
Clustering Multidimensional Trajectories based on Shape and Velocity

Yutaka Yanagisawa
NTT Communicatin Science Laboratoriesy

NTT Corporation
2-4 Hikaridai, Seika, Soraku, Kyoto, JAPAN

yutaka@cslab.kecl.ntt.co.jp

Tetsuji Satoh
NTT Communicatin Science Laboratoriesy

NTT Corporation
2-4 Hikaridai, Seika, Soraku, Kyoto, JAPAN

satoh@cslab.kecl.ntt.co.jp

Abstract

Recently, the analysis of moving objects has become one
of the most important technologies to be used in various
applications such as GIS, navigation systems, and location-
based information systems, Existing geographic analysis
approaches are based on points where each object is lo-
cated at a certain time. These techniques can extract in-
teresting motion patterns from each moving object, but they
can not extract relative motion patterns from many moving
objects. Therefore, to retrieve moving objects with a sim-
ilar trajectory shape to another given moving object, we
propose queries based on the similarity between the shapes
of moving object trajectories. Our proposed technique can
find trajectories whose shape is similar to a certain given
trajectory. We define the shape-based similarity query tra-
jectories as an extension of similarity queries for time series
data, and then we propose a new clustering technique based
on similarity by combining both velocities of moving objects
and shapes of objects. Moreover, we show the effectiveness
of our proposed clustering method through a performance
study using moving rickshaw data.

1 Introduction

In recent years, it has become possible to continuously
track various types of moving objects such as walking peo-
ple and moving vehicles with highly accurate positioning
devices. Geographic applications are examples of systems
that use obtained trajectories for analyzing the motion pat-
terns of such moving objects. For example, motion pat-
terns can be applied to navigation systems, traffic control
systems, geographic information systems, location tracking
systems in factories, and so on. Since the amount of trajec-
tory data increases year by year, application system man-
agers must regularly improve their systems to rapidly and
efficiently analyze data [10].

One of the most significant analytical technologies is a

clustering technique of trajectories based on similarities be-
tween moving objects. Clustering techniques can be applied
in the following two ways:

A Group Detection System tries to aggregate the trajecto-
ries of moving objects that have similar motion pat-
terns. For example, if the system finds a group of cus-
tomers moving similarly in a shop, the shop’s manager
can apply that knowledge to optimize the arrangement
and placement of products.

An Outlier Detection System tries to detectoutliers that
have obvious different motion patterns from other
moving objects. In other words, the system detects
moving objects that do not belong to any other class
of moving objects. A security system, for example,
can find a suspicious person in a station or an airport
with this outlier detection technique.

To cluster moving objects, it is necessary to calculate
similarity between two trajectories of moving objects based
on their shapes and velocities. For calculating similarities,
existing detection systems are applied methods to calcu-
late similarity between signal data; Dynamic Time Warping
(DTW) [5] and Longest Common Sub-Sequence (LCSS)
[9] are the most popular methods. These methods can cal-
culate similarity between two multidimensional trajectories
as single-dimensional signal data; however, they focus on
trajectory shapes and cannot compare velocities of moving
objects. For instance, the methods cannot distinguish two
moving objects that have the same shape but different ve-
locities.

As a solution, we present two new and improved calcu-
lation methods to cluster trajectories, which can calculate
similarity between multidimensional trajectories based on
both shapes and velocities. These methods also make it pos-
sible to control the calculating ratio of shapes and velocities.
One of our proposed methods involves an enhanced DTW
to additionally calculate similarity of velocities, while the
other features enhanced Euclidean Distance. In this paper,

(b)(a)

Figure 1. An example of trajectory data

we compare the results of our proposed methods with the
results of existing methods using practical trajectory data.
The results of experiments show the advantages calculating
similarity between multidimensional trajectories based on
shapes and velocities.

In Section 2, we mention practical multidimensional tra-
jectories and related work on calculating similarity between
signal data. Section 3 describes in detail our two proposed
methods to calculate similarity. In addition we explain
how to cluster trajectories based on our calculation meth-
ods.Experimental results are shown in Section 4, and we
conclude our work in Section 5.

