
Automatic Formation of Dynamic
Decentralized Networks

Pavel Poupyrev, SenYoshida, and Kazuhiro Kuwabara
{pavel, yoshida, kuwabara}@cslab.kecl.ntt.co.jp

NTT Communication Science Laboratories

2-4 Hikaridai, Seika Soraku, Kyoto 619-0237 JAPAN

Abstract: In this paper, we propose a model for the automatic formation of
decentralized networks with an ordered systematic structure. We describe an
algorithm for adding new nodes to decentralized networks and a strategy for
correcting possible conflicts while new nodes are being added. We believe that this
model can provide a basis for the further development of efficient network search
algorithms and fault-tolerance mechanisms.

1. Introduction

With the rapid growth of the Internet, several architectures have emerged for the
network organization of computer systems. Despite the immense variety of these
architectures, all of them are based upon two primary architectures. The first is a
centralized architecture, distinguished by the presence of a central server that ensures the
functionality of the system. The other is a decentralized architecture of network
applications that, unlike the centralized one, does not have a central server. The advantages
of the decentralized approach are that on some occasions it is faster, more reliable, and
requires less system administration and hardware costs. However, the design of the
architecture has several drawbacks, one of the most serious involving how to automatically
add new participants to decentralized networks.

In this paper, we propose a model for forming decentralized networks. The model has
an algorithm for adding new nodes and a solution for correcting conflicts that could
conceivably occur while new nodes are being added to such networks. We believe that this
model can provide a basis for further development of efficient network search algorithms
and fault-tolerance mechanisms.

The rest of this article is organized as follows: in the next section, we give the
background and motivation for this work. Then, we describe the proposed model, the
algorithm for adding new nodes to decentralized networks, and the message protocol, and
consider conflicts that could possibly occur while new nodes are being added. We then
continue with experiments on the system and state our conclusions and future work.

2. Background and Motivation

Most networked computer systems use a centralized architecture. For example, multi-

agent systems [5], despite their decentralized nature, always require the use of a centralized
server. In these systems, the central server has a directory service that contains agent

descriptions, such as their names, properties, network addresses, and so on. When an agent
attempts to locate other agents that satisfy given criteria, it has to request the directory
service to provide a list of such agents. After obtaining this information, the requester can
directly communicate with these agents and use their services, for example, buy a cheap
ticket from an airline reservations agent [4].

However, this approach has a number of disadvantages. The first is that it has a central
point of failure, i.e., if the central server goes down the whole system fails. Another
disadvantage is that because agents (nodes) belong to different organizations, it is not clear
which organization should control the central directory service. Therefore, a centralized
architecture is intrinsically unsuitable for representing distributed resources.

Decentralization has been proposed to overcome these problems. In this approach, we
assume that all nodes are interconnected, and that every node has a list of physical
addresses, i.e., an address book, of other participants in the network. The most influential
example of such a decentralized architecture is Gnutella [3]. Gnutella is a file sharing
system that has no central server; every client acts as both a client and a server. A Gnutella
network has a random network topology, and when a new node is added to the network, it
builds its address book by sending a “ping” message to one known node of the Gnutella
network, which propagates this message to the other nodes from its address book. The
message field, TTL (time to live), defines the number of hops the message can be
forwarded with. All nodes that receive the message reply with an answer directly to the
requester, which collects all replies and generates its address book. Then, the requester
queries nodes from its address book for needed resources.

Freenet [1] is another decentralized file sharing system. It also does not have any central
server and all data is distributed among nodes. Similar to Gnutella, when a new node shows
up in the Freenet network the node sends a message to one known client that takes a
random address from its address book and forwards this message. All nodes that receive
this message reply directly to the requester. Unlike Gnutella, Freenet limits the number of
connections among nodes and the resulting network represents a random graph. The
creators of Freenet have attempted to explain the properties of the network using a “small
world” model [2, 6].

A decentralized architecture has several problems that need to be considered:
• Node addition: How a new node can be added to a decentralized network.
• Node search: How an efficient node search can be performed in a decentralized

network.
• Adaptation to failure: How a decentralized network can adapt if one node fails.
In this work, we attempt to answer the first problem of how new nodes can be added to

a decentralized network. Here, not only does a new node have to form its own address book,
but also other nodes have to add this newly added node into their address books.

