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ABSTRACT

This paper presents the preliminary results of classi-
fying human touching behaviors using a haptic inter-
face for a pet-like robot. The haptic interface uses
gridded pressure-sensitive conductive ink sheets. Fea-
tures of the measured pressure data are determined for
classification in terms of 1) absolute values, 2) spatial
distributions and 3) the temporal differences in mea-
sured pressure patterns. Touching behaviors include
“slap,” “pat,” “stroke” and so forth. The experimen-
tal results show that a reliable classification of these
touching patterns can be accomplished by using the
sensor sheet and pressure features.

The results of classification can be used as reward
signals for reinforcement learning in controlling the be-
haviors of a pet-like robot that interacts with humans.

1 INTRODUCTION

Haptic information is expected to play a great role in
enriching communication between humans and robots
in the real world. In interactions between humans and
robots, distinguishing haptic patterns is very impor-
tant. In particular, this is useful for helping a robot
to recognize human touching behaviors and also for
having a robot to express its internal states, or artifi-
cial emotions, by physically touching humans. We are
currently promoting the Communication Robot project.
The goal of this project is to measure human emotions
through the physical interaction between humans and
robots and also to develop a robot that can naturally
interact with humans through touch.

There has been much research on haptic devices de-
signed to develop tactile sensors for robot hands and
fingertips [1, 4]. These sensors have mainly been de-
signed to detect contact between a robot’s hands and
the target objects to be grasped or manipulated. How-
ever, our goal is to have a robot recognize human touch,
which means we need to develop tactile sensors that
have a relatively wide sensing area and the flexibility
to be used to cover the entire body of the robot.

Few sensors have been developed for measuring hu-
man touching behavior. Inaba et al.[2] have developed
a tactile sensor suit that uses electric conductive fab-
ric to cover the whole body of a humanoid robot. This
sensor suit is flexible and has 192 sensing regions that

are binary switches. The sensor signals are gathered
and superimposed on a visual image of the robot so
that the sampling ratio of the sensor data is equal to
that of the video frame rate (30[Hz]). The study pre-
sented sensing pattern examples of a human touching
the robot’s arms, or of the robot holding a ball.

In another study, Shibata et al.[3] proposed a tac-
tile sensor for a pet-like robot. This tactile sensor uses
a semiconductor pressure sensor that is connected to
a balloon covered by synthetic skin. This sensor is
designed to be comfortable for humans. The study
presented the sensing patterns of human touching be-
haviors such as ‘patting’ and ’stroking’, but did not
give much detail on the recognition scheme for these
behaviors.

In order for a robot to recognize more sensitive pat-
terns of human touch (e.g. a tickle, scratch, etc.), hap-
tic devices are needed to measure touching pressure at
a high sampling rate and at high spatial and pressure
resolutions.

In this paper, we investigate what is required for
haptic devices to recognize human touch. We then
show the preliminary results of recognizing typical hu-
man touching behaviors including “slap,” “stroke” etc.
This is accomplished using a gridded pressure sensitive
ink sheet. This sensor sheet is thin and flexible for cov-
ering the body of a robot, and its resolution and sam-
pling rate is high enough to recognize human touching
behaviors. In the following sections, the experimental
results are shown for five touching behaviors, and the
feature selection used for recognizing these behaviors
is discussed.

2 EXPERIMENTS

2.1 Experiment setup

The sensors we used for the following experiments are
gridded pressure sensitive ink sheets (NITTA Corp., I-
SCAN series), as shown in Figure 1. The interface of
the sensor is standard ISA or PCI bus of PCs. The size
of the sensor area of the sheet is 16.5 x 16.5cm2 and
about 0.3mm thick. The sensor area is gridded in 44 x
44 = 1936 elements, so one gridded element size is 3.75
x 3.75mm2. The measuring pressure range is 0.2 – 2.0
[kgf/cm2]. The pressure values can be retrieved at a
rate of 127[Hz] (maximum), and the output is given as



a distribution as raw data of 256 scaled values. The size
and the measuring range of this sensor are suitable for
measuring the touching behaviors of human hands. In
the following sections, we denote Fij(t) as the spatial
pressure pattern of the frame at time t.

