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ABSTRACT
In this paper, we describe the challenge of estimating therelative
positionbetween objects using a low-cost positioning device with a
simple physical restriction. Also, we show the result of our experi-
ment to examine the accuracy in estimation of the relative position.
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1. INTRODUCTION
In recent years, many ubiquitous application systems have pro-

vided services based on various types of sensor data from small
sensor nodes in the real world. The current position of an object
is one of the most significant bits of data used in such application
systems [1], including those providing context-aware services and
location-aware services [4] [2] [5] [7].A system for obtaining an
object’s position is generally called a positioning system. Most ex-
isting positioning systems obtain an object’s position data as anab-
soluteposition〈x, y, z〉 on a global coordinate system. Obviously,
absolute positions can be applied to any service using position data;
however, arelativeposition expression is more familiar to users for
understanding object location. For example, in an object search ser-
vice, the query “where is my book?” requires the book’s position.
We usually prefer arelativeposition answer, such as “the book is on
the desk in this room,” to anabsoluteposition answer like “the book
is at〈x, y, z〉.” In ubiquitous application systems that deal with the
position information of objects, users want to represent the condi-
tion of positions asrelative information among several objects. We
call this relative information therelativeposition between objects.

Application systems can determine relative position using the ac-
curate absolute position obtained by existing positioning devices.
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In general, we must use high cost sensors embedded in an environ-
ment to obtain accurate absolute position information. For exam-
ple, GPS receivers can accurately track an object’s position, but a
highly accurate receiver is much more expensive than less accurate
receivers. An image-based tracking system must use many cameras
to capture accurate images of each object to avoid occlusion.

For handling only accuraterelative position between objects,
however, relative position can be estimated by physical conditions,
sensor data, and inaccurate absolute positions obtained by low-cost
devices. Thus, in this paper we propose a method to estimate accu-
rate relative positions among objects using only low-cost devices.

Before explaining the estimation method, we define relative po-
sition. As mentioned above, many context-aware applications and
activity recognition systems have adopted relative position among
objects, for example, “the book ison your desk” and “a person
movedinto the office,” but few researchers have formally defined
relative position. We found a hint to defining relative position in
cognitive linguistics research. Lakoff and Johnson mentioned [3]
that humans tend to use comparable spatial and physical relations
to represent objects and abstract concepts, for instance, big-small,
in-out, far-near, and up-down. They argued that spatial relations
(up-down, left-right, and front-back) are often used to represent re-
lations among these issues. Based on their research, in this paper
we focused on estimating relative spatial relations. A detailed dis-
cussion of relative position is given in Section 3.

After the discussion, we describe our challenge for estimating
relative positions among objects using both sensor data and inac-
curate absolute position in Section 4. Section 5 describes the re-
sults of the relative position estimation of five real objects put in
an experiment field. In this experiment, we used low-cost Zigbee
wireless communication devices to specify the absolute positions
of each object. Each object has our developed small computer de-
vice, which includes an acceleration sensor, a direction sensor, and
a Zigbee device to translate sensor data to the host computer. We
also calculate relative position to compare the performance of each
method using IS-600mk2, a highly accurate ultrasonic positioning
system. Finally, we show that our estimation method has better
accuracy than the highly accurate system in several cases.

2. RELATED WORK
Position information processing is a significant technique in vari-

ous services provided by a ubiquitous computing environment. For
instance, Schiele and Antifakos [6] proposed a proximity detec-
tion system that detects dangerous situations involving chemicals.
The collection of object positions obtained by positioning devices
can determine whether dangerous chemicals are too close together.
Lampe et al. [4] proposed a ubiquitous service for aircraft main-
tenance, where each tool has a sensor node that can obtain the lo-
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Figure 1: Examples of relative positions

cation of other nodes. Their service system can detect necessary
tools and can determine whether the tools for a maintenance pro-
cess are assembled with position data obtained from sensor nodes.
Hightower et al. [2] proposed a personal mobile device that auto-
matically learns where users go and detects when they return. In a
health-care service presented by Lester et al. [5], the service sys-
tem recognizes each person’s activity using position data. Each
of these systems uses the location information about objects and
users to provide services in ubiquitous and mobile computing en-
vironments. Event description with conditions corresponding to
positions is a significant technique in such application systems.

