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Abstract. We propose a spatial-temporal indexing method for moving
objects based on a prediction technique using motion patterns extracted
from practical data, such as trajectories of pedestrians. To build an effi-
cient index structure, we conducted an experiment to analyze practical
moving objects, such as people walking in a hall. As a result, we found
that any moving objects can be classified into just three types of motion
characteristics: 1) staying, 2) straight-moving, 3) random walking. Index-
ing systems can predict highly accurate future positions of each object
based on our found characteristics; moreover, the indexing system can
build efficient MBRs in the spatial-temporal data structure. To show the
advantage of our prediction method over previous works, we conducted
an experiment to evaluate the performance of each prediction method.

1 Introduction

In recent years, we have been able to use highly accurate positioning devices to
track moving objects, such as pedestrians and cars. The position is one of the
most significant data for extracting contexts from the real world. Then many
context-aware services use the position data for providing services [1], [2]. The
Moving Object Database (MoDB) [3] is a database system that can manage
position data of real moving objects. Cost reductions in managing such trajec-
tories are one of the most significant challenges for applications using position
data. Various types of efficient data structures have been proposed [4] [5] [6] for
managing trajectories.

In general, a position is denoted as p = {o, t, x, y}, which means object o
is located at point 〈x, y〉 at time t, and trajectory λ of a moving object is also
denoted as a sequence of positions 〈p0, . . . , pn〉. Obviously, trajectory can be rep-
resented as a model of spatial and temporal data. Thus, most previous MoDBs
adapt traditional tree-based indexing mechanisms, such as R-tree [7], which uses
Minimum Bounding Rectangles (MBRs) for managing trajectories and the po-
sitions of each moving object. However, such an MoDB must frequently update
both the tree structure and MBRs because every object continuously changes
its position second by second. The increase in the update cost is one of the most
serious problems with MoDBs.

To solve this problem, several MoDBs adapt a predictive indexing mechanism
[8] [9] that calculates predicted MBRs, including the predicted future positions of



moving objects. The introduction of the mechanism enables MoDBs to manage
positions without frequently updating MBRs. To greatly reduce the update cost,
the mechanisms must predict the future positions of objects as accurately as
possible. In this paper, therefore, we propose a new technique to accurately
predict the future position of moving objects, and we also describe an improved
indexing mechanism to manage the positions based on predicted MBRs.

To improve prediction accuracy, we investigated the features of the real tra-
jectories obtained in our experiments. From the investigation results, two special
motion patterns are found from trajectories: “staying and “straight-moving.”
Staying means that an object almost comes to a stop at a point for a period;
on the other hand, straight-moving means an object moves in a straight line.
Thus, we present a prediction technique based on these two motion patterns
and “random-moving,” which can represent any motion of objects.

Section 2 describes the trajectories obtained in our experiments. In Section
3, we explain both the found motion pattern and prediction function to calcu-
late the future positions of moving objects. Moreover, in Section 4, we cite the
performance of our proposed prediction technique by comparison with previous
existing index structures. Finally, Section 5 concludes our work.

2 Trajectory Data

2.1 Moving Objects in Real World

For improving prediction techniques, we experimentally analyzed the trajectories
of various types of moving objects, such as cars, people, and parts of human
bodies. In this section, we focus on the following characteristics of three types
of moving objects.

Trajectories of Moving Vehicles (Vehicle Data) For such data, we ob-
tained the trajectories of working rickshaws in Nara, a famous former capital
of Japan. We placed a GPS receiver on each rickshaw that recorded the points
where the rickshaw was located every second. The errors of the GPS receivers
are within 5 m. The average trajectory length is about 18 km, and the average
trajectory period is about nine hours. Example rickshaw trajectories are illus-
trated in Figure 1. The lines in the figure show the trajectories of rickshaws
moving in the northern part of Nara for nine hours a day.

The shape of this trajectory includes many long straight lines because a
rickshaw moves along streets whose shape is almost a straight line. On the other
hand, since a rickshaw waits at intersections for passengers, it tends to stay long
at one place. Generally, the trajectories of such moving vehicles as taxis, buses,
and trucks have the same characteristics as the trajectories of rickshaws.