2 Similarity of Trajectories

In this section, we mention trajectory data and related
work to calculate similarity between trajectories. Moreover,
we explain our approach to calculate similarity based on
both the shapes and velocities of moving objects.

2.1 Trajectory Data

Generally speaking, the trajectory of a moving object
means a sequence of positions through which the objects
pass. The trajectory is a continuous line, but positioning de-
vices can track a moving object discretely. Thus, we define
a trajectory asλ, that is, a sequence of discrete pointspi

consisting of position dataxi, yi and time datat. For exam-
ple, a trajectory can be denoted asλ = 〈p1, p2, . . . , pn〉. In
addition, we denote a set of trajectories asΛ = λ1, . . . , λm

and use notationsλ(ti) = (xi, yi) andλ(i) = ti for the
following definition1.

Figure 1 illustrates an example of practical trajectories
of rickshaws working in Nara that we tracked using a hand-
held GPS receiver. Furthermore, Fig. 1(b) shows the pro-
jection of the trajectory onto t–x–y space, and we illustrate
the projection of scaled trajectory onto the x–y plane in Fig.
1(a).

1In this paper, we assume that each position on a trajectory is obtained
at the same interval.

x

y

p11

p12

p13

p14

p15

p16

p21

p22

p23

p24

p25
p26

λ1

λ2

Figure 2. Euclidean Distance

λ2

λ3

λ1

(b) DTW

λ2

λ3

λ1

(a) Euclidean Distance

Figure 3. Difference between Euclidean Dis-
tance and DTW

2.2 Related Work

Because most previous works deal with trajectories as
multidimensional time-series data, they calculate similar-
ity between trajectories based on the similarity of single-
dimensional time series data. We came across the following
two popular methods to calculate similarity:

1. Similarity based on Euclidean Distance focuses on the
similarity of velocities [4] [3].

2. Similarity based on Dynamic Time Warping (DTW)[5]
[8] or Longest Common Subsequence (LCSS) [9] fo-
cuses on the similarity of shapes.

In Euclidean Distance, similarity between two trajecto-
ries is based on the sum of the squares of distances between

x

y

p11

p12

p13

p14

p15

p16

p31

p32

p33

p34
p35

λ3

λ2

Figure 4. Dynamic Time Warping

each point on each trajectory. Figure 2 shows an example
of similarity, with it calculation explained in Appendix A.
According to this method, we calculate a distance between
points obtained at the same time; this is, each point is just
once used to calculate distance. Thus, the space between
neighbor points strongly affects the calculation of similar-
ity. For example, trajectoryλ1 in Fig. 3(a) has the same
shape asλ2 andλ3, but the spaces between points onλ3

are of different lengths to the other trajectories. In this case,
λ1 is more similar toλ2 thanλ3 in this calculation method.
Because the length of space between points strongly affects
this similarity, it is valid to cluster trajectories based on ve-
locities. On the other hand, it is difficult to calculate simi-
larity between trajectories of different length, and moreover,
the shape has little effect on the result of similarity calcula-
tion.

In the calculation method based on DTW, similarity be-
tween two trajectories is base on the distance between the
nearest points on each trajectory. In contrast to Euclidean
Distance, the similarity of shapes strongly affects the re-
sults of calculating similarity between trajectories. We ex-
plain the detailed calculation method in Appendix B. As
Fig. 4 shows, because the space between neighbor points
is ignored in this method, the velocities of moving objects
have no effect on the result of calculating similarity. LCSS
also features the same characteristics with respect to simi-
larity.

Through the above discussion, we conclude that previous
calculation methods cannot reflect both velocity and shape
in order to calculate similarity.

