Finding Small Changes Using Sensor Networks

Kaoru Hiramatsu, Takashi Hattori, Tatsumi Yamada, and Takeshi Okadome NTT Communication Science Labs. hiramatu@cslab.kecl.ntt.co.jp

Outline

- Background and Motivation
- Our Experiment
 - Prototype sensor nodes
 - Finding "small changes" using a sensor network
- Conclusion / Discussion

Background

Ubiquitous Computing

- "Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives."
 - M.Weiser

Smart Environment Assists Daily Life

- actualized by small sensors and networks
- Not only factories and hospitals but also home and office.

Target: context-aware applications in home and office

Motivation

Context-aware applications need "contexts"

- In home and office, hard to abstract "contexts" because a system might observe various behaviors that relate to many objects.
- We describe contexts
 based on small changes
 of sensor data captured by
 sensor nodes attached to objects

"Small changes" in Sensor Data

Experimental Setting

Prototype Sensor Node

1) Prototype sensor nodes attached to objects in office

Sensor Data

2) Store sensor data on server disk (sampling rate is about 10Hz)

3) Capture small changes in sensor data

Change Probabilities of One Sensor

Change and co-change probabilities of chair sensor data

			A chair is moving.								
		Tir	\rightarrow An individual is sitting								
Changed sensor	1	5	10	15							
Accelerometer	.346	.533	.591	.618	.669						
Infrared sensor	.023	.050	.070	.092	.139						
Illuminometer	.002	.014	.030	.044	.086						
Acc. Infrared	.013	.041	.062	.085	.128						
Illumi. • Acc.	002	012	025		072						
Infrared Illumi.	Finding events by analyzing sequences:										
Acc. • Infrared • Illumi.	Infrared, then Acc. \rightarrow An individual sat.										
	Acc., then Infrared \rightarrow An individual left.										

Co-change Probabilities among Sensors

Change and co-change probabilities of sensor data of chair, door, and floor

			Hints for contexts: - Door moved, then chair moved				4		
Changed Sensor	1	5	→ Individual started working						
Chair	.346	.5	- Chair moved, then door moved						
Door	.008	.0	→ Individual left office						
Floor	.063	.1(7		.165	.217			
Chair - Door	.002	.0	3()20	.024	.044			
Door • Floor	.001	.00	4 .(006	.010	.025			
Floor Chair	.026	.0	.0)98	.122	.169			
Chair Door Floor	.001		2 .0	005	.007	.022			

Inferring distance between objects: distance(chair,door) > distance(chair,floor)

Conclusion / Discussion

Preliminary results:

 Small changes translated into contexts by adding object and situational knowledge

Discussion

- Index of change probabilites
- Is "small change" sufficient?
- How large of knowledge is necessary?
- How many sensor nodes in an office?

