IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 10 OCTOBER 1997

1017

|PAPER Special Issue on Synthesis and Verification of Hardware Design

Logic Synthesis for Look-Up Table Based FPGAs Usmg
Functional Decomposition and Boolean Resubstitution

Hiroshi SAWADA', Member, Takayuki SUYAMA', Nonmember, and Akira NAGOYA', Member

SUMMARY This paper presents a logic synthesis method for
look-up table (LUT) based field programmable gate arrays (FP-
GAs). We determine functions to be mapped to LUTs by func-
tional decomposition for each of single-output functions. To
share LUTs among several functions, we use a new Boolean
resubstitution technique. Resubstitution is used to determine
whether an existing function is useful to realize another func-
tion; thus, we can share common functions among two or more
functions. The Boolean resubstitution proposed in this paper
is customized for an LUT network synthesis because it is based
on support minimization for an incompletely specified function.
Experimental results show that our synthesis method produces a
small size circuit in a practical amount of time.
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1. Introduction

Field programmable gate arrays (FPGAs) are logic de-
vices that can be programmed by users. The look-up
table (LUT) based FPGA is a popular one. It con-
sists of an array of programmable logic blocks, which
contain LUTs, and a programmable routing network
to connect them. Each LUT can realize any Boolean
function with m (typically 4 or 5) inputs.

Functional decomposition[1],[2] is widely used in
logic synthesis methods for LUT based FPGAs[3]-
[10]. The form of a functional decomposition is
f(X) = g(@(XB),XF). If we let the size of XB
be the number m of inputs of an LUT, functions &
can be mapped to LUTs. Several researchers[4]-[6]
have proposed efficient decomposition methods based
on an ordered binary decision diagram (OBDD or sim-
ply BDD)[11], which enable us to decompose larger
functions. We also use a BDD-based functional decom-
position to extract functions to be mapped to LUTs.

Only functional decompositions for each of single-
output functions does not allow sharing LUTs among
several functions. Recently, several researchers[8]—[10]
have proposed functional decomposition algorithms for
multiple-output functions to share LUTs among them.
Since these algorithms try to share common functions
among the overall multiple-output function, the prob-
lem of selecting an appropriate set of single-output func-
tions has to be solved. Moreover they discussed only the
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case of disjunctive decomposition, where XZ and X¥
have no common variable; the case of nondisjunctive
decomposition, where XZ and X% have at least one
common variable, was not discussed.

In this paper, we propose a new Boolean resub-
stitution technique to share LUTs among several func-
tions. Resubstitution is used to check whether a func-
tion is useful to realize another function. By resubstitut-
ing a function into several functions, we can determine
whether or not the function is common among them.
Resubstitution techniques for a multi-level network of
sum-of-products forms can be found in[12],{13]. The
Boolean resubstitution proposed in this paper is cus-
tomized for an LUT network because it is based on sup-
port minimization for an incompletely specified func-
tion[14]-[16].

The logic synthesis method presented in this paper
iterates the following two steps.

1. For each of single-output functions, apply func-
tional decomposition to generate candidate sub-
functions to be mapped into LUTs.

2. Resubstitute each of candidate subfunctions into
each of single-output functions, to find the best sub-
function for the whole multiple-output function.

This paper is organized as follows. In Sect.2,
we introduce some notation about Boolean functions
and BDDs and review previous works on functional
decomposition and support minimization. In Sect. 3,
we discuss our strategies for generating functions to be
mapped to LUTs using functional decomposition. In
Sect. 4, we discuss a new Boolean resubstitution tech-
nique for an LUT network. Section 5 shows the exper-
imental results. We conclude this paper in Sect. 6.

2. Preliminaries
2.1 Boolean Function and BDD

Let f(z1,..-,z,): {0,1}" — {0,1} be a completely
specified Boolean function. The cofactors of f with
respect to ;=1 and z; = 0 are f,, = f(z1,...,zi—1, 1,
Tiy1,..., %) and fz, = f(21,..., %21, 0, Tiz1, ..., Tn),
respectively. The support sup(f) of a function f is the
set of variables that the function depends on: Vz €
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cut_set (f,m, 1) = {vg, ), v2}
cut_set_nd (f, %, 1,0) = {vg, v,}
cut_set_nd (f,®, 1, 1) = {vy, v}

level  index

4 - 4 cut_set_nd (f, x, 1, 00) = {vo}
cut_set_nd (f, %, 1,01) = {vy, v}
cut_set_nd (f.®, 1,10) = {v}, v}
bound 3 —>2  cut_setnd(f,x 1,11)= (v}
set n
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Fig. 1 A BDD and its functional decomposition forms.

sup(f), fz ¥ f- and Vz ¢ sup(f),fz = fo. A func-
tion f is called m-feasible if |sup(f)| < m; otherwise,

f is called m-infeasible.