There are two techniques for constructing decentralized networks. The first is a manual
technique that involves human intervention. As a rule, this technique is inappropriate in the
case of large dynamic networks because it is not feasible for people to track all changes in
such networks. The other approach is the automatic addition of nodes into a network [1, 3].
Here, a new node requests a known node of the network to add it to the distributed network.
The known node in turn propagates the request to all nodes in its address book, which then
reply to the newly added node, thereby forming its address book, and update their own
address books by adding this new node. It has been observed, however, that the resulting
topology of the network is random [7], since there are no mechanisms to systematically
control the addition of nodes based on certain criteria.

We propose a model that allows the
automatic formation of a decentralized
network with an ordered systematic
structure. The distinguishing feature of the
proposed model is that the resulting
topology of the decentralized network has an
ordered systematic structure that allows
using effective algorithms for search in the
network and adding fault-tolerance
mechanisms. The construction of the
decentralized network is achieved by
assigning a virtual address that is a random
value allocated from the interval (0,1), to
every node. This is used to define the area of the network where the new node can be added
using the algorithm described below.

3. Architecture

3.1 The model

We consider a set of N nodes { }NaaaA ,...,,: 21 . We define the neighborhood of node ia ,
Aai ∈ , as a subset of nodes { }liiiii aaaA ,...,,: 21 consisting of il nodes (Nli <<) to whom ia

can send messages.
For each node ia , we define a virtual address ig , which is a real value on the interval

)1,0(∈R . There is a one-to-one correspondence between the set of all nodes and the real
numbers from the (0,1) interval, i.e., each node ia has a unique virtual address ig .
Therefore, each node is represented by its virtual address and neighborhood:

},...,,{,: 21 liiiiii aaaga .
We then define the distance from the given ia to ja as follows:

 <

−−= − jiij

ji
ji

ggifgg
otherwiseggggd ,

),(1),(

This function allows defining a continuous cyclic relationship between the virtual

addresses of the nodes. For simplicity, we also assume that each node ia has a
neighborhood consisting of only two nodes, where the left node is a node for which the
distance function is minimal, i.e., the closest one, and the right one is a node for which the
distance function is maximum, i.e., the furthest
one on the rim (Figure 1). We also call the left
and right nodes the closest nodes of ia .

3.2 The algorithm for adding new nodes

The algorithm for adding a new node to a

decentralized network (Figure 2) consists of the
following steps:

 24.0:1a
a

3.0:3a
a

6.0:2a
a 73.0:5a

8.0:4a
a

ia

right
node

left
node

a) b)

Figure 1. a) Cyclic relationship of nodes, b)
left and right nodes relative to ia that are

nodes from the neighborhood of ia .

 new
node

a) b)

Figure 2. a) Topology before adding a
node, and b) topology after a new node

is added into a network

1. Calculate the virtual address of the new node 1+Na . The address is calculated as a
random number from the interval (0, 1).

2. In this algorithm, we also assume that we know the address of at least one node of
the decentralized network. Send a “join” message to the known node sa of the
network. The message contains the virtual address of the new node.

3. The receiving node ia calculates whether the new node belongs to its neighborhood
(for the equation of the condition, which defines if the node belongs to the
neighborhood, see the formal algorithm description in Figure 3, step 2).

4. If the new node belongs to the neighborhood of ia , and the virtual address of node
1+Na matches one of any existing addresses, then assign a new virtual address for

the new node (see step 2.1). Next, ia updates its neighborhood to include new node
1+Na . Node 1+Na forms its neighborhood to include ia and one of the nodes

previously in the neighborhood of ia (see steps 2.2 and 2.3).
5. If the neighborhood of ia does not include 1+Na , then it selects the next node to

forward a “join” message as described in step 3.

Basically, this process involves rearranging connections in a neighborhood of three

nodes.