2.3 Our Proposed Calculation Methods

In general, the calculating method focuses either on ve-
locity or shape because they are trade-off parameters in the

(a)

(b)

(c)

λ

λ

λ

λ

λ

λ

µ = 1

µ = 2

µ = 4

1

2

1

2

1

2

Figure 5. Our proposed similarity between
trajectories

calculation of similarity. This means a serious problem ex-
ists in methods that cannot control the ratio of velocity and
shape in calculation. Therefore, we propose a new method
to calculate similarity that enables us to explicitly indicate
the ratio of velocity and shape in calculation. Before con-
structing our methods, we focus on the characteristics of
existing calculation methods:

1. Basically, the distance between points on each trajec-
tory is used to calculate similarity.

2. The method based on Euclidean Distance can be used
to calculate partial similarity between parts of trajecto-
ries, which have the sameµ points. These calculated
results are the same as the distance between two se-
quences that includesµ points.

3. An increase in points included in the trajectory
strongly affects the velocity in the calculation results.
If the number of points is 1 (µ = 1), the calculation
results do not affect velocity.

Hence, we propose the following new methods to calcu-
late similarity:

1. Our methods calculate similarity using the distance be-
tweenµ points on trajectories instead of the distance
between two points on trajectories. The distance be-
tweenµ points introduces the effect of velocity to sim-
ilarity, based on DTW.

2. We can show the ratio between velocity and shape with
parameterµ with our method. For example, ifµ =

1, calculated similarity has no effect on velocity. On
the other hand, ifµ is equal to the length of the entire
trajectory, the similarity has a minimal effect on shape.

We explain this concept in detail using an example il-
lustrated in Fig. 5. Existing methods, such as DTW, cal-
culate similarity using distanceD′(p1i, p2j) between points
onλ1 = 〈p11, p12, . . . , p1n〉 andλ2 = 〈p21, p22, . . . , p2m〉,
shown in Fig. reffig:sim(a). Distance functionD′ is defined
as equation 15 described in Appendix B. In our calculation
method, however, similarity is calculated using a Euclidean
distance between orderedµ points on trajectories as shown
in Fig. 5(b).

Whenµ = 2, two partial trajectories,λ′
1 = 〈p11, p12〉

andλ′
2 = 〈p21, p22〉 are generated fromλ1 andλ2, which

only contain both the first and second points of the orig-
inal trajectories. Next, instead of distance functionD′

in the existing methods, we use Euclidean distance func-
tion Deuc(λ′

1, λ
′
2) for calculating similarity. Refer to equa-

tion 10 in the Appendix for the definition ofDeuc. Sim-
ilarly, for each pair of sub-sequences〈p1i, . . . , p1i+m〉,
〈p2i, . . . , p2i+m〉, similarity is calculated in order. In this
manner we can naturally introduce similarity of velocities
into existing shape-based similarity.

On the other hand, when a largeµ, such asµ = 100, is
given, Euclidean distanceDeuc(λ′

1, λ
′
2) is larger than in the

case of a smallµ, such asµ = 2 as shown in Fig. 5(c). In
other words, an increase in the of valueµ strongly affects
velocity in the calculation of similarity. We can adapt length
µ to control the ratio between velocity and shape.

In remainder of this paper we describe two calculation
methods based on the above discussion.

3 Clustering Trajectories

In this section, we describe our proposed methods, Max-
imum Trajectory in nearest neighbors (MT-nn) and DTW
enhanced for trajectories (DTW-t), to calculate similarity
between trajectories for clustering in 3.1 and 3.2. Next, in
Section 3.3, we explain a method to cluster trajectories us-
ing our calculation methods.

3.1 MT-nn: Maximum Trajectory in
Nearest Neighbors

The basic approach of an MT-nn calculation method is
to introduce Euclidean distance to the calculation process
for the maximum distance between points on trajectories.
According to this calculation method based on maximum
distance, the distance between two crossing objects is less
than the distance between objects moving together, even if
they do not cross. This calculation method is used in the

(a) Finding nearest point

(b) Doing all points

(c) Finding maximum distance

Figure 6. Similarity based on maximum dis-
tance

Dynamic Range Query [6] to find moving objects with an
indicated object.

Here we explain how to calculate distanceDmd(λ1, λ2)
between trajectoriesλ1 andλ2 with an example illustrated
in Fig. 6. (We assume that each trajectory hasn points. For
example, in the case of Fig. 6,n is 4.)