Basically, their system focused on providing rule-based ubiqui-
tous services rather than the management of consistency among de-
scribed rules. Users can freely describe an event as a rule without
strong restrictions. As mentioned in Section 1, these existing ap-
proaches provide simple services well with a few rule descriptions.
To provide large-scale services using many complicated rules, we
must manage consistency because the conflicts in ambiguous rules
confuse users in the description of events that provide services.
Through the history of research in programming languages, many
researchers and programmers have recognized that such inconsis-
tency in rule description causes serious problems when providing
stable services. To further develop rule-based ubiquitous services,
we now discuss and build a consistent model that can describe
events using position data, even if we have to abandon convenience.

3. RELATIVE POSITION
Cognitive linguistics research argues that humans grasp an ab-

stract concept as ametaphorthat is represented as a physical object.
In [3], Lakoff and Johnson state that an ‘orientational metaphor’ is
used for handling a relationship between abstract concepts, or a
situation of a concept. An orientational metaphor is based on the
spatial directions of an object in a space. They also cite seven con-
crete spatial relations: up-down, in-out, on-off, front-back (left-
right), far-near, deep-shallow (high-low), and central-peripheral.
Metaphors including either up-down or in-out relations are espe-
cially frequent in daily conversations. Their spatial relations argu-
ment can be applied to define relative positions, which application
systems use as position information.

The four relations up-down, in-out, on-off, and front-back (left-
right) share the following feature: a relation between two objects
can only be determined as one situation with each object’s relative
position. For example, when looking at Figure 1(a), we can easily
determine the up-down relation betweenA andB with each ob-
ject’s relative position, such that “A is higher thanB.” Similar to
the up-down relation, we can give a unique representation about the
other relation. We call these spatial relations “directional relations.”
Note that both right-left and front-back relations seem ambiguous,
which probably reflects the different viewpoints of each user. When
userX stands in front of boxA in Figure 1(b) and another userY

Table 1: Relative position functions
Relation x1 x2 x3 x4

Rup up down - -
Rdir front back left right

looks at the area from the left side, userX says boxA is in front
of boxB; however, userY says boxA is on the left side of boxB.
We can avoid such ambiguity with a fixed viewpoint.

On the other hand, for relations in the latter groups, the “distance-
based relations,” we do not always give a unique relation between
two objects without ambiguity. For instance, we do not determine
the far-near relation betweenA andB because each human looking
at this situation has a different subjective perspective about the dis-
tance. Even if a person says “A is close toB,” another person may
say, “I think A is a bit far fromB.” In other words, deciding the
distance-based relation between two objects is more complicated
than deciding the directional relation.

As a first step to estimating relative positions, this paper de-
scribes a method to estimate four directional relations: in-out, on-
off, up-down, and left-right (front-back).

Here, we formally define each relative position as functionR.
We denote the solid object aso, and the set of objects is denoted as
O = o1, o2, . . . , on. The shape of the solid object never changes,
and the space occupied by a solid object shares no space with any
other solid objects. Relative position functionR can be defined:
given two solid objectso1, o2 ∈ O andX = {x1, x2, . . . , xn, φ},
relation functionR : O × O → X is R(o1, o2) = {x1, x2, . . . , }.
Value setX is given for each relationR, shown in Table 1.

4. ESTIMATION
In this section, we describe our approach to estimating relative

positions between two objects using low-cost positioning devices.
In our experiments, we use a positioning device whose error is

less than 50 cm based on a Zigbee wireless device for estimation of
relative positions among the objects whose size is almost equal to
50cm. Because it is difficult to estimate relative position between
objects whose size is much less than the error of the positioning
devices, we try to estimate the relative positions using physical re-
strictions in the case where the size of an object is less than the
error as our first challenge. We adopt two physical restrictions such
that "An object never exists in the air" and "An object never over-
laps with any other object." We aim to examine the accuracy of
our method to estimate relative positions using both the physical
restrictions and low-cost Zigbee devices.

In order to satisfy the second restriction strictly, we must intro-
duce complicated procedures into the estimation method. Here, our
method adopts simple estimation procedures that solve the conflicts
only on the horizontal axis. In the rest of this section, we show the
simple estimation procedure.

Before the explanations of the procedure, we mention the ap-
proximated sphere. To simplify the problem to estimate relative
position, we introduce an approximated spheres into each object
o1, . . . , on. First, we define the radius of the inscribed sphere of an
objecto asrin(o). Also we denote the circumscribed sphere ofo as
rcircum(o). Then a radiusrs of approximated spheres is given as
the equation:rs = (rin(o)+rcircum(o))/2. In this estimation pro-
cedure, we replace real objects with these approximated spheres
and the estimation system tries to solve the conflicts between the
spheres.

