A Pattern-based Predictive Indexing Method
for Distributed Trajectory Databases

Keisuke KATSUDA'*, Yutaka YANAGISAWA?2, and Tetsuji SATOH!:2

! Graduate School of Information Science and Technology, Osaka University, Japan.
2 NTT Communication Science Laboratories, NTT Corporation, Japan.

Abstract. Recently, it has become possible to collect large amounts of
trajectory data of moving objects by using sensor networks. To manage
such trajectory data, we have developed a distributed trajectory database
composed of a server and many sensor nodes deployed over wide areas.
The server manages the trajectory data of each moving object by using
indices. However, since each sensor node cannot send trajectory data
to the server all the time, the server does not always manage indices
for the current trajectory data. In other words, the server is delayed in
answering queries for current data because it has to forward each query
to the sensor nodes to answer them. This is defined as a delay problem.
To avoid this problem, we propose a pattern-based predictive indexing
method for the database to answer queries in real time. This method uses
past motion patterns of moving objects to predict the future locations
of moving objects. In this paper, we describe the method and evaluate
it with practical trajectory data. We conclude that the technique can
predict the future locations of moving objects well enough in real time
and show optimal parameters for prediction.

1 Introduction

In recent years, various types of applications using the trajectory data of moving
objects have been developed [1] [2] and have attracted attention because they
allow us to obtain high accurate trajectories using positioning devices on sen-
sor networks. Applications include forecasting traffic congestion, management
of taxis and trucks, automatic switching of point-of-purchase advertisements,
and so on. These systems must deal efficiently with a large amount of trajectory
data (see Fig. 1). However, since the amount of trajectory data has been growing
rapidly year by year and such data are managed over wide areas, it is difficult
to manage all it in a single database [3].

Therefore, we have developed a distributed trajectory database (DTDB) that
stores trajectory data in distributed environments as sensor networks. DTDB
consists of a server and many sensor nodes connected to that server. Each sensor
node has a positioning device and a database that stores the obtained position
data. Nodes do not send all of the trajectory data to the server but only the

* corresponding author: k-katuda@ist.osaka-u.ac. jp

data necessary for the server to generate indices. Using the indices, the server can
answer a window query to find the objects intersecting a query window during
a past time interval, even though the server does not store all of the obtained
trajectory data.

However, there is a problem associated with distributing data. Since each
sensor node does not send the trajectory data to the server in real time, the
server may have to wait for the data from the sensors to generate indices, which
are used to answer window queries. Therefore, the server may answer the queries
late. We call this the delay problem. To avoid this problem, the server must
predict future trajectory data and generate predictive indices corresponding to
future trajectory data. Using predictive indices, the server can answer a future
window query to find objects intersecting a query window not only during past
time but future time.

We propose a pattern-based predictive indexing method for the future posi-
tion of moving objects. In this paper, we describe a method that uses the past
motion patterns of moving objects extracted from past trajectories. Moreover,
we develop a DTDB prototype to evaluate our proposed method with practical
trajectory data on rickshaws in Nara, Japan. In this evaluation, we investigate
the effects of variations in the length of trajectory data for prediction, the data
granularity, and the transmission interval of sensor nodes on the prediction.

The rest of the paper is organized as follows. In Section 2, we describe DTDB
and the delay problem in detail. Section 3 describes our proposed method. In Sec-
tion 4, we evaluate our method with comprehensive experiments using trajectory
data from rickshaws. Section 5 introduces related work and explains differences
from our method. Finally, Section 6 concludes the paper with a discussion of
future work.

S udld

(a) x-y plane (b) x-y-t space

Fig. 1. Sample trajectory data of a rickshaw

(@ Get and store position @ Check area

Server Database @ Forward query Server Server Database

@ @ Process query — @
— | @ Reply with resus | —"

Ro
L=l
= 1
A
®

@ Calculate area Server
@ Send area data =]
@ Produce indices

[
i

%RBI ‘\% T @8
A0) Re <) .
®AE?)® BZE(I) C:Q@:)@ Ij:l Re - 5 "

Node A Node B Node C Node A Node B Node C
X(t) : Position of object X at timet X(t) : Position of object X at timet
(a) Generating indices (b) Processing a query

Fig. 2. Distributed trajectory database

2 Distributed Trajectory Database

2.1 Overview

We define trajectory data as the sequence of both the position and the time of
a moving object. Fig. 1(a) shows the trajectory of a rickshaw moving around
Nara. In Fig. 1(b), the same trajectory is projected in x-y-t space.