1. Search the nearest point to each pointp1i on λ1 in
pointsp21, . . . , p2n onλ2, as shown in Fig. 6(a).

2. Generate pairs{p11, p2i}, . . . , {p1n, p2j} to obtain
the shortest didtance between the points. In
the case of Fig. 6(a), we can find pairs
{p11, p21}, {p12, p22}, {p13, p23}, {p14, p24}.

3. Find a pair whose distance is the maximum, so the dis-
tance of the pair becomesDmd(λ1, λ2). In the previ-
ous example,{p13, p23} is the maximum pair, and the
distance betweenp13 andp23 is the result of calculat-
ing Dmd(λ1, λ2).

The following equation represents this process. (D′ is a
distance function given in equation 15.)

Dmd(λ1, λ2) =
maxv=1→|λ1|minw=1→|λ2|D

′(p1v, p2w) (1)

Similarity Smd(λ1, λ2) is given as a reciprocal function
of Dmd(λ1, λ2) such thatSmd(λ1, λ1) equals zero.

The essential idea of the MT-nn calculation method is
based on replacing functionD′ in Dmd into Deuc. Be-
fore explaining this method, we must define several sym-
bols: sub-trajectoryλ[i, j] = 〈pi, . . . , pi+j−1〉 means a part
of a trajectoryλ = 〈p1, p2, . . . , pn〉 wherei + j ≤ |λ| and
i < j, and i, j are natural numbers. Obviously, we find
that |λ[i, j]| = j. Using this definition, we define similarity
Smnn(λ1, λ2) based on MT-nn according to the following
equation:

Dmnn(λ1, λ2) =
maxv=1→|λ1|−µ

minw=1→|λ2|−µ

Deuc(λ1[v, µ], λ2[w, µ]) (2)

Smnn(λ1, λ2) = 1/Dmnn(λ1, λ2). (3)

Furthermore, we explain the calculation processes.

1. Extract sub-trajectoryλ1[i, µ] that hasµ points in tra-
jectorys1.

2. Find sub-trajectory λ2[j, µ] such that
Deuc(s1[i, µ], s2[j, µ]) is the minimum in all other
sub-trajectories. The distancesDeuc are calculated
and recorded for eachi, from i = 1 to i = |λ1| − µ.

3. Finally, retrieve the maximum distance from the dis-
tances recorded in the previous steps.

The reciprocal numbers of the maximum distances is
similarity Smnn(λ1, λ2) betweenλ1, λ2. This definition
of similarity controls the ratio between the effect of veloc-
ity and shape with parameterµ, as described in 2.3. For
example, ifµ = 1, similarity has no effect on velocity; in
contrast, ifµ is almost equal to the length of the trajectory,
similarity has a strong effect on velocity.

3.2 DTW Enhanced for Trajectory

In simple DTW, each itemγ(i, j) in a matrix (de-
scribed in Appendix B) is given as distance function
D′(p1i, p2j) (defined in equation 15). Based on our pre-
vious discussion, we replace functionD′(p1i, p2j) with
Deuc(λ1[i, µ], λ2[j, µ]) for calculating the similarity be-
tween multidimensional trajectories. We define similarity
Spdtw(λ1, λ2) with the following equation:

γ(i, j) = Deuc(λ1[i, µ], λ2[j, µ])

+ min

 γ(i, j − 1)
γ(i − 1, j)
γ(i − 1, j − 1)

(4)

Dpdtw(λ1, λ2) = γ(|λ1| − µ, |λ2| − µ) (5)

Spdtw(λ1, λ2) =
max(|λ1|, |λ2|)
Dpdtw(λ1, λ2)

. (6)

With this calculation method, an increase in valueµ also
has a string effect on velocity to similaritySpdtw(λ1, λ2).