Our preliminary preparation of the estimation shows good accu-



racy even if the radiusrs is the same length as the inscribed sphere
for o in the case that the shape of the object is similar to a sphere.
On the other hand, we find errors over our tolerance in several ob-
jects whose shape is not similar to a sphere, for example, a vase,
a door, a display, and so on. This is why we introduce the previ-
ously defined approximated sphere in our experiments. Note that
the center point ofs is denoted asp(s) = 〈x, y, z〉. The position-
ing system can calculate the positionp(si) for oi using the obtained
position ofoi and the shape information ofoi.

In the rest of this section, we show the simple estimation proce-
dure.

1. Preparation. For all objectso1, . . . , on ∈ O existing in an
observed field, the system determined the positions of each
approximated spheres1, . . . , sn. When an objecto is added
in the field, the system calculates the distanced(s, si) be-
tween the approximated spheres for o andsi for ∀oi ∈ O.
For ’ground’ object, we must consider a distanced(s, G) be-
tweens and the groundG, which has the following three
features: the ground is an unmovable object, the shape of the
ground is a horizontal plane, and the ground has no overlaps
with any other objects. We defined(s, G) = rs based on
these features.

2. Resolution of ’flying’ objects. If the system does not find any
conflicts betweens andsi for i ∈ O, such thatd(s, si) >
rs + rsi, the system determines the position ofo at the posi-
tion where the object does not ’fly’ without moving the ver-
tical position. In other words, the system moves the object
down by the horizontal axis to solve the problem that the ob-
ject does not satisfy the first restriction.

3. Resolution of conflicts between objects. When the system
finds overlaps betweens and another spheresi, the system
moves the spheres up by the horizontal axis at the point
where these objects have no overlaps, i.e.,d(s, si) = rs +
rsi. After this process, if the system has another conflict, the
system repeats this process until solving all conflicts.

After these processes determine the positionp(s), the system esti-
mates the relative position betweeno and a given objectoj ∈ O.

• Rup: When the height ofo is higher than the height of ob-
jectsoj , the system estimatesRup(o, oj) = up andRup(oj , o)
= down. If the height ofo is equal to the height ofoj , we
defineRup(o, oj) = Rup(oj , o) = up.

• Rdir: For estimatingRdir(o, oj), the system must fix the
user’s viewpoint atvp = (xv, yv, zv), where no spheres
include the pointvp. Given a fixed viewpointvp, the sys-
tem can determineRdir by comparing horizontal positions
of both objects.

As mentioned, because our procedure does not solve the horizon-
tal overlaps among spheres and also our method approximates the
shape of an object as a sphere, the complexity of calculation is
much less than the algorithm to satisfy the restriction strictly. The
complexity of the procedure to solve vertical overlaps isO(n) for
objectso1, . . . , on and the complexity of estimation isO(1). This
simplicity has much advantage over other positioning devices for
implementation on small sensor nodes.

5. EXPERIMENT
In this section, we describe three experiments to estimate relative

position with an inaccurate positioning system.
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Figure 2: Experimental field

Table 2: Accuracy of estimation and positioning
patterns Found relations Zigbee IS600mk2 occ.

up front left Rup Rdir Rup Rdir

I 1 0 0 1 - 1 - 0
II 2 0 1 1 1 1 1 0
III 3 2 1 1 .33 1 1 0
IV 4 4 2 1 .83 1 1 0
V 3 0 0 1 - .33 - 1
VI 6 0 0 1 - .20 - 2
VII 10 0 0 .80 - .16 - 1
VIII 4 0 2 .75 1 .50 1 2
IX 6 0 4 .83 .75 .33 1 3

1. We have an experiment to estimate relative positions (up-
down, front-back, and left-right) with our proposed method.
In this experiment, we adopt a Zigbee device to obtain posi-
tions. This positioning system has within-50cm error.

2. To compare our method with a highly accurate positioning
system, we use ultrasonic positioning system IS-600mk2 to
obtain positions. This system has error of less than 2cm.