An ordered binary decision diagram (BDD)[11]
is a directed acyclic graph representing Boolean func-
tions (Fig. 1). A BDD has two kinds of nodes: variable
nodes and constant nodes. A constant node represents a
Boolean constant O or 1. A variable node v is associated
with a Boolean variable z; and represents a function f*.
It has two outgoing edges labeled with 0 and 1, which
point the nodes representing functions fz and f7 , re-
spectively. When traversing from any variable node to
a constant node according to the cofactors of variables,
each variable must occur at most only once and in a
given order. We define a level of a node as follows: if
there exists an edge from a node v; to another node v;,
the level of v; is more than that of v;. We also define
a variable order 7 to be a one-to-one mapping from
levels to indexes of variables.

2.2 Functional Decomposition

Functional decomposition of a function f is

fer, s 2n) = glan(XP), .., (XP), XF) (1)
= g(&(XB)aXF)v

where X2 and XF are sets of variables such that
XBuXF = {z;,...,2,}. The sets XB and X% are
called the bound set and the free set, respectively. If
XB N XF = 0, the form is called disjunctive decom-
position; otherwise, it is called nondisjunctive decom-
position. g is called the image of a decomposition. In
this paper, we will call oy (X?),...,a;(XB) the sub-
functions of a decomposition.

The fundamental concept of a functional decom-
position was studied by Ashenhurst[1] and Roth and
Karp [2]. Recently, several researchers [4]-[6] have pro-
posed BDD-based algorithms for functional decomposi-
tions. We use the following definitions and propositions
similar to ones found in[6].
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Definition 1: In the BDD of a function f with a vari-
able order , let cut_set(f,m 1) denote the set of nodes
whose levels are less than or equal to [ and that have
edges from nodes of level greater than [. a
Proposition 1 (disjunctive decomposition): For an n-
variable function f with a variable order =, if
lcut.set(f,n,1)] < 2°, there exists a decomposition of
the form (1) where X8 = {z,(,...,%xq41)} and
XF = {.’1:.,,(1),...,:1:,,(1)}. O
Definition 2: In the BDD of a function f with a
variable order =, let cut_set.nd(f,m, 1, by - b;) mean
cut_set(f(Tn(n)y = b1,...,Tn(n—k+1)=bx), 7, 1), where
b; € {0,1}. D
Proposition 2 (nondisjunctive decomposition): For an
n-variable function f with a variable order =, if
¥ by-o-by € {0,1}*, |cut_setnd(f,m,1,by - by)| < 2¢,
there exists a decomposition of the form (1) where
XB = {J),r(n), ‘e 7$7r(l+1)} and XF = {:L‘,r(n) ey
Tr(n-k+1)r Ta(l)r- - » Tr(1)}- o

Figure 1 shows the concepts of cut_set and
cut_set_nd and their relations to decomposition forms.
There exists a decomposition of the form f = g(oy
(z4,22,21), az(xy4,T2,21),23) because |cut_set(f,m,1)]
= 3 < 22, The form requires three 3-input LUTs. There
also exists a decomposition of the form f = g(a
(x4,%2,21),24,23) because |cut_set_nd(f,7,1,0)] = 2
< 2! and |cut_set_nd(f,7,1,1)] = 2 < 2!. The form
requires two 3-input LUTs.

2.3 Support Minimization

Let the relation of two functions f -g = 0 be de-
noted by f < g. An incompletely specified function
f : {0,1}* — {0,1,%} (*+ means don’t care) can be
given by an interval [fL, fY], where f* and fY are com-
pletely specified functions satisfying f© < fU. The sets
of minterms that map to 0, 1 and * (on-set, off-set and
dc-set) are given by {Y | f2(Y) =1}, {Y | fY(Y) =0}
and {Y | fX(Y) = 0,fY(Y) = 1}, respectively. We
will use the notation f instead of f to represent that
the function may be incompletely specified. The sup-
port of an incompletely specified function f is given by
sup(f) = sup(f*) U sup(fY).