3.3 Clustering

For clustering trajectories, we adapt a hierarchical clus-
tering method [1] [2] because it is suitable for clustering
the data into unknown classes. A hierarchical clustering
method, especially the group averaging method, is also
appropriate for clustering data with a non-Euclidean dis-
tance function that does not satisfy a condition such that
Smnn(λ1, λ3) ≤ Smnn(λ1, λ2) + Smnn(λ2, λ3). Since the
detailed clustering processes are described elsewhere [1]
[2], we only summarize them in this paper. Such cluster-
ing methods aggregate data that have similar characteristics,
though they prefer to separate data having different char-
acteristics rather than aggregate similar data. Therefore,
we consider the group averaging method valid for detect-
ing outliers, as mentioned in Section 1.

This method clusters data into classes, such that distance
dave(Λ1,Λ2) between any two classesΛ1,Λ2 satisfies the
following equation:

dave(Λ1,Λ2)

=
1

|Λ1||Λ2|
∑

λ1∈Λ1

∑
λ2∈Λ2

Dmnn(λ1, λ2). (7)

Since this equation is adapted into our proposed distance
Dmnn(λ1, λ2), we can also adapt distanceDpdtw(λ1, λ2)
into the averaging clustering method. The results of cluster-
ing based on this method are provided in Section 4.

To compare the results of clustering, we also apply
our calculation method to the farthest-neighbor algorithm,
which is also a hierarchical clustering method. In the clus-
tering function of the farthest-neighbor, distancedmax is
given as the following equation.

dmax(Λ1,Λ2) = maxλ1∈Λ1,λ2∈Λ2Dmnn(λ1, λ2)
(8)

In contrast to group averaging, this method prefers to aggre-
gate similar data rather than separate different data. In other
words, data included in a class have less uniformity than
data aggregated by group averaging; however, the number
of classes generated by the farthest-neighbor is higher than
classes by group averaging. Thus, the farthest-neighbor
method is valid for group-detection application systems.

4 Evaluation

In this section, we cite experiments on clustering trajec-
tories obtained by positioning devices.

(a) Side by side (near) (b) Touch and go Away

(d) Opposite(c) Side by side (far)

Figure 7. Pairs of trajectories used for evalu-
ation

4.1 Experimental Setting

We performed two experiments to evaluate our proposed
method. The aim of the first experiment is to evaluate value
µ in calculating similarity; in the second experiment, we ex-
amine the performance of our proposed method using prac-
tical trajectory data.

In the first experiment, we used two sets of trajectories
with different velocity values: 1 m/s and 2 m/s. Addition-
ally, we set up the four variations of valueµ shown in Fig. 7.
To compare clustering performance, we checked the results
for each of the four values such thatµ = 1, 4, 8, and16.
Both MT-nn and DTW-t were applied to cluster trajectories
in this experiment. In the second experiment we compared
classifications using several calculation methods, including
our proposed methods.

For evaluation, we employed the trajectory data from 39
rickshaws working in Nara during January 2003. The aver-
age rickshaw velocity was about 10 km/h, with each vehi-
cle driving about 20 km per day. The rickshaws’ velocity
was generally low when carrying passengers. Before the
experiment, we normalized the trajectory data whereby the
interval for each point was one second. Furthermore, the
maximum error of the positioning device was within 15 m,
and the average of errors was around 3–4 m.

We use two types of trajectories to compare the results
of clustering: on intersections and on straight roads.

4.2 Calculating Similarity

Figures 8 and 9 illustrate the results of calculating sim-
ilarity. The y-axis of each graph is the distance between
trajectories, the decrease of the y value represents an in-
crease of similarity between trajectories. The value of the
x-axis is the value ofµ. Descriptions such as a–1 and b–1
in the figures mean a pair of two moving objects shown in
Fig. 7; for example, a–2 indicates that the shape of the data
is (a), i.e., two moving objects traveling side by side, and
‘2’ means that the velocity of one moving object is twice

0.00

0.50

1.00

1.50

2.00

2.50

3.00

MT-nn 1 MT-nn 4 MT-nn 8 MT-nn 16

a-1

a-2

c-1

c-2

Figure 8. Distance calculated by MT-nn

0.00

0.50

1.00

1.50

2.00

2.50

DTW DTW-t 4 DTW-t 8 DTW-t 16

a-1

a-2

c-1

c-2

Figure 9. Distance calculated by DTW-t

the velocity of the other.Figures 8 and 9 show the results
for the clustering simple data set, where all objects move at
the same velocity and the shapes of all trajectories resemble
each other.