Trajectories of Wandering Visitors (Visitor Data) We did an experiment
to obtain the trajectories of 200 visitors to an exhibition that had about 100
booths. The size of the exhibition hall was 20 m × 40 m. We set 10 Lazar sensors
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Fig. 1. Captured Moving Points

and five video cameras for tracking visitors in the hall, and each sensor could
obtain the locations of visitors every 1/30 of a second. The average duration of
all trajectories was about 60 minutes, and the average geographical length of the
trajectories was about 50 m. The maximum error of a Lazar sensor is less than
1 m.

Because Lazar sensors lose visitors hidden by other visitors, we completed
the incomplete trajectories with video data captured by hand. Figure 1 also
illustrates the trajectories of visitors who walked in the hall during a five-minute
period.

Three types of characteristic shapes were found in this type of trajectory: a
gentle curved line, a short line, and so on. Because a visitor often walks and stops
at booths, trajectory shapes tend to include such characteristic shapes. We also
found another characteristic: the velocities of visitors differ, since various types
of visitors meander looking for interesting items in the hall. The trajectories
of visitors in an exhibition hall are similar to the visitors in museums, large
shopping malls, art galleries, and so on.

Trajectories of Body Parts in Sports (Sport Data) We obtained the
trajectory data of track points on the bodies of two soccer players using an optical



motion capture system. Each player had 36 track points on his/her body and the
soccer ball had two track points, and the motion capture system tracked 74 points
every 1/120 of a second. The time of all trajectories was two minutes, and the
average geographical length of trajectories was about 2 m. The top right image in
Figure 1 shows example trajectories of the left legs of the two soccer players when
fighting for the ball. This figure shows a projection of trajectories from 3D space
to a 2D plane, but the features of the data are the same in each dimension. This
figure has eight trajectories because we obtained four sets of trajectories from
two players. Each player moves in an area 6×6 m2. These trajectories have many
curves and turns but only a few straight lines. The velocities of these moving
points are not fixed, and each point can suddenly accelerate or decelerate.

2.2 Motion Patterns

We found several characteristic motion patterns of practical moving objects in
the trajectories we obtained. The motion patterns suggest that “when an ob-
ject moves in a particular manner, we can predict its future motion.” In our
experiments, we found two basic patterns: staying and straight-moving.

Staying When an object almost stops at a place for a period, we describe it as
staying. We did not find staying objects in the sport data, but 2/5 objects
in the vehicle data were staying, and 9/10 objects of the visitor data were
staying.

Moving Straight: When an object is moving in a straight line and its velocity
is almost fixed, we say the object is moving straight. We found this motion
pattern in all types of moving objects. Especially since 3/10 objects in the
vehicle data are moving straight, the ratio is higher than in other data.

We can classify 7/10 – 9/10 of the objects in any data into these two patterns;
however, the rest of the objects cannot be classified into any patterns. To classify
all objects, we define one more motion pattern called “Moving Randomly” as
follows.

Moving Randomly: When an object is continuously moving in unfixed direc-
tions at unfixed velocities, we say the object is moving randomly. In practical
data, most such objects move in unfixed directions at almost fixed velocities.
Such objects are found in visitor and sport data, but rarely in vehicle data.

We can classify any object based on our three defined patterns; moreover,
the future motion of any object can be predicted by the definition of motion
patterns.

2.3 Noise in Moving

The trajectories of moving objects often have low frequency noise because of
positioning errors. Generally, existing databases deal with noiseless data but it



is difficult to clean up practical noisy trajectory data. To apply database systems
to practical data, in this paper we describe the prediction of the future position
of a moving object with such low frequency noise. Trajectory noise has two
principal sources: positioning devices and the size of moving objects. Because no
positioning device can specify an object’s position without errors, trajectories
inevitably have errors. The size of the object, moreover, causes noise because
devices generally cannot decide where an object’s center point is on its surface.
For example, errors of laser sensors when tracking walking people are less than 50
cm because the sensor rarely decides the person’s center point, and the horizontal
area of a person is a circle whose radius is less than 50 cm.

We define maximum noise as the sum of these two errors; for instance, if
positioning error is 1 m and error size is 50 cm, maximum error is calculated as
1.5 m. Maximum error is denoted as θp, which is an actual measurement.

3 Motion Prediction

In this section, we describe functions that predict an object’s future point and
how to apply prediction techniques to practical moving objects. Here, we consider
our indexing technique is applied to both the nearest-neighbor query and the
spatial-temporal range query.