A completely specified function f is said to be
compatible with an incompletely specified function
[fX, fY], denoted by f < [fL,fY], if f£ < f < fU.
In the same manner, an incompletely specified function
[g%, gY] is said to be compatible with an incompletely
specified function [fL, fU] if fL < gF < gV < fY.

Support minimizations for incompletely specified
functions were discussed in[14]-[16]. We address a
support minimization problem as follows: given an in-
completely specified function [fZ, fV], find a compati-
ble function § whose support sup(g) is the smallest. For
example, consider the incompletely specified function
f: [fL = T1z2 + 217273, fY = 21 + 22+ 23] shown in
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Fig. 2 Support minimization.

Fig. 2. The support sup(f) is {z1, 22, z3}. By replacing
the dc-set with on-set or off-set, we can obtain a com-
patible function § = [gL =T1x2 + 12, gU = z1 + x2)
whose support sup(g) is {z1,z2}. Completely specified
functions compatible with §, Tiz2 + 172 and z, + z2,
are also compatible with f.

Definition 3 ([14]): Let f(z1,...,z,) be a Boolean
function and let R and S be nonempty subsets of
{z1,...,z,}. Disjunctive eliminant edis(f, R) and
conjunctive eliminant econ(f, R) are defined as fol-
lows:

6d7;3(fa {xl}) = fz, + [z, € {17 s ’n}
edis(f, RU S) = edis(edis(f, R), S)

econ(f,{z:}) = fz, - foiri € {1,...,n}
econ(f, RUS) = econ(econ(f, R), S) O

Proposition 3 ([14]): Let f=[fL, fU] be an incom-
pletely specified function and E be a subset of
sup(f). If edis(fL,E) £ econ(fU,E), f' =
ledis(fL, E),econ(fV, E)] is compatible with f and
sup(f') = sup(f) — E. o

According to Proposition 3, a support minimiza-
tion problem can be solved by finding one of the largest
subsets E of eliminated variables. In Fig.2, gL =
edis(fX,{z3}) and gV = econ(fV,{z3}). If we let E be
{z1} or {z2}, the inequality edis(f%, E) < econ(fY, E)
is not satisfied. Thus, {z3} is the largest subset of elim-
inated variables.

3. Generating m-Feasible Functions Using Func-
tional Decomposition

We assume that every LUT in a network can realize any
Boolean function with m (m = 3) inputs and 1 output.
Our synthesis procedure iterates functional decompo-
sitions to break a function into new functions having
fewer supports until the supports of all functions are
less than or equal to m. Functional decompositions are
applied not to multiple-output functions but to each
of the single-output functions. How to share common
LUTs will be discussed in Sect. 4.

3.1 Decomposition Forms and Their Costs

Given an m-infeasible function, we try to decompose
the function such that the size of a bound set X is
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Fig. 3 Decomposition forms and their costs.
equal to m. The subfunctions a;(XB),...,a:(X?B) of

the decomposition can be allocated to LUTs because
they are m-feasible. If the image g of the decomposi-
tion is m-feasible, it can also be allocated to an LUT;
otherwise, it becomes a new m-infeasible function.

We are only interested in a decomposition whose
image has fewer supports than the original function;
therefore, an inequality t + |XF| < |XB| + |XF| -
|XB N XF| is given as the condition for decomposabil-
ity. From this inequality and | X 2| = m, we can derive
t+|XBNnXF| <m. Becauset 2 1 and | XN XF| 20,
we can consider m(m — 1)/2 kinds of decomposition
forms. For example, if m = 4, the 6 kinds of decom-
position forms shown in Fig.3 can be considered. We
evaluate the costs of decomposition forms as follows.
Decompositions of fewer ¢ have less cost, and in de-
compositions of equal ¢, those of fewer | X2 N XF| have
less cost. In Fig. 3, the number in a circle represents the
cost of decomposition for m = 4.

If a function f is not decomposable in any of the
forms in Fig.3, we apply an expansion f = T; - fz, +
x; - fz, using a variable z; € sup(f) to the function.
Consequently, a function F; - x2 +x; - x3 can be realized
by an LUT and fz, and f;, become new m-infeasible
functions.

