conclusion and Future Work

We have presented a new e�cient method for �nding

an \optimal" non-disjoint bi-decomposition form. Our
method has the following properties.

� It uses a branch-and-bound algorithm that is suit-
able for �nding an optimal solution.

� It eliminates variables one by one from the support
set of g1 and g2 in an intermediate solution.

� It can �nd an optimal bi-decomposition by elimi-

nating variables in any order.

� It can decompose incompletely speci�ed functions.

In this paper, a bi-decomposition: f(X) =
�(g1(X

1); g2(X
2)) is \optimal" if the total number of

variables in X1 and X2 is the smallest. Of course, there
is no guarantee that the �nal decomposed networks are
optimal even if we adopt \optimal" bi-decompositions

at intermediate decompositions. However, we think our
meaning of \optimal" is adequate if we want to decom-

pose functions to LUTs.
There are some functions that do not have non-

trivial bi-decompositions. These functions cannot be
decomposed by bi-decomposition; Shannon expansion

was only used for these functions in the experiment,
which is not such a good strategy. Therefore, we plan
to develop the proposed method by combining it with

other decomposition methods. Moreover, we plan to
extend our method to treat multi-output functions.
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