3.1 Formalization of Motion Patterns

Before describing functions, we define motion patterns using mathematical equa-
tions. We denote a trajectory that includes the points of a moving object from
time t − m to t as λt,−m. If trajectory λt,−m satisfies condition C, the trajec-
tory’s moving object has motion pattern C from time t−m to t. We define three
conditions, Cst, Csw, and Crw, for each motion pattern mentioned in Section 2.

Staying (Cst) We denote a position vector in λt,−m at time i as p(i) for defining
‘staying’ condition Cst as |p(i)−p(t)| = 0 where i = t−m, t−m + 1, . . ., t− 1,
t. Condition Cst means that the maximum velocity of a moving object equals 0
from time t − m to t.

Actually, practical data have noise θp, as mentioned in the previous section,
so no practical objects completely stop at a place in the data. We introduce the
influence of θp to the condition with the next extended equation:

Cst : |p(i) − p(t)| < θp (1)
p(i) ∈ λt,−m.

Here |p| means the vector length of p. If an object moves less than distance θp

from point p(t) during period t − m to t, the object has satisfied the “staying”
condition.
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Fig. 2. Prediction for straight moving

Moving Straight(Csw): We denote a velocity vector of an object in λt,−m at
time i(0 ≤ i ≤ m) as v(i) = p(i) − p(i − 1) for defining the ‘moving straight’
condition Csw as v(i) = v(t). This condition means that the difference between
every velocity vector in λt,−m and velocity vector v(t) = p(t) − p(t − 1) at t
always equals 0. Similar to the staying condition, we also considered the influence
of noise θp. The actual conditions can be defined by:

Csw : |v(i) − v(t)| < θp (2)
v(i) = p(i) − p(i − 1).

Moving Randomly(Crw) We classify an object to this pattern when it does
not satisfy the previous two conditions: Cst and Csw. But objects ‘moving ran-
domly’ do not move freely on a plane since physical restrictions limit their max-
imum velocity; for example, no person can walk at 50 m/s. In our method, we
must define the maximum velocity of objects as vmax for the ‘moving randomly’
condition.

Obviously, an object moves within a circle such that its center is p(t) and its
radius is ivmax, where maximum velocity is vmax and the end point of the object
at t is fixed to p(t). Therefore, ideal ‘moving randomly’ condition Crw can be
defined as Crw : |v(i)| ≤ ivmax(t−m ≤ i ≤ t), where maximum velocity is vmax

in trajectory λt,−m. Condition Crw, including the influence of θp, is defined by:

Crw : |v(i)| ≤ vmax + θp. (3)

3.2 Predictive Function

To predict the future position of moving objects, we define functions for each
condition.

Notation R(j) means an area where an object of λt,+n will move from time
current t to future time j = t + n. If an object in trajectory λt,−m satisfies
condition C, we can calculate R(j) for the object using the equations in C.
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R(j) is a closed area, and the shape of R(j) is either a rectangle, a circle, or a
combination of such diagrams. Hence, the calculation of R(j) can be represented
as function f using λt,−m and time j, for example, f(λt,−m, j) = R(j). We call
f a “predictive function.”

Note that previous work defined functions that give a future point of a moving
object; however, it is actually impossible to determine a future place of an object
in just a point. Therefore, we define f as a function that gives an area.

– Staying
Because Cst : |p(i)−p(t)| < θp, we define function fst for staying as Rst(j) =
fst(λt,−m, j), which is a circle such that its center point is p(t) and the radius
is θp. The predicted area’s actual shape is a rectangle because rectangles are
available to build indexes based on MBRs.

– Moving Straight
The function for moving straight is denoted as Rsw(j) = fsw(λt,−m, j). Fig-
ure 2 shows an example prediction area such that its shape is a circle whose
center point is p(t) + (j − t)v(t) and whose radius is θp. Similar to staying,
we use a rectangle as the actual shape prediction area.

– Moving Randomly
Based on the definition of condition Crw, prediction area Rrw(j) = frw(t +
n) is a circle whose center point is p(t) and whose radius is nvmax + θp,
as illustrated in Figure 3. But this function often gives redundant area,
especially because maximum velocity greatly increases the area. To avoid
this problem, we reduce the outside of the area where the object seldom
reaches.
When an object moves randomly at a velocity less than vmax during period
n seconds, accuracy ρ in which the object exists in a circle whose center
point is p and whose radius is r(0 ≤ r ≤ nvmax) is given by the following
equation:

ρ =
(

r

nvmax

)n

. (4)



To predict the area at t + n within accuracy ρ, we decide the radius of the
predicted circle as nvmax

n
√

ρ+θp. For example, where ρ = 0.7 and n = 5, the
radius is decided as 0.93×5vmax. In practical trajectory data, vmax is larger
than the effective velocity, so we use accuracy ρ = 0.7 in our evaluation, as
mentioned in Section 4.