3.2 Decomposition Tests

For a function f to be decomposed, we examine de-
composition forms and their costs for all bound sets
XB of size m and find the least cost decomposition
form. If sup(f) is n, the number of the bound sets is
nCm. According to Propositions 1 and 2, the variables
in a bound set should be located from level n to level
n —m + 1. Thus, we need to construct ,,C,, BDDs of
different variable orders. We change the variable order
of a BDD by jump_down operations. jump_down(i, j)
moves the variable at level i to level j ({ > j) and in-
creases the levels of all variables from level ¢ — 1 to
level 7 by 1. Figure 4 shows a recursive algorithm
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/ % global variables that store the best solution % /
mincost,
minT,
/% f is a BDD and = represents the variable order of f %/
/% Nin is the number of variables included in bound set * /
/% Nout is the number of variables excluded from bound set % /
bound_set(f, m, Nin, Nout) {
if (Nin = m or Nout =n —m ) { /* terminal case %/
cost = least_cost_decomposition(f, 7);
if ( mincost > cost ) {
mincost = cost;
minm =

}

else { /* non-terminal case * /
/% include the variable of level n — Nin in bound set %/
bound_set(f, m, Nin+ 1, Nout);
/ % exclude the variable of level n — Nin from bound set %/
(new f, newn) = jump_down(f, =, n — Nin, Nout+1);
bound_set(newf, neww, Nin, Nout+ 1);

Fig. 4 Decomposition tests for all bound sets of size m.

to examine decomposition forms and their costs for
all bound sets of size m. The computation starts by
calling bound_set(f, =, 0,0). For nondisjunctive decom-
positions, the variables in both bound set and free set
should be located from level n to level n — k + 1. This
is also done by changing the variable order of a BDD.

3.3 Encoding and Don’t Cares

Even if the bound set and free set that give the least
cost decomposition are found, the image g and the
subfunctions «y,...,a; are not uniquely determined.
Different encoding of cut_set or cut.set_nd’s yield dif-
ferent functions ¢ and ay,...,a;. Discussions of en-
coding problems were found in [4],[7]. We encode
cut_set in a straightforward way: assigning the binary
representation of ¢ to the i-th element. For example,
in Fig.1 the elements of cut_set(f,m,1) are encoded
in asa; = {vg : 00, v; : 01, vg : 10}. In case of
cut_set_nd’s, we pay attention to assign the same codes
to the same BDD nodes if possible.

In the above example, since asa; never has
the value 11, the minterms of the image, ¢(1,1,0)
and g¢(1,1,1), can be handled as don’t cares. Un-
less |cut_set(f,m,1)] = 2t or ¥V by---br € {0,1}*,
|cut_set_nd(f,m,1,by - bx)| = 2¢, we can encode cut_set
and cut_set_nd’s such that the image g has don’t cares.
The Boolean resubstitution technique discussed in the
next section can identify such don’t cares because it uses
satisfiability don’t cares.

4. Boolean Resubstitution to Share LUTs
Only the procedure presented in Sect.3 does not al-

low sharing LUTs among several functions. This sec-
tion discusses a new Boolean resubstitution technique
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Fig. 5 Boolean resubstitution based on support minimization.

to share LUTs among them. Resubstitution, discussed
in[12],{13], is a technique to check whether an exist-
ing function is useful to realize other functions. For
example, let y; = z129 + 123 + 4 and Y2 = 2 + x3.
If we resubstitute y, into y;, y; can be represented as
y1 = z1(x2+x3) + T4 = T1y2 + x4, which costs less than
the original.

4.1 Problem Formulation

In this paper, we formulate Boolean resubstitution prob-
lem as follows.

Problem 1: Let f be an incompletely specified func-
tion whose support is X, and let hy,...,hs; be
completely specified functions whose supports are
X', (X'CX). Find a function § such that g(
hi(X'), ..., he(X"), X"), (X" C X) is compatible with
f, and sup(§) is the minimum. O
In the case of LUT network synthesis, support size can
be considered as one of the costs of a Boolean function.
The image of a functional decomposition sometimes be-
comes an incompletely specified function as shown in
Sect. 3.3.

42 An Algorithm Based on Support Minimization

Let y be a variable such that y = h(X’). If y is utilized
by another function, we do not care about the minterms
represented by y + h(X’). Such don’t cares are called
satisfiability don’t cares (SDCs)[17]. Boolean resubsti-
tution can be carried out by support minimization for
an incompletely specified function generated by consid-
ering SDCs.

We will show our procedure to solve Problem 1.
Figure 5 shows the case of s = 1.

1. Let w;,...,ys be variables such that y;, =
hi(X'), i € {1,...,s}. Consider D =} ,c(; o
y; + h;(X’) as the SDC among X’ and yq,...,¥ys.