We consider a trajectory database that comprises both a server database
and many positioning devices embedded within a moving object [4]. When each
positioning device obtains the location of an object, it sends the data to the
server. In other words, the server collects all the trajectory data of all objects
to answer a window query [5]. Thus, the database is a system that is effective
enough to answer queries for moving objects in real time.

However, since sensors are becoming cheaper and smaller and sensor networks
are growing, in the future it will become more difficult to manage all trajectory
data at a single location. Therefore, we have developed a distributed trajectory
database, a distributed version of a trajectory database.

DTDB comprises a server and many sensor nodes connected to the server.
Each sensor node has both a positioning device and a database. The former
is embedded within a moving object and stores obtained trajectory data in its
embedded database. Fig. 2(a) illustrates the process by which the server database
generates indices to the data stored at the embedded databases. In the example,
there are three sensor nodes: A, B, and C. Each node obtains the position of a
moving object and stores in its database at each time interval and calculates the
maximum area within which an object moves at regular interval 7. Moreover,
each sensor node sends area R to the server at interval 7. On the other hand,
the server database generates indices from received area R. Each index at t = 7
indicates the area to which the object moved within 0 < ¢ < 7. In Fig. 2(a), R4,

@ Get and store position Server Server Database
(@ Send trajectory data ®3)

= AlT) (7)
I

@A(r)
/ I@B(Z) c(z)

!%?a = =

@ Produce indices

L

A(0) SO
; @ ® oo’
A(T) @O)
B(0) B(7)
Node A Node B Node C

X(t) : Position of object X at timet

Fig. 3. Producing predictive indices

Rp, and R¢ are the areas within which objects A, B, and C respectively move
0<t<r.

Next, we illustrate the process by which the server database retrieves the
data indicated by a given query window. A query is also given as area Rg in
Fig. 2(b). When the server receives a query, it verifies whether Rg overlaps the
areas stored in the server database. If R4 and Rp overlap with Rg, the server
forwards R to sensor nodes A and B. When the sensor nodes receive a query,
they process it in their embedded databases. Finally, each sensor node receiving
a query replies with the results of the query to the server. In this case, the result
of Rq is B. In this process, the server can efficiently retrieve any object by using
indices.

2.2 Delay Problem and Approach

In this section, we describe the delay problem that occurs in DTDB. Before
describing it, we state two assumptions.

— The server receives data and generates indices to the data ((n—1)7 <t < nr)
at t = n7 (n € N), where N is the set of all natural numbers.
— The server manages the indices to the data (0 <t < n7) at t = nr.

Therefore, at ¢ = nt + j, where j € N and j < 7, the server can search for
the data at ¢ < n7. If the server searches for the data at ¢t = n7 + j, it has to
wait until ¢ = (n+1)7, when indices corresponding to the data at t = nT+j are
generated. As a result, a delay of 7 — j occurs. We call this the delay problem in
DTDB.

To avoid this problem, we introduce a method that predicts data from n7+1
to (n+1)7—1, using already received data. By applying this prediction technique,
the server produces predictive indices to answer queries for data that have not
been received yet.

We show the process by which the server produces predictive indices in Fig.
3. In this example, sensor nodes A, B, and C obtain their position at every time

Table 1. Definition of symbols

X: |position of X at ¢ (X; = (z,v))
Sx |CID sequence of X in ascending time
Sx(n)|n th CID of Sx
|Sx| |element number of Sx
L |element number of CID sequence for prediction

interval, and each node stores trajectory data in their embedded databases. They
also send trajectory data to the server at every regular interval 7. At ¢t = nr,
the server generates indices corresponding to the data (n7 <t < (n+1)7) using
the past trajectory data at the time when the server received the trajectory
data. Suppose that now ¢t = 7; the three circles Ry, R’;, and R, are the areas
within which each object will move 7 < ¢ < 27. The server database uses these
predictive indices to answer a query for 7 < t < 27.

