
1

Shape-based Similarity Query

for Trajectory of Mobile Objects

Yutaka Yanagisawa Jun-ichi Akahani Tetsuji Satoh

NTT Communication Science Laboratories,
NTT Corporation

{yutaka,akahani,satoh}@cslab.kecl.ntt.co.jp
http://www.kecl.ntt.co.jp/scl/sirg/

Abstract. In this paper, we describe an efficient indexing method for a
shape-based similarity search of the trajectory of dynamically changing
locations of people and mobile objects. In order to manage trajectories
in database systems, we define a data model of trajectories as directed
lines in a space, and the similarity between trajectories is defined as the
Euclidean distance between directed discrete lines. Our proposed simi-
larity query can be used to find interested patterns embedded into the
trajectories, for example, the trajectories of mobile cars in a city may
include patterns for expecting traffic jams. Furthermore, we propose an
efficient indexing method to retrieve similar trajectories for a query by
combining a spatial indexing technique (R+-Tree) and a dimension re-
duction technique, which is called PAA (Piecewise Approximate Aggre-
gate). The indexing method can efficiently retrieve trajectories whose
shape in a space is similar to the shape of a candidate trajectory from
the database.

1 Introduction

Recently, many location sensors such as GPS have been developed, and we can
obtain the trajectory of users and moving objects using these sensors [12]. Trajec-
tory data are widely used in location-aware systems [1], car navigation systems,
and other location-based information systems, that can provide services accord-
ing to a user’s current location. These applications have stored in them a lot of
trajectories, and these trajectories may include interesting individual patterns of
each user. For example, by analyzing trajectories of users who work in a build-
ing, we can find important passages, rooms, stairs, and other facilities that are
used frequently. The result of the analysis can be used for the management and
maintenance of the buildings. In the case of a navigation system, a driver can
check the route to a city by referring to the trajectories of other users who have
driven to the city before. In another case, we can study characteristics to improve
performance in a sport by analyzing the motion data measured by the sensors
attached to the bodies of top sports players.

2

There have been many studies on managing mobile objects data (MOD) [2] [8]
[11] [14] [16]. One of the most interesting of these is the development of efficient
method to retrieve objects, which is indicated by either a spatiotemporal range
query or a spatio-temporal nearest neighbor query. Both queries are defined as
the distance between the trajectory of a mobile object and an indicated point
in a space. For example, the range query is generally defined as the query for
retrieving all objects which passed within a given distance of an indicated point,
such as ”retrieve all of the people who walked within one mile of the buildings
at the time.” The range query can also be defined as the query to retrieve all
objects that passed within an indicated polygon.

In both cases, the query is defined using the distance between figures in a
space. These distance-based queries are useful in location management of mo-
bile objects [15], however, these queries do not have enough power to analyze
the pattern of the objects’ motion. As mentioned above, because we are inter-
ested in the extraction of the individual moving patterns of each object from
the trajectories, it is necessary to develop more powerful tools to analyze the
trajectories. Hence, we propose shape-based queries of trajectories in space for
the analysis, for instance, “retrieve all objects that have a similar shape to the
trajectory where a user walked in a shop.” Using this query, we may classify
the customers in the shop based on their shape patterns of the trajectories. In
other words, our approach is based on the shape similarity between lines, while
the existing approaches adopt the distance between points as the key to retrieve
required objects.

It is difficult to define the similarity between lines in a space. However, we
found this useful idea through research of time series databases [6] [7] [10]. The
time series database systems can store time series data such as temperature,
economic indicators, population, wave signals, and so on, in addition to sup-
porting queries for extracting patterns from the time series data. Most of the
time series database systems adopt the Euclidean distance between two time data
sequences [7] for analysis; if two sequences, c, c′, are given as 〈w1, w2, . . . , wn〉
and 〈w′1, w′2, . . . , w′n〉, the similarity can be defined as

D(c, c′) =
√

(w1 − w′1)2 + . . . + (wn − w′n)2.

(In Section 3, we describe the similarity in detail) Because trajectory is a type of
time series data, the time series database is able to deal with trajectory. However,
trajectory not only has a time series data feature, but also has a directed line
in space feature. For example, it is difficult for the time series database to find
data for a geographic and spatial query.