2. Let f be expressed by an interval [fL, fU]. Con-
sider an incompletely specified function gryrr
given by an interval [fL - D, fU + D}. The support
of grxrr is {y1,...,¥s} U X. Because D becomes
0 by substituting h;(X') for y; (Vi € {1,...,s}),
f=ainmr(h(X'), ..., he(X'), X).

3. Apply a support minimization to §;nyrr and find a
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/ % global variables that store the best solution * /
minN sup;
minfl;
minfV;
/% the function is given by [fL, fY] %/
/% Nsup is the size of the support of the function * /
/% elim is the index of the variable to be eliminated * /
support.main(fL, fU, Nsup, elim) {
if ( elim < 0 ) return; /% terminal case % /
if ( Nsup — elim 2 minNsup ) return;
newa = edis(fL» {melim});
newa = CCO’l’l(fU, {Ielim});
if (newfL < newfV ) { /x exclude zepim */
if (Nsup—1< minNsup ) {
minNsup = Nsup — 1;
minfl = newfl;
minfV = newfV;

}

support_min(new fL newfY, Nsup — 1, elim — 1);

support_min(fL, fU, Nsup, elim — 1); /% include ze1im */

Fig. 6 Support minimization algorithm.

compatible function § that has a minimal support.
If sup(§) < |X]|, the resubstitution has succeeded;
otherwise the resubstitution has failed. Let E be
the set of eliminated variables in the support min-
imization. Then, f = g(h1(X"),..., hs(X"), X"),
where X" =X — FE.

Lin[16] gave a BDD-based algorithm to find all
valid supports. Although our method also uses BDD
representations, it finds one of minimal supports. Fig-
ure 6 shows our recursive algorithm. For an interval
f =1f%, fY] and sup(f) = {x1,...,2,}, the computa-
tion starts by calling support_min(f%, fV,n,n). The al-
gorithm is not time consuming because the search space
can be pruned in the following two cases. If newfl <
new fU is not satisfied, no compatible function can be
found from the search state; also, if Nsup — elim 2>
minNsup, any compatible function whose support size
is less than minNsup cannot be found from the search
state.

4.3 Resubstitution of m-Feasible Functions

We now show our synthesis procedure using not only
functional decomposition but also Boolean resubstitu-
tion. The procedure iterates the following steps until
all functions become m-feasible.

1. Let fl,..., fk be functions that are m-infeasible,
and let f; be a completely specified function com-
patible with f;, (¢ € {1,...,k}).

2. Find the least cost decomposition form for each
of functions fi,..., fr by the procedure described
in Sect.3. Let &;(X7) be the subfunctions gen-
erated in the least cost decomposition form of f;

1021

(G € {1,...,k}). Note that &(X7P) are m-feasible
functions.

3. For all 4,j € {1,...,k}, try to resubstitute &;(X7)
into fj. Let success; be a subset of {1,...,k} such
that j € success; if and only if the resubstitution
of @;(X7) into f; is successful. Let g;; be the func-

tion generated by the resubstitution of &;(X2) into

fi-

4. We calculate gain, = 3 i iccess, [SuP(ff)] —
|sup(g:;)|, which means how many fanins of func-
tions are reduced if @;(X7) is used. Find the best
subfunction @, (X2) among &,...,d such that
gaing is the maximum.

5. Allocate LUTs for @, (X2). For all j € successy,
replace f; with g;. If there exist m-feasible func-

tions among fl,...,fk, allocate an LUT for each
of them.

In our synthesis procedure, LUTs are allocated
from the side of primary inputs to the side of primary
outputs. Thus, the SDCs of the circuit can be used to
simplify the functions that have not been mapped to
LUTs. The resubstitution technique helps us to easily
handle the SDCs. In step 3, if ¢ = j, it is clear that
the resubstitution is successful. However, we actually
resubstitute &@;(X2) into fi and generate g;; to easily
identify the don’t cares caused by encoding of cut_set
or cut_set_nd’s.

4.4 Resubstitution of Another Primary Output

There exists a case where an primary output function
can be realized simply by resubstituting another pri-
mary output function into the function. Such a case
may not be detected by the procedure described so far.

We apply resubstitution of another primary output
at the beginning of our synthesis process in the follow-
ing manner. Let f1,..., fx be output functions. For
all 4,5 € {1,...,k}, try to resubstitute f; into f;. In
fact, we apply the resubstitution according to the fol-
lowing priority to restrain the depth of a circuit from
increasing.