3. As an additional experiment, we calculate the position〈x, y, z〉
using the results of estimation in experiment 1.

5.1 Experimental Settings
The experiment field is shown in Figure 2. This field has 8 base

nodessb1, . . . , sb8, and each has a Zigbee device. We have four
objects to settle in the field, and each object has a small computer
board, which has both a 10 bit 3-way acceleration sensor to detect
the gravity and 2-way geomagnetic sensor to detect north. A small
computer can obtain sensor data per 1/30 msec, moreover, the com-
puter can send data to a host computer through the Zigbee device.
The estimation system can know the different angle between the
local coordinate system of an object and the global coordinate sys-
tem. The acceleration sensor has error within 2 degrees, and the
geomagnetic sensor has error within 1 degree.

Figure 3 shows 9 arrangement patterns of objects used in the
experiments. The first object is put onto the floor as pattern I, and
the next object is added as pattern II or V. When an object has been
added and stopped, we try to estimate relative positions.

5.2 Positioning
Here, we explain our positioning method using Zigbee devices.

The field has eight base nodes. The position of each node is given as
(1, 1, 0), (1,−1, 0), (−1,−1, 0), (−1, 1, 0), (1, 1, 1.5), (1,−1, 1.5),
(−1,−1, 1.5), and (−1, 1, 1.5). A Zigbee device can know the
power level of the radio frequency from the other Zigbee device,
but each node has a different power level, so that we must check
this. For the calibration, we obtain the power level on each point
on the matrix divided by 50cm in the field(−1,−1, 0)−(1, 1, 1.5).
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Figure 3: Arrangement patterns

Given constraintsa1, . . . a8, power levelsr1, . . . , r8 and position
vector ~v1 = (−1,−1, 0), . . . , ~v8 = (1, 1, 1.5) of each base node,
the position~p can be calculated with the following equation:

~p = (x, y, z) =

8
X

i=1

airi ~vi.

To obtain a list ofai, we make a list of power levelri in the experi-
ment where each object is put at each point on the matrix, which is
divided into 50cm× 50cm squares, as shown in Figure 2. Because
each~vi andp are given in this experiment, we can obtain a list of
ai using the previous equation.

Based on this method, the range of the positioning error is be-
tween 30cm and 1m. In our estimation experiment, we put objects
near more accurate base nodes, which aresb1, sb2, sb5, andsb6

in Figure 2. Within the area surrounded by bold lines in the fig-
ure, the maximum error is less than 60cm. There are many other
positioning methods using a Zigbee device, and these methods can
also be applied to our proposed method. Many of them, however,
need more complex settings or calibration. We adopt a simple po-
sitioning method in our experiment because our goal is estimating
relative position.

Additionally, we explain the ultrasonic positioning device IN-
TERSENSE IS600mk2. We set the antenna of this system on the
ceiling of the experimental field and we put beacons on four ob-
jects. This system can obtain the position of the beacon using the
antenna with only 2cm positioning error as long as the antenna can
see each beacon, in other words, the field has no occlusion problem.

5.3 Results
Table 2 shows the accuracy of the estimation process. For each

setting pattern, we compare the result of the estimation with the
real relation between two objects. The columns in the found re-
lation show a number of relations included in each pattern. For
example, pattern II has three objects (A, B and ground) so that the
estimation system must find 2 up relationsRup(A, ground) = up
andRup(B, ground) = up. When the accuracy of this experiment
is 0.67 forRup, the system finds two correct results aboutRup

and one incorrect estimation. For instance, the value at the cell in
the column of IS600mk2’sRup and the row of pattern IX means
that the system finds only a correct relationRup(A, ground) =
Rup(C, ground) = up but the system fails to estimate the relation
Rup(C, A) = Rup(C, B) = Rup(B, ground) = Rup(A, B) =
up.When the antenna cannot detect a beacon, we consider the esti-
mation failed in the case of the pattern V–X. For this consideration,

the table shows a number of objects for which the antenna cannot
detect the beacon. Obviously, the estimation error has a relation
with a number of objects that cannot be detected by the device.

As an overview, the accuracy in estimation of the up-down rela-
tion is much better than the ultrasonic system in several cases where
the system has occlusions.

6. CONCLUSIONS
In this paper, we described the challenge of estimating relative

position using a low-cost positioning device and physical restric-
tions. The results of our proposed estimation method have almost
the same accuracy as the highly accurate system in several cases.
We do not consider our proposed system can replace existing po-
sitioning systems, but our system can enhance the existing system
for detecting relative position between objects. In the future, we
will improve our method to obtain more accurate relative position
than the current method.
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