The results of clustering indicate that an increase inµ
strongly affects the velocities of the clustering. In other
words, when two objects move at the same velocity, in our
methods they belong to the same class even if their trajec-
tories have different shapes. Note that our proposed MT-nn
method strongly affects velocity with an increase inµ, but
DTW-t has little effect on the velocity.

Figures 10 and 11 visualize the clustering results using
trajectories where objects move in opposite directions or
their shapes are quite different. These results also show that
an increase inµ strongly influences clustering in the MT-
nn method. On the other hand, the DTW-t method prefers
to aggregate trajectories that have the same velocity than
aggregate trajectories whose shapes are similar where the
value ofµ increases.

Thus, we conclude that the MT-nn method is suitable for
clustering moving objects with similar velocities, whereas
the DTW-t method is valid for clustering moving objects
with similar shapes. Moreover, it is possible to useµ to
control the ratio of velocity and shape in clustering trajec-

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

MT-nn 1 MT-nn 4 MT-nn 8 MT-nn 16

a-1

a-2

b-1

b-2

d-1

d-2

Figure 10. Distance calculated by MT-nn (2)

0

1

2

3

4

5

6

7

8

9

10

DTW DTW-t 4 DTW-t 8 DTW-t 16

a-1

a-2

b-1

b-2

d-1

d-2

Figure 11. Distance calculated by DTW-t (2)

tories. The results satisfy the discussion in 2.3.

4.3 Clustering Results

Figure 12 illustrates the results of clustering 38 trajecto-
ries of rickshaws, which move on a straight street, with the
group-averaging and similarity-calculation methods. Fig-
ure 12(a) shows the original trajectories, where every rick-
shaw moves from right to left or from left to right. It is
clear that although the directions of motion may differ, the
shapes of trajectories are quite similar. For clustering such
data, we generally prefer to use the similarity of velocities
to the similarity of shapes.

We provide the clustering results as shown in Figs. 12
(b) to (f) with the original DTW, DTW-t, and MT-nn. The
important point here is not the similarity between the shapes
of trajectories in a class, but the similarity of the velocities.
To evaluate the similarity of velocities, we have to calculate
the variance of objects’ velocities in each class. Comparing
the variance of objects, we can validate the performance of
the calculation method to cluster trajectories based on the
similarity of velocities.

The variance of clustering results with the original DTW
shown in Fig. 12(b) is 1,040.03, which is quite high. In
contrast, any variance with our proposed DTW-t is 248.45,

(a) no clustering

(e) MT-nn d = 16

Max Variance

 1546.70

(b) DTW

Max Variance

 862.69

(c) DTW-t d = 16

Max Variance

 248.45

(f) MT-nn d = 32

Max Variance

 1490.92

(d) DTW-t d = 32

Max Variance

 248.45

Figure 12. Results of the clustering trajecto-
ries by grouping average

which is far lower than the original DTW. We cannot find
any significant difference between the variances of (c) and
(d). The second-highest variance, 226.35, is in (c), but the
second-highest variance in (d) is the lower 196.35. The re-
sult means that DTW-t more strongly influences velocity
than does the original DTW. Although DTW-t is good for
clustering such data, the MT-nn method is not because both
the shapes and velocities of trajectories are quite similar to
each other. For clustering such data, then, DTW-t has an
advantage over the other methods. The above results are
coincidental with the discussion described in Section 4.2.

On the other hand, the MT-nn method has an advantage
over cluster trajectories that have different shapes and ve-
locities, as Fig. 13 indicates. In calculating the DTW-t
method, if a shape of a sub-trajectory is similar to a part of
another trajectory, their similarity is calculated as quite near,
even if the shapes of all trajectories are not similar. These
experimental results clearly exhibit the different character-
istics of each calculation method.