3.3 Prediction

For calculating the future area of an object at time t + n, the prediction system
examines trajectory λt,−m, whose Cst, Csw, or Crw conditions are satisfied by the
trajectory. Next, the system applies a function that corresponds to the condition.
Because an object can be classified into either condition as mentioned, we can
calculate its predicted area. If an object can be classified into both conditions
Cst and Csw, then the system applies condition Cst since the size of area Rst(j)
is less than Rsw(j).

3.4 Construction of MBRs

To manage trajectory data, we adapt a traditional spatial data structure based
on R-Tree in multidimensional space, which is similar to TPR- and STP-Trees. In
traditional databases, because a set of data is added into a database continuously
and randomly, the database must reconstruct the data structure every time a
data set is added. Generally, such databases cannot construct the optimal data
structure. But moving object data are periodically and simultaneously added to
a database because positioning devices periodically obtain an object’s position.
We consider a moving object database that can construct the optimal data
structure. A database can calculate the optimal tree-based structure if all data
sets of moving objects are simultaneously added to the database.

In the rest of this section, we explain the processes of constructing optimal
MBRs.

1. At time t, the database temporally holds all positions p0(t), . . . , pn(t) of
moving objects that will be added to the database.

2. Positions are classified into each class by an average grouping method, a
traditional hierarchical clustering method. As a result of the clustering pro-
cess, each class has objects that are close to each other. In this clustering,
the number of classes is indicated by a system administrator before string
data. A database calculates MBRs for each class using the position of mov-
ing objects included in the class. These MBRs are used as leaf nodes of a
tree-based data structure.

3. After the calculation of all leaf nodes, a database constructs each non-leaf
MBR in the tree structure from the lower layer to the root.

4. Finally, a database calculates predictive MBRs from t to t+ i for every MBR
in the tree.
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These processes enable databases to calculate effective MBRs that are smaller
than MBRs calculated by traditional algorithms for tree construction. Since this
technique can be applied to previous proposed tree structures, we will use it to
compare our method with previous methods.

4 Evaluation

This section describes the results of experiments that compared our method with
previous prediction techniques. In our evaluations, we compared two indicators
that show the performance of prediction mechanisms: the reconstruction rate
and the MBR validation rate. Reconstruction rate rect+i at time t+ i is given as∑t+i

τ=t+1 rτ/(nMBR ∗ i), where nMBR is the number of all original, non-predicted
MBRs and rτ is the number of reconstructed MBRs at time τ according to
prediction errors. Whenever a prediction error occurs, a database must possibly
reconstruct the tree structure. If no prediction errors occur from time t to t + i,
the reconstruction rate becomes 0. The other indicator, MBR validation rate
valt+i, is given as σt+i/st+1, where sτ is the area of an ideal MBR at τ and στ

is the area of a predicted MBR at τ . If no prediction errors occur at time t + i,
valt+i becomes 1 because the predicted MBR must equal the ideal MBR. Note
that valt+i is not larger than 1 since valt+i is calculated after the reconstruction
of MBRs, so that at least the size of the MBR equals the size of an ideal MBR.

4.1 Previous Works

Here, we mention previous techniques that predict the future positions of moving
objects for constructing an effective data structure: TPR-Tree [9], TPR∗-Tree
[10], and STP-Tree [8]. To compare our technique with these previous works in
our experiments, we briefly explain these schemes.

TPR-Tree In TPR-Tree and TPR∗-Tree, a database system predicts the future
positions of objects using velocities from each axis. To predict a position, the



system calculates each maximum velocity of objects in an MBR by positive and
negative x- and y-axes from time t−m to t. These velocities are denoted as Vx+,
Vy+, Vx−, and Vy−, as shown in Figure 4; for example, Vx+ is the maximum
velocity of all objects in an MBR by the positive x-axis during a period. When
no object moves in a direction, for instance, no object moves toward the positive
y-axis, as illustrated in Figure 4, value Vy+ has a negative value. In TPR-Tree,
the set of Vx+, Vy+, Vx−, and Vy− is called the Velocity Bounding Vector (VBV).
A database calculates future MBRs from VBV; concretely, each corner point of
a future MBR is given by the following equations:

Px−(t + j) = Vx− × j (5)
Py−(t + j) = Vy− × j

Px+(t + j) = Vx+ × j

Py+(t + j) = Vy+ × j

In this technique, the MBR validation rate is lower than other techniques because
it only uses maximum velocity; however, its reconstruction rate is lower than
others because the predicted MBR is always larger than the ideal MBR. When
an object completely stops at a point or moves straight at the same velocity,
in this technique a database must accurately predict the object’s future point.
Even if objects are moving randomly, the reconstruction rate is lower than others
since the predicted MBR must be larger than the ideal MBR. On the other hand,
when objects are moving randomly, the predicted MBR area tends to be much
larger than the ideal MBR: in other words, the MBR validation rate becomes
low. Similarly, when trajectories have much noise, MBR validation rates also
become lower than other techniques.

In the original TPR-Tree, each MBR includes objects that are close to each
other at time t. A database does not check overlaps between areas of constructed
MBRs. In TPR∗-Tree, a database checks for overlaps and reconstructs MBRs so
that no MBR overlaps with other MBRs and the VBV of objects in an MBR is
similar to each other, after constructing MBRs based on the TRP-tree technique.
Since the prediction accuracy of the TPR∗-Tree is possibly higher than the
original TPR-Tree, in our experiment we compared our methods with it.

For evaluations, we apply our enhanced MBR construction methods, as men-
tioned in 3.4. After a database temporally stores all points of moving objects at
each time, the database constructs optimal MBRs at the time by clustering tech-
niques. For results, we use the same MBRs for evaluation in any tree structure
by comparing reconstruction and MBR validation rates.

STP-Tree The prediction technique in STR-Tree uses a nonlinear predictive
function represented by the past positions of an object. The essential idea is
based on the calculation of approximate predictive functions using several past
points through which an object has already passed. To calculate approximate
function, STR-Tree uses SVM techniques, which are traditional signal processing
techniques.
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Fig. 6. Comparison results for reconstruction rate (data of walking visitors)

In STR-Tree, a database system makes a sequence of positions, such as
x(t−m), y(t−m), x(t−m+1), y(t−m+1), . . . , x(t), andy(t) from time t−m to t.
We denote a sequence of position vectors from time t−m to t as k(t)m; similarly,
a vector sequence from t−m−1 to t−1 is denoted as k(t−1)m. For predictions,
a database system makes 2m × n matrix denoted as K(t)m,n such that the top
row of the matrix is given as k(t)m; also n-th row is given as k(t−n)m(n < m).
Another sequence, x(t)n = 〈x(t − n), . . . , x(t)〉, is a sequence of an object’s x-
axis from time t to t − n; similarly, y(t)n can be defined. Hence, we can cal-
culate the approximate answer sequence of vector wx = 〈wx1, wx2, . . . , wx2m〉,
wy 〈wy1, wy2, . . . , wy2m〉 in the following equations:

x(t)T = K(t − 1)m,n • wT
x (6)



y(t)T = K(t − 1)m,n • wT
y .

An approximate answer can be calculated by Support Vector Machines (SVM).
Matrix wx, wy and vector km(t) = 〈x(t − m), y(t−m), x(t−m+1), y(t−m+1),
. . . , x(t), y(t)〉, introduces position p(t + 1) = 〈x(t + 1), y(t + 1)〉 at t + 1 as the
following equation:

x(t + 1) = wx • k(t)T
m (7)

y(t + 1) = wy • k(t)T
m.

Positions p(t+2), . . . after t+2, can be calculated by these recursive equations.
In this method, the system predicts the future point of an object based on the

affine transformation on the coordinate system; the system accurately predicts
future positions if an object moves in an arc, a straight line, or a sign curve. On
the other hand, frequent turns by an object decrease prediction accuracy.

Note that in our experiments we also adapt our method to construct MBRs,
as in the case of TPR-Trees.