To produce a predictive index, the server must predict the positions at which
an object will be in the future. We describe the proposed prediction technique
to calculate the future positions of moving objects in Section 3 and evaluate the
technique in Section 4.

3 Pattern-based Predictive Indexing Method

In this section, we describe our pattern-based predictive indexing method, which
assumes that an object tends to move along the trajectories of other moving
objects. Based on this assumption, the positions of objects can be predicted by
using motion patterns extracted from the trajectories of other moving objects.

In the following we explain the process for extracting motion patterns from
trajectories. First, the server divides the entire area into a grid with several
small cells; each cell has a cell identification label (CID). After receiving the
trajectory data from sensors, the server records the CID at the point where each
object enters. The server manages the CID sequences as the motion patterns
of moving objects. We define the notation to describe how our method predicts
future locations of moving objects in Table 1.

For predicting the future positions of moving object X, the server compares
the last several CID sequences of X with all stored past CID sequences of all
objects. The server obtains the CID subsequence most similar to the sequence
of X by comparing CID sequences of every object with Sx. As a result, the
server uses the next CID of the obtained CID subsequence as a cell to which X
will move in the future. In Fig. 4, we show an algorithm that predicts the most
probable cell to which an object will move in the future.

Fig. 5 shows an example of the prediction technique. In Fig. 5(a), object
X moves around a grid divided into 9 cells. The small circles show the po-
sitions of object X at t = ¢n, ¢,n € N, and ¢ const. The numbers from 00
to 22 indicate CIDs. The server manages the CID sequence of X as Sx =
(00, 10,20,21,22,12,02,01). In Fig. 5(b), there are two positions of X: at t =

INPUT : CID sequence SET S={S,,...,Sn} /* CIDsof all objects* /
CID sequence Sq/* CIDsto be predicted* /
CID SET © ={64,...,6m}
intL/*|Sgl*/

OUTPUT : CID c/* the most probablecell where object g will move* /

CID Prediction(SSq,0)1

int Pm] (foreachsin9), i, j, k

foreachsin §

for(i =|sl;i = L;i ——)}
if(Sq(L) == s(i))then{
PYs(i +1)] =i;
j=i-g

for(k=L-Lk=L;k—-){
if(Sa(k) == s(j))then
Pos(i +1)] = Ps(i +D] + j;
i=i-31}}
if(all Ps == 0)then /* thereisno similar trgjectory* /
return Sg(L); /* thesamecell as predecessor * /
else
return c wheremaximum Pg[#s] (for eachsin S,0in ©);}

Fig. 4. Algorithm obtaining most probable area

Xe Xac
:4—6 -
00; 01 i02 g X7 00
Xa| 1 !
? 10 1 i 10
§ Yy | Xec
X <f 200 A2 20
..... .O_> - O_> :
Xac Xsc Xofi-1) Xd
@ (b)
O Position of X —> Direction of X
----- Trajectory of X r:) Predictive Area

Fig. 5. Example of indexing moving objects

c(t —1) and t = ci (¢ € N). Suppose that ¢ = ci, then the CID sequence to be
compared is S, = (21,22) if L = 2. The server calculates that X will move to
the area of CID(Sx(6) = 12) at ¢ = ¢(i + 1) by using that algorithm (Fig. 4).

4 Performance Study

In this section, we describe experiments conducted to evaluate the performance
of our proposed method for a DTDB, using a DTDB prototype system.