Moreover, we performed an experiment to compare clus-
tering methods, group averaging, and farthest-neighbor, as

(b) MT-nn d = 16(b) DTW-t d = 16

(b) DTW(a) no clustering

Figure 13. Results of the clustering trajecto-
ries at an intersection

described in Section 3. Figure 14 illustrates the cluster-
ing results. In group averaging, because the clustering sys-
tem prefers diverging trajectories whose similarity is low,
outliers belong to an independent class from the others, as
shown in Fig. 14(c): the farthest-near method prefers to in-
crease the number of trajectories in a class as much as pos-
sible. Consequently, these results indicate that this method
is not suitable for outlier detection.

These experiments confirmed that our proposed methods
can cluster trajectories with controllable ratios of shape and
velocity.

5 Conclusion

We proposed two new methods to calculate similarity be-
tween multidimensional trajectories for clustering, based on
the characteristics of both velocity and shape. This paper
also reported on experiments conducted to evaluate our cal-
culation methods using the practical trajectory data of work-
ing rickshaws. From the experimental results, we conclude
that our proposed methods are indeed suitable for cluster-
ing multidimensional trajectories, and have advantages over
other methods.

Though in this paper we only dealt with extended DTW
and Euclidean Distance, our approach can be easily applied
to other calculation methods such as LCSS. Future work
will include experiments with other extensions.

(a) no clustering

(c) DTW-t d = 16 (Ave) (d) DTW-t d = 16 (MAX)

(b) MT-nn d = 16 (MAX)

Figure 14. Results of the clustering by differ-
ent methods

References

[1] D. Buzan, S. Sclaroff, and G. Kollios. Extraction and clus-
tering of motion trajectories in video. InICPR 2004 Pro-
ceedings, pages 521–524, 2004.

[2] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. Wiley Interscience, 2000.

[3] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzan. Lo-
cally adaptive dimensionality reduction for indexing large
time series databases. InSIGMOD2001 Conference Pro-
ceedings, pages 151–162, 2001.

[4] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large
time series databases.Knowledge and Information Systems,
3(3):263–286, 2001.

[5] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB2002 Conference Proceedings, pages 406–417, 2002.

[6] I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries
over mobile objects. InEDBT 2002 Conference Proceed-
ings, pages 269–286, 2002.

[7] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W.
Chung. Similarity search for multidimensional data se-
quences. InICDE 2000 Proceedings, pages 599–608, 2000.

[8] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient searches
for similar subsequences of different lengths in sequence
databases. InICDE Proceedings, pages 23–32, 2000.

[9] M. Vlachos, C. Kollios, and D. Gunopulos. Discovering
similar multidimensional trajectories. InICDE 2002 Pro-
ceedings, pages 673–684, 2003.

[10] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Mov-
ing objects databases: Issues and solutions. InStatistical
and Scientific Database Management (SSDM’98) Confer-
ence Proceedings, pages 111–122, 1998.

[11] Y. Yanagisawa, J. Akahani, and T. Satoh. Shape-based sim-
ilarity query for trajectory of mobile objects. InMDM2003
Conference Proceedings, pages 63–77, 2003.

A Euclidean Distance

Euclidean Distance gives a distance between
two sequences s1 = 〈q11, q12, . . . , q1n〉 and
s2 = 〈q21, q22, . . . , q2n〉 having the same items. When
trajectories haven items, Euclidean distanceDeuc(s1, s2)
is given by the following equation:

Deuc(s1, s2) =

√∑n
k=1(q1k − q2k)2

n
. (9)

Similarity Seuc(s1, s2) between two sequences is given
as 1/Deuc(s1, s2). Many signal processing systems use
similarity based on Euclidean Distance for sub-sequence
matching, which is one of the most significant techniques
in signal processing. In general, sub-sequence matching
means a process to find an answer sub-sequence from sub-
sequencess1 . . . , sm, such that the answer sub-sequence
has the shortest distance to given sequencesq. Equation 9
gives a distance between two single-dimensional sequences;
similarly, the distance between multidimensional sequences
can be defined. When|λ1| = |λ2| = n ands1, s2 in Eq. 9
are replaced withλ1, λ2, the distance can be given as the
following equation (a detailed definition is provided in [7]
[11]):