1. In the case that the function generated by the resub-
stitution is m-feasible: only one additional LUT is
needed to realize the function.

2. In the case that f; is m-feasible.
3. All other cases.
5. Experimental Results
The logic synthesis procedure presented so far has been

implemented. The input to the program was a combi-
national (multi-level or two-level) circuit. The circuit
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Table 1  Experimental results (5-input 1-output LUTs).

circuit without resub. with resub. resub. PO [31 4] [18]
name in out | size dep time|size dep time |size dep time size
5xpl 7 10 14 2 014 10 2 014 3 014 18 12 27
9sym 9 1 6 3 027 6 3 027 6 3 026 7 6 59
alu2 10 6| 47 5 4.38| 47 S 467 47 5 471( 109 54 116
apex7 49 37| 118 5 40.77| 58 5 4162 54 6 651 60 S6 64
b12 15 91 16 3 022| 16 3 026 16 3 025
b9 41 21 50 4 222| 39 4 228} 33 S 128 39 35
clip 9 50 16 3 046 11 3 049 13 8§ 050 28
cordic 23 2| 16 5 10.19| 10 4 999 11 5 6.15
count 35 16| 52 4 039 31 6 1.16] 31 6 1.28( 31 32 31
f51m 8 8| 11 3 019 9 3 021 7 4 014 17 12
misex| 8 7 12 2 011 10 2 013] 10 4 011 11 11 19
misex2 25 18] 40 3 036 36 4 047| 36 4 050| 28 29
misex3c 14 14| 76 9 2500| 70 9 27.13| 64 10 20.29
rd73 7 3 8 2 013 6 3 014 6 3 012 6 7
rd84 8 4| 1 3 022 7 3 026 8 5 022{ 10 12 73
sao2 10 4| 22 3 1.53] 20 3 157 20 3 L57| 28 46
t481 16 1 5 3 176 5 3 176 5 3 176
vg2 25 8| 45 4 28421 20 4 2896 16 5 087 20 21
z4ml 7 4 6 2 0.2 5 2 0.2 4 2 012 5 S 6

total STI 68 1169[416 71 1216|396 87 4638

description was transformed to BDD representations of
primary outputs in terms of primary inputs, with an
initial variable order obtained by heuristics[19]. The
procedure then constructed a network of m-input LUTs.

Table 1 shows the experimental results for several
of the MCNC [20] benchmark circuits listed in the col-
umn “circuit.” The columns “size” and “dep” show the
number of 5-input and l-output LUTs and the depth
of the circuit, respectively. The column “time” shows
CPU time in seconds on a Sun Ultra 1 Model 170E.
We limited the maximum number of usable BDD nodes
to 1,000,000.

Three experiments were performed on each bench-
mark circuit. The column “without resub.” means that
Boolean resubstitutions were not carried out. In the
case, no LUT was shared among two or more primary
outputs. The column “with resub.” means that resub-
stitutions of m-feasible functions were carried out. The
column “resub. PO” means that resubstitution of a pri-
mary output into another primary output was also ap-
plied at the beginning of the synthesis process.

Comparing the columns “without resub.” and
“with resub.,” we can observe the following. Boolean
resubstitution is very effective because it reduced the
number of LUTs sharing common LUTs among sev-
eral functions without increasing the circuit depth in
many cases. Furthermore, the execution time of Boolean
resubstitution, most of which is spent in support min-
imization, was not expensive. Comparing the columns
“with resub.” and “resub. PO,” we can observe the fol-
lowing. Although resubstitution of a primary output
generally reduced the number of LUTs and execution
time, it tends to increase the depth of a circuit. To com-
pare our results with other LUT network synthesizers,
we pick up the results found in[3],[4],[18]. We ob-
serve that our method gives good results for most of the
circuits.

6. Conclusion

We have presented a logic synthesis method for an LUT
network using functional decompositions and Boolean
resubstitutions based on support minimizations. Func-
tional decompositions are used to enumerate candidates
of m-feasible functions to be mapped to LUTs. After
the enumeration, the best m-feasible functions are de-
termined by resubstituting the candidates into all the
m-infeasible functions.

In each of synthesis steps, we generate only one
m-feasible function as a candidate from each of m-
infeasible functions. To synthesize LUT networks of
higher quality, methods to enumerate more candidates
will be required. The Boolean resubstitution technique
proposed in this paper is not time consuming, which
will allow effective identification of common LUTs
from large amount of candidates.
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