Figure 1: Sensor sheet (NITTA Corp., I-SCAN)

2.2 Touching behaviors and experi-
ment

We measured five different touching behaviors for 11
subjects (six males and five females). The touch behav-
iors are “slap,” “pat,” “scratch,” “stroke” and “tickle”.
Each subject was told to repeat each behavior to the
sensor in five seconds. The pressure data was then
sampled at a rate of 120[Hz]. The number of the total
frame sequence was 600(120x5). A typical ‘slapping’
pattern sequence is shown in Figure 2. This slapping
sequence includes 18 frames (= 150[msec]). As shown
in this figure, the sampling rate is fast enough to cap-
ture steep pressure changes in slapping.

time

Figure 2: A typical “slap” sequence.
(1 frame = 1/120[sec] � 8.3[msec])

2.3 Feature selection

In order to recognize human touching behaviors in re-
altime, we need to determine pressure features that can
be processed by non-iterative and non-time-consuming

processes. As the first standpoint for determining fea-
ture space, we use the following values as the basic
features of a pressure distribution:

1. w(t): The total load of a frame at time t

w(t) =
∑

i

∑
j

Fij(t) (1 ≤ i, j ≤ 44),

2. a(t): The total contact area of a frame at time t

a(t) =
∑

i

∑
j

bij(t) (1 ≤ i, j ≤ 44) where,

bij(t) =
{

1, for Fij(t) ≥ fthresh

0, otherwise.

Here, bij(t) corresponds to the binary image of the
pressure distribution at time t. To reduce noise in the
pressure distribution, the threshold value of fthresh

is determined from measuring Fij when no weight is
loaded onto the sensor.

Figure 3 and 4 show sample touching sequences by
a male and a female, respectively. The left column of
these figures shows the total load changes w(t) of each
of the five behaviors, and the right column shows the
changes of the total contact area a(t) for the corre-
sponding behaviors. Each sequence of the figure con-
tains several touching actions, each of which represents
changes in the pressure data caused by one behavior
action.

As expected, there are many varieties of pres-
sure patterns for the same behavior. Behaviors
such as “slap” have common features such as steep
changes in pressure values (Figure 3(a)(b) and Figure
4(a)(b)). On the other hand, behaviors like “stroke”
and “scratch” differ from person to person. For ex-
ample, the behavior may be alternately repeated while
keeping touch with the sensor (Figure 3(d)) or it may
be a one-directional touch-and-release motion (Figure
4(d)).

From Figure 3 and 4, behaviors such as “slap”
and “pat”, and some cases of “scratch” and “stroke”
demonstrate tendencies to have temporal pressure pat-
terns specific to each behavior. However, we still need
to manage the following characteristics, which differ
even among pressure data from the same behavior:

1. Intensity of each touching pattern

2. Duration and frequency of each touching pattern

3. Motion direction and motion range of each touching
pattern
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Figure 3: Sample touching patterns by a male.
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Figure 4: Sample touching patterns by a female.



In order to cope with these differences, a recogni-
tion process needs to have features that are indepen-
dent of these characteristics. Here, we focus on the
steepness of each touching pattern in terms of abso-
lute values and the temporal changes in the pressure
data measured.

3 CLASSIFYING HUMAN TOUCHING
BEHAVIORS

3.1 Classification results using absolute
pressure values

As a feature relating to steepness, we first sampled the
peak values of the total load wpeak(t) and the corre-
sponding values of the total area apeak(t). The tem-
poral duration for finding peaks is determined to be
30 frames(250[msec]) after the total load of a frame
exceeds the threshold value (50[g]).

For each subject, these feature values were esti-
mated by averaging several touching actions of each
behavior. The results are shown in Figure 5.
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Figure 5: Touching pattern distribution.
(Total area vs. Total load)

In Figure 5, each point represents the average value
of the apeak and wpeak of each behavior for one subject.
Table 1 shows the mean value and standard deviation
of the total area and the total load for each behavior
among the 11 subjects. Although the data points are
somewhat scattered, the data points of “slap,” “pat”
and “scratch” seem to be linearly separated.