3.3 Message Protocol

The above algorithm defines the topology of the network, i.e., the connections among

nodes. Here, we describe the message protocol for building that network topology. Every
message has several fields such as sender, receiver, reply-to, and message type. The first
three fields carry information about the addresses of the participants in communications. It
is important that every participant is represented by two addresses: a physical address and a
virtual address. The protocol defines three messages as follows:

• join message: this message is used to request a node to add a new node (i.e., that
pointed to in the reply-to field) into the network. This message is forwarded from one
node to another until it reaches a node that initiates the addition.
• reply message: this message requests a node to add the address of the sender to its
address book when a new node is added to the network.

1. 1+Na allocates)1,0(1 ∈+Ng , and selects sa to connect to,
(),(),(,},,{,: 2121 iiiiiiiiisi ggdggdAaaagaaa <∈=)

2. 1+Na informs the agent ia with its virtual address 1+Ng
if)),(),(),(),((11 21 ++ >∧< NiiiNiii ggdggdggdggd
 then goto 3
else

2.1 if)()()(21 111 iNiNiN gggggg =∨=∨= +++ then
),()(' 21,11 iiiiNN gggggg ∪∈= ++

2.2 if),(),(11 +> Niii ggdggd then

=+ iiN aaA ,11 ,

+= 2,1 iNi aaA ,

+= 1,111 Nii aaA
2.3 else if),(),(12 +< Niii ggdggd then

=+ 2,1 iiN aaA ,

+= 1,1 Nii aaA ,

+= 222 ,1 iNi aaA

3.

 −<−= ++),(),(),(),(,

,
11 211

2

NiiiiiNii

i
i

ggdggdggdggdifa
otherwiseaa

goto 2

Figure 3. An algorithm for adding a new agent into a network

Table 1. The content of the agents’
address books, at different times.

 B C D E
Initial {A, E} {B} {E} {B, F}

0t {A, C} {B} {E} {D, F}
1t {A, D} {B} {E} {C, F}
2t {A, D} {B, E} {B, E} {C, F}

Desired {A, C} {B, D} {C, E} {D, F}

0t A B C D E F

joinjoin

announce
announce

reply

reply

reply

reply

0t

1t

2t

Figure 5. Collisions while two agents
simultaneously join the network

6.0:sa

1

07.0:1+Na

24.0:1ia

73.0:1sa

8.0:ia2
3

6

5
4

join 1, 2, 3
announce 5
reply 4, 6

Figure 4. Message passing while a new node
is being added into a network

• announce message: this message is sent
by an existing node to ask another node to
add the address pointed to in the reply-to
field in its address book and to send a reply
message to the node pointed to in the reply
field.

Figure 4 depicts the typical example of

message passing while a new node is being
added to a network. The new node 1+Na first
sends a “join” message to a known node sa in
the network. The node sa forwards the “join”
message to one of its neighbors from its address
book since the new node 1+Na does not belong
to the neighborhood of sa (Figure 3, step 2). The selected neighbor is a node 1sa that
satisfies the condition in Figure 3, step 3. The “join” message is forwarded until it reaches

ia such that the new node belongs to the neighborhood of ia . The node ia initiates the
addition of the new node 1+Na by sending a “reply” message to it and an “announce”
message to node 1ia , one of the neighbors of ia (Figure 3, steps 2.2 and 2.3). On receiving
this “announce” message, node 1ia sends the “reply” message to the new node.

Therefore, the new node 1+Na forms its address book by getting two “reply” messages
from its new neighbors on the left and right. These two nodes also change their address
books after receiving the “join” and “announce” messages.

3.4 Correction of possible conflicts when nodes are being added

The described algorithm assumes that only one node is added at a time although in

reality several nodes can initiate the procedure of being added to a network. With several
nodes, however, the described algorithm causes the nodes to form wrong address books.
This is shown by the example in Figure 5, where
two nodes are trying to connect to a network at
the same time, to their closest nodes.

In the figure, the two nodes C and D are
trying to simultaneously join a network. They
both send a “join” message to nodes B and E,
respectively, to be added into the network. Upon
receiving the nodes’ “join” messages, nodes B
and E add new nodes C and D in their address
books. Therefore, according to our algorithm, B
adds C and E adds D. After nodes B and E send
“reply” messages to C and D they both inform
each other that each of them has a new neighbor
by sending “announce” messages. After
receiving the announce messages, B adds D and
E adds C in their address books. The resulting
contents of the address books for all of the
nodes are presented in Table 1 at time 2t . The
correct contents of the table, however, are
actually different and are presented in the last
row of Table 1.