Deuc(λ1, λ2) =√∑n
k=1(x1k − x2k)2 + (y1k − y2k)2

n
. (10)

Similarity Seuc(λ1, λ2) of multidimensional trajectories
can be given as1/Deuc(λ1, λ2), an equation that shows
velocity characteristics affect the similarity of trajectories
more strongly than do shape characteristics.

In the case of the trajectories shown in Fig. 2,
Deuc(λ1, λ2) can be calculated as follows:

Deuc(λ1, λ2) =

√
2 + 1 + 2 + 2 + 1 + 0

6

=

√
8
6

= 1.2. (11)

Using this equation, the similarity is given as
Seuc(λ1, λ2) = 1/1.2 = 0.83.

Table 1. Example of a matrix γ(i, j)
γ(i, j) p31 p32 p33 p34 p35

p11 1.4 3.7 8.7 15.1 22.1
p12 3.4 2.4 6.0 11.0 16.7
p13 7.5 4.4 4.4 7.6 11.2
p14 12.9 7.6 5.8 6.4 8.7
p15 18.8 11.2 6.8 6.8 7.8
p16 26.0 16.2 9.1 7.8 6.8

B Dynamic Time Warping

Dynamic Time Warping (DTW) is one of the most pop-
ular ways to calculate similarity between trajectories with
different numbers of points. DTW features several vari-
ations for adaptation to target data, and in this paper, we
mention a simple DTW [8].

To calculate similarity between two time-series data
s1 = 〈q11, q12, . . . , q1n〉, s2 = 〈q21, q22, . . . , q2m〉, the
calculation system generates a matrix whose item is repre-
sented asγ(i, j). The system decides each item according
to the following equation:

γ(i, j) =

D(q1i, q2j) + min

 γ(i, j − 1)
γ(i − 1, j)
γ(i − 1, j − 1)

γ(0, 0) = γ(0, i) = γ(j, 0) = 0. (12)

In this equation,D(q, q′) is a function that gives a dis-
tance betweenq, q′, for instance, that we can define as
D(q, q′) = |q − q′|. Similarly, when the length of each
s1, s2 is |s1|, |s2|, distanceDdtw(s1, s2) can be defined as

Ddtw(s1, s2) = γ(|s1|, |s2|). (13)

Similarity Sdtw of time-series data is given by the next
equation:

Sdtw =
max(|s1|, |s2|)
Ddtw(s1, s2)

. (14)

It is easy to extend these calculation processes for
multidimensional trajectories. For extension, function
D′(q1i, q2j) in Eq. 12 is replaced by functionD′(p1i, p2j),
which gives the distance between two trajectoriesλ1 =
〈p11, p12, . . . , p1n〉 and λ2 = 〈p21, p22, . . . , p2m〉. Func-
tion D′(p1i, p2j) is given as follows:

D′(p1i, p2j) =
√

(x1i − x2j)2 + (y1i − y2j)2. (15)

This functionD′ introduces the distance functionDdtw in
DTW.

γ(i, j) =

D′(p1i, p2j) + min

 γ(i, j − 1)
γ(i − 1, j)
γ(i − 1, j − 1)

(16)

Ddtw(λ1, λ2) = γ(|λ1|, |λ2|). (17)

Each element in a matrix is calculated recursively from
γ(1, 1) to γ(|λ1|, |λ2|), andDdtw can be calculated from
γ(|λ1|, |λ2|). We can also obtain similaritySdtw from
Ddtw. Table 1 shows matrixγ(i, j) generated from tra-
jectoriesλ1 andλ3 as shown in Fig. 4. In this example,
we obtain the resultsDdtw(λ1, λ3) = γ(6, 5) = 6.8 and
Sdtw(λ1, λ3) = 6/6.8 = 0.88.