For classifying these sampled data, we used k-
nearest neighbor(k-NN) method with leaving-one-out.
The recognition ratio for each behavior is shown in Ta-
ble 2.

As it is obvious from Figure 5 and Table 2, the
peaks of the total load and area are not good features

Behavior w̄[g] σw[g] ā[mm2] σa[mm2]
Slap 9112.3 6879.0 51.3 20.4
Pat 1608.2 1210.9 17.9 10.3

Scratch 828.0 318.1 5.3 2.0
Stroke 266.5 127.0 4.3 1.3
Tickle 259.0 121.0 2.9 1.3

Table 1: Mean and standard deviation of the peak
values of the total load and total area of each behavior.

Behaviors Slap Pat Scratch Stroke Tickle

Recog.
100.0 63.6 72.7 36.4 27.3ratio(%)

Table 2: Recognition ratio of the classifying behaviors
based on the data.

for discriminating between “stroke” and “tickle” be-
haviors. As we can see from Figure 3 and 5, the abso-
lute values of the total pressure and area of these two
behaviors are very similar among all the subjects. This
is because peaks do not contain the temporal informa-
tion of the movement of the pressure data. Thus, we
need to introduce another feature vector to distinguish
between “stroke” and “tickle”.

3.2 Classification results using tempo-
ral differences in pressure values

It is possible to use some motion-related features such
as the centroid of pressure images, however, such fea-
tures are not so stable through a sequence of behaviors
in which fingertips touch on and off, as in stroking or
tickling.

To introduce the temporal information in the pres-
sure patterns, we used the difference between peaks of
the total load wpeak and the total area apeak at time t
and t − 1.

We define the normalized temporal difference of the
total load and the total area at the peak points as
follows:

• δwpeak(t): normalized temporal difference of the
total load between time t and t − 1.

δwpeak(t) =

∑
ij |Fij(t)− Fij(t − 1)|∑

ij Fij(t)
,

where t gives a peak value of
∑

ij Fij(t).

• δapeak(t): normalized temporal difference of the to-
tal area between time t and t − 1.

δapeak(t) =

∑
ij |bij(t)− bij(t − 1)|∑

ij bij(t)
,

where t is the same as that above and has a peak
at

∑
ij Fij(t).



Figure 6 shows the distribution of the “stroke” and
“tickle” touching patterns for 11 subjects by using
these features. By applying Fisher’s linear discrimi-
nant method to these data, these two behaviors can
be clearly separated by using these temporal differ-
ence features. Thus, by combining two discriminant
methods above, the averaged recognition ratio of five
touching behaviors is 87.3%.
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Figure 6: Touching pattern distribution.
Temporal difference of the total area (normalized) vs.
temporal difference of the total load (normalized).

4 CONCLUDING REMARKS AND
FUTURE WORK

In this paper, five different human touching behav-
iors were measured for 11 subjects by using gridded
pressure-sensitive conductive ink sheets. The classifi-
cation results of these behaviors are presented by defin-
ing the features of the absolute values and the temporal
differences in the pressure distribution of the sensor.

For actions like “slap,” “pat” and “scratch,” it was
found that it is possible to discriminate between these
behaviors by using contact area and absolute pressure
values as gross features. To classify more sensitive
touching behaviors such as “stroke” and “tickle,” tem-
poral differences in the pressure patterns and contact
area need to be selected as features. These features
are very simple to extract and are not computer inten-
sive, so realtime recognition among these behaviors is
possible using these features.

We are currently developing “communication
robots” and are focusing on the functions that are
necessary for a robot to communicate with humans
through the physical interaction (Figure 7). In future
work, we plan to include to equip the whole robot body
with sensor sheets and to measure human emotions
from the recognition results of human touching behav-

iors. We are also planning to use these recognition
results as reward signals for controlling the behavior
of a robot.

Figure 7: Communication Robot (Kenzo)
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