4.2 Experiment Setting

We evaluated our proposed method with practical trajectory data, as mentioned
in Section 2. For evaluation, we implemented three prediction and indexing meth-
ods on Windows XP and C] Language: TPR-Tree, STP-Tree, and our proposed
method. In each method, we focused on two indicators, reconstruction rate and
MBR validation rate, which use 10 points from time t = −9 to t = 0 to predict
points from t = 1 to t = 10. If a method can completely construct future MBRs
at time t = n, the reconstruction rate equals 0 at t = n. But if half of the objects
exist outside of constructed MBRs, the reconstruction rate is 0.5. In other words,
a low reconstruction rate means high prediction accuracy. The MBR validation
rate is also an indicator of prediction accuracy, but a high MBR validation rate
means high accuracy in contrast to the reconstruction rate because the MBR
validation rate is calculated as the ratio of the predicted MBR area at time t
to ideal MBR at time t. An ideal MBR is constructed such that the MBR com-
pletely includes real (not predicted) points of objects at time t, so the predicted
MBR equals the ideal MBR if a system can completely predict the future po-
sitions of all objects. The rate of the complete predicted MBR becomes 1 since
the predicted MBR, which is larger than the ideal MBR, will be reconstructed
in a construction algorithm as an ideal MBR, as mentioned above.

Figures 5, 6, and 7 compare reconstruction rates, and Figures 8, 9, and 10
compare MBR validation rates. The horizontal axis of each figure denotes the
past time (t = 1 to t = 10) from when a system predicted future positions.
The time scale depends on the sampling time of each data. The vertical axis
shows either reconstruction or the MBR validation rate for forty moving objects
selected randomly from each data set.

The results of R-Tree [7] shown in the figures can be considered the rate
without any prediction, since MBRs in R-Tree will always be reconstructed to
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Fig. 7. Comparison results for reconstruction rate (data of sport motion)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9

R TPR STP Proposed

Fig. 8. Comparison results for MBR validation rate (data of moving vehicles)

an ideal MBR whenever an object moves outside of the original MBRs. In other
words, if a method’s value at a time is lower than the R-Tree value, the per-
formance of the prediction method is worse than no prediction. On the other
hand, the MBR validation rate tends to be higher than others because MBRs in
R-Tree will frequently be reconstructed. We consider the MBR validation rate
of R-Tree the optimal rate at each time.

4.3 Results

All our experimental results show the advantages of our proposed method over
previous methods. In our experiment, STR-Tree, which is an improved TPR-Tree
method, has disadvantages compared to other methods. The prediction function
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Fig. 10. Comparison results for MBR validation rate (data of sport motion)

of STR-Tree is too sensitive to noise; as a result the predicted points are often
different from real points in practical data.

In the near future, the TPR-Tree results will show low reconstruction rates,
but the rate will probably be lower than others in the distant future.

Each reconstruction rate from visitor data is lower than rates from the other
two types of data because visitor trajectories have little noise, and many visitors
stop at each exhibition for a long time. For sport data, many objects moving
randomly decrease the STP-Tree and R-Tree performance. For all types of data,
our proposed method maintains higher performance than other methods.

MBR validation rates of TPR-Tree and STP-Tree decrease more rapidly than
our proposed method for predicted time. For the distant future, TPR-Tree con-
structs redundant predicted MBRs, which are much larger than ideal MBRs,
although our proposed method can construct accurate predicted MBRs that
match the real points of objects. About sport data, STP-Tree has an advantage



over our methods because objects moving randomly tend to become redundant
MBRs in our methods. But our method’s reconstruction rate is much better
than STP-Tree, so on the whole, the performance of our method possibly has
an advantage over STP-Tree.

We also examined the performance of an enhanced STP-Tree, which con-
structs MBRs larger than the original MBRs, the same as θp. In other words,
we introduced θp into the STP-Trees to evaluate the effectiveness of θp. The
introduction of θp certainly improved STP-Tree performance. But we basically
only found slight improvement because the influence of the sensitive function is
stronger than the improvement of θp. If we can reduce noise from the practical
trajectory data, STR-Tree performance will possibly be improved more. Actu-
ally, it is difficult to reduce noise from several points of moving objects, so we
conclude that our proposed method is better than other methods, even if θp is
introduced to those other methods.

5 Conclusion

In this paper, we proposed a motion prediction method based on three motion
patterns: staying, moving straight, and moving randomly to make predictive
indexes for moving objects. Moreover, evaluation results showed the advantages
of our methods in experiments that compared previous prediction techniques
using practical trajectory data.

In our method, we suppose the trajectory data can be obtained accurately
and completely; however, we should introduce a complementary method for miss-
ing trajectories. In the future, we will apply our method in application systems
using trajectories and evaluate its performance in these systems with a com-
plementary method. For applying practical application systems, we will also
enhance our prediction technique based on geographic conditions; for example,
when an object moves up a slope, its velocity probably decreases.
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