Table 2. Defenitions of evaluation symbols

Pjnter|transmission interval (second)
Pien, |length of a CID sequence for prediction
Pyriq [number of cells in the grid

2 |amount of trajectory data (byte)
w |amount of predictable trajectory data (byte)
P, |predictive accuracy (= w/2)

4.1 Settings

The system comprises of many embedded databases equipped with GPS and a
server database. Each sensor obtains its position at any time and manages the
data in its own embedded database. Every embedded database sends data to
the server database at regular intervals. The server database generates indices
corresponding to the data stored at embedded databases using the received data.
It can also deal with future window queries from users using the indices. First,
the server database identifies the embedded database managing the data that
will be used for the query results. Second, the server forwards the query to
all identified sensors. After receiving the query, the sensors process it in their
database and send the results to the server. Consequently, query results can be
answered.

In this evaluation we use the trajectory data from 10 rickshaws during 4 days
in the city of Nara, Japan. Each trajectory data has 20,000 position data values
at 20,000 seconds. The notation used for the evaluation is shown in Table 2. The
system targeted in this paper is assumed to be an application operating with
sensor networks composed of many battery-powered sensors. Therefore, sensors
must reduce the number of transmissions and the amount of transmitted data.
It is important to predict as much data as possible in the most effective manner.
Therefore, it is desirable to obtain high predictive accuracy at large transmission
intervals, using only a little information for prediction and grids that are divided
into as many cells as possible. Consequently, we compare P,.. by varying P;,ze,
Piey, and Pyriq-

4.2 Results

We show simulation results in Fig. 6 by plotting average values taken from
four days of simulations in each scenario. Fig. 6(a) shows P,.. for Pipser under
three different Py, (Pyriq is kept constant at 30 x 30). The figure indicates that
P,.. generally tends to increase while Pj, ., decreases. Moreover, P,.. tends to
increase with P, for Pj,er < 200. On the contrary, P,.. does not increase
even if P, increases where Pj,se,r > 200. These results suggest that there is
a limit at which P,.. does not increase any more, regardless of increases of
Py, in each Pj,ier. For example, when Pj,ze,r = 200, the limit is P,.. = 0.55,
and the minimum length of CID sequences for prediction is P, = 20. We call
Pinter, Pen at such a limit point optimal interval and optimal length, as shown

1 80 e
gos | \
g %’:l\ g
& 06 =)
o T o k]
= L ® F
% 0.4 E 40
x 02 5
o e} 20
0 >
0 100 200 300 0
Transmissioninterval (seconds) 0 100 200 300 400

‘+ Plen=20 —=— 30 —&— 50‘ Optimal interval (seconds)

(a) Pace v8 Pinter (b) Optimal length vs optimal in-
terval

1
g 08 fig—
3 — e
& 06 \\‘”**—0—\—0‘—:
e >
§ 04
2 o2

0

0 400 800 1200 1600

Cell number of agrid

|-+ (interval Jength)=(200,20) —=— (80,30) =& (50,40)|

(C) Pu.cc \L] Pgrid

Fig. 6. Experiment results

in Fig. 6(b), the optimal length decreases exponentially with increasing optimal
intervals. Thus, changes of the optimal length are large for small optimal interval
(< 50) and small for large optimal intervals (> 200).

Moreover, we experimentally evaluate the effects of Pyrig on Pyee. Fig. 6(c)
shows P, for P,,;q under three different groups of optimal intervals and lengths:
(200,20), (80,30), (50,40). If the server divides the grid into many cells, the areas
of each cell are small, confining the predictive area to a small area. Fig. 6(c)
indicates that P,.. decreases at most by 20% if Py,;q increases to Py.q = 1, 600.
Therefore, we can increase the number of cells to a large number in the system
without requiring high predictive accuracy.

Consequently, we can obtain an effective system by using these results. For
example, where Pjser = 50, Ple,, = 40, and Py,;q = 1,600, our proposed method

can obtain about 70% predictive accuracy, and the predictive area is confined to
1/1,600 of the entire area.

5 Related Work

In this section, we give an overview of related work and show the advantages of
our method by comparing it with other approaches. Many publications related to
our proposed method have attempted to retrieve moving objects from a database
system.