We can correct these conflicts by regularly sending “ping” messages to the nodes listed
in the address books. Every time a node receives a “ping” message it checks whether its
address book has the sender’s address. If it does, the node ignores the message. Otherwise,
it shows that there are errors in the address book. There are two possible variants: The first
is that the sender of a “ping” message is closer than at least one node from the address book.
In this case, the receiver should update its address book accordingly. The other possibility
is that the sender is not closer than any node from the address book. In this case, the
receiver should send an announce message to a closer node from the address book, thus
correcting the sender’s address book.

4. Experiments

To conduct an initial evaluation of our approach, we built a simulation of the model in

Java. It had a number of threads each of which represented a node. Java message objects
were used to simulate the network message exchanges. A main thread collected statistics of
the sent and received messages.

To evaluate the performance of the model, we consequently added a new node into the
network and calculated how many messages were needed to construct a network of N nodes.
The new node used a random node of the network to send a “join” message. The results
showed that the number of messages that are needed to organize an N-node decentralized
network architecture grows approximately as a power function (Figure 6).

However, the addition of other nodes (remote nodes) into address books can
significantly decrease the number of messages when constructing the decentralized network
of N nodes. To demonstrate this, we evaluated the model with address books consisting of
two closest nodes and one remote node, where the closest nodes were nodes obtained as
described in the previous sections. The remote node, on the other hand, was the node to
which the new node sent the first “join” message when connecting to the network. In order
to forward “join” messages more effectively, we modified step 3 in the algorithm, as
follows:

mini

remotemin

miniNiremoteiNi

NiiiiiNii

i
min

aa
aa

ggdggdggdggdif

ggdggdggdggdifa
otherwiseaa

=
=

−<−

 −<−=

++

++

),(),(),(),(

),(),(),(),(,
,

11

11 211

2

goto 2

0

20

40

60

80

100

120

140

0 200 400 600 800 1000
Nodes

M
es

sa
ge

s
(T

ho
us

an
ds

)

2 neighbors

3 neighbors

Figure 6. The average number of messages needed

to form a network of N nodes.

This resulted in an almost linear performance (Figure 5).

5. Conclusions and Future Work

In this work, we described a model for the automatic formation of a network topology,

which has a decentralized architecture, and an algorithm for adding new nodes to the
topology. This model is based on assigning virtual addresses from an interval (0,1), which
allows a client to form its address book in a systematic ordered fashion. A simulation
showed that it is possible to build this topology and exclude possible errors while new
nodes are being added. This model demonstrated a simple method of constructing a
network topology with an ordered systematic structure.

In our future work, we will continue investigating the proposed model including:
• an investigation on the efficient addition of new nodes into a decentralized

network
• the development of a network adaptation mechanism to address node failure
• the implementation of search algorithms
• an evaluation of the scalability considering the transmission speed, possible

message delay and the bandwidth
• a performance comparison of our algorithms with other previously reported

techniques such as those in the Gnutella network.

References

1. I. Clarke, O. Sandberg, B. Wiley and T.W. Hong, “Freenet: A distributed Anonymous Information
Storage and Retrieval System”, in Designing Private Enhancing Technologies: International
Workshop on Design Issues in Anonymity and Unobservability, 46-66, 2001.

2. D. Watts and S. Strogatz, “Collective dynamics of ‘Small world’ networks”, in letter to nature, 393,
440-442, 1998.

3. “Gnutella”, http://gnutella.wego.com/, 2001.
4. J. Morris and P. Maes, “Sardine: An Agent-facilitated Airline Ticket Bidding System”, Software

Demos, in Proceedings of the Fourth International Conference on Autonomous Agents (Agents
2000), 2000.

5. M. Huhns and M. Stephens, “Multiagent Systems and Societies of Agents”, Multi-agent systems,
edited by G. Weiss, 1999, Massachusetts Institute of Technology, 79-82.

6. S. Milgram, “The small world problem”, Psychology Today 1(1), 60-67, 1967.
7. “Gnutella Network Map”, http://www.clip2.com/dss_map.html, 2001.