Modern database applications dealing with moving objects are usually man-
aged by a spatial-temporal database management system (STDBMS). Recently,
STDBMS research has attracted a great deal of attention [5] [6] [7] [8] [9] [10]
[11] [12] [13]. In STDBMS, the location of a moving object is represented as a
function of time, and the database stores such function parameters as velocity
and location. The system is updated only when an object changes any of its
moving parameters. To manage the locations of moving objects, many indexing
methods have been proposed [8] [10] [11] [12] [13]. However, in STDBMS the
sensor nodes must send parameters to the server whenever they change. Since
such moving objects as people and cars rarely go straight for a long while, sen-
sor nodes have to send parameters to the server frequently. On the contrary, in
our database (DTDB), sensor nodes must send trajectory data to the server at
constant intervals, however they need not send so frequently.

Also, several papers describe predictive indexing methods [10] [11] [12] [13]
that process future queries in moving object or trajectory databases. These in-
dexing methods predict the future locations of moving objects using only po-
sitions or velocities of objects. Therefore, these methods cannot predict the lo-
cations of moving objects that continually turn. However, since our indexing
method predicts the future locations of moving objects using the past trajectory
patterns of moving objects, our method can also predict the locations of moving
objects that continually turn.

6 Conclusion

In this paper, we proposed a pattern-based predictive indexing method for
DTDB and evaluated it by using a prototype DTDB system. As a result of
the experiments, we obtained optimal values of both transmission intervals of
sensor nodes and the length of trajectory data for prediction.

We have every confidence that our proposed method will locate moving ob-
jects well in real time. Currently, we are planning to incorporate trajectory data
from such additional objects as cars and pedestrians. We are also investigating
other predictive indexing methods using destination and purpose of moving.

10

References

10.

11.

12.

13.

. Laube, P., Imfeld, S.: Analyzing relative motion within groups of trackable moving

point objects. In: Proceedings of GIScience 2002 Conference, Boulder, CO, USA,
Springer-Verlag Heidelberg (2002) 132-144

Vazirgiannis, M., Wolfson, O.: A spatio temporal model and language for moving
objects on road networks. In Jensen, C.S., Schneider, M., Seeger, B., Tsotras,
V.J., eds.: Proceedings of SSTD 2001. Volume 2121 of Lecture Notes in Computer
Science., Springer-Verlag (2001) 20-35

Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of the 29th VLDB Conference, Berlin, German
(2003) 12-23

Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity query for trajectory
of mobile objects. In: Proceedings of the 4th International Conference on Mobile
Data Management, Melbourne, Australia (2003) 63-77

Saltenis, S., S.Jensen, C., T.Leutenegger, S., Lopez, M.A.: Indexing the positions
of continuously moving objects. In: Proceedings of SIGMOD Conference. (2000)
331-342

Guttman, O.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of SIGMOD’84 Conference. (1984) 47-57

Zhang, Q., Lin, X.: Clustering moving objects for spatio-temporal selectivity es-
timation. In: Proceedings of the fifteenth conference on Australasian database.
Volume 27. (2004) 123-130

Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Index-
ing animated objects using spatiotemporal access methods. Knowledge and Data
Engineering 13 (2001) 758-777

Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proceedings of
Symposium on Principles of Database Systems. (2000) 175-186

Tao, Y., Sun, J., Papadias, D.: Selectivity estimation for predictive spatio-temporal
queries. In: Proceedings of International Conference on Data Engineering. (2003)
417-428

Choi, Y.J., Chung, C.W.: Selectivity estimation for spatio-temporal queries to mov-
ing objects. In: Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, Madison, Wisconsin, USA, ACM SIGMOD international
conference on Management of data table of contents, ACM Press (2002) 440-451
Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: On-line discovery
of dense areas in spatio-temporal databases. In: Proceedings of the 8th SSTD
Conference, Santorini, Greece (2003) 306—324

Hadjieleftheriou, M., Kollios, G., Tsotras, V.J.: Performance evaluation of spatio-
temporal selectivity estimation techniques. In: Proceedings of 15th International
Conference on Scientific and Statistical Database Management, Cambridge, Mas-
sachusetts, USA, IEEE Computer Society (2003) 202-211