Therefore, in this paper, we present a data model for trajectories of mobile
data, and a query based on the distance between two trajectories by extending
the similarity used in the time series database systems. Moreover, we propose a
new indexing method for retrieving required trajectories by queries based on our
defined distance between trajectories. In Section 2, we describe our proposed data
model for the trajectory. Section 3 describes the distance between two discrete
directed lines for calculating similarities between two trajectories . In Section 4,

3

X

Y λ1
λ2

λ3

λ4

X

Y
λ1

t1

t2
t3

t12

λ4

t1
t11

(a) (b)

Fig. 1. Trajectory of Mobile Objects ((a) trajectory in the real world. (b) trajectory
stored in a database)

we present both the processing method for our proposed query and an indexing
technique that is an extension of Piecewise Aggregate Approximation (PAA) [7].
Finally the evaluation of our approach is shown in Section 5.

2 Trajectory of Mobile Objects

In order to effectively manage mobile objects, it is necessary to manage the loca-
tion of each object at each time. Generally, a location management system can
retrieve objects located in the indicated area at the indicated time [2]. However,
we are interested in the similarity of the trajectory’s shape in a space. In order
to define the similarity between trajectories, it is necessary at first to define the
trajectory as a figure drawn in space. Hence, we define the data model for the
trajectory of mobile objects1.

A real-world trajectory is a directed continuous line with a start and end
point (Figure 1(a)). Given a two-dimensional space R2 and a closed time interval
Iλ = [t, t′] with t < t′, a trajectory λ is defined as follows,

Definition 1 : Trajectory
A trajectory is the image of a continuous mapping of λ : Iλ → R2.

This definition is a temporal extension of the definition of a simple line de-
scribed in [3]. Next, we denote the length of trajectories in R2 as LS and the
interval of trajectories in temporal space as LT :

Definition 2 : Length of Trajectory in Space R2

The length of trajectory λ during a period [t0, t1] is denoted as LS(λ, [t0, t1])
calculated as follows:

LS(λ, [t0, t1]) =
∫ t1

t0

√(
dx

dt

)2

+
(

dy

dt

)2

dt, where λ(t) = (x, y)

1 For simplification of the problem, we just focus on the trajectory of mobile objects;
in other words, we do not discuss the data model of the other attributes of the
objects, such as shape, name, and so on.

4

The length of the whole trajectory is denoted as LS(λ)(= LS(λ, [t, t′]).

Definition 3 : Temporal Interval of Trajectory
The x = (x, y) is a vector in space R2. The temporal interval of trajectory

λ between xi and xj on λ is defined as follows:

LT (λ, [xi,xj]) = |tj − ti|, where λ(ti) = xi, λ(tj) = xj , and ti, tj ∈ Iλ[t, t′]

LT (λ) = |t′ − t|
However, a location sensor device such as GPS does not continuously measure

the coordinates of a mobile object, but samples such data. The measured data
are thus a sequence of coordinates of positions shown in Figure 1(b). Hence, we
define discrete trajectory λ̇ as a discrete function. Each vector xi represents a
position of a mobile object at each time T λ̇ = {t0, t1, . . . , tm} in the space.

Definition 4 :Discrete Trajectory
A discrete trajectory is the image of a discrete mapping: λ̇ : T λ̇ → R2.

A discrete trajectory can be represented as a vector sequence 〈xt1, . . . , xtm〉,
also. If T λ̇ = {1, 2, . . . , m}, we denote the discrite trajectory λ̇ as just a simple
vector sequence 〈x1, . . . , xm〉. Additionally, where λ̇(ti) = xi , we introduce
several notations; T λ̇(i) = ti, X λ̇(i) = xi, and |λ̇| is the number of the vectors
included in λ̇ (|λ̇| = |T λ̇|). Next, we define the distance between two vectors
x, x′ in R2.

Definition 5 :Distance of Vectors

D(x, x′) =
√

(x− x′)2 + (y − y′)2

That is, this definition assumes that space R2 is Euclidean.

Although λ̇ is a discrete line, it is necessary to deal with λ̇ as a continuous line
in a query. In order to satisfy this requirement, we define a function to convert
the discrete line into a continuous line. There are various methods to calculate an
approximate continuous line from a discrete line [4]. In our approach, we adopted
the piecewise linear approximation because of its simplicity and popularity [15].

Definition 6 : Piecewise Linear Approximation of λ̇
λ̃ : [t0, tm] → R2 is given as

λ̃(t) =

{
λ̇(t) if t ∈ T λ̇

t−ti

ti+1−ti
λ̇(ti) + ti+1−t

ti+1−ti
λ̇(ti+1) if t 6∈ T λ̇

ti must be selected under the condition: ti < t < ti+1

In the rest of this paper, we mainly discuss the features of both λ and λ̇. Note
that in this paper, we only mention the trajectory on R2, but our proposed model
and techniques can obviously be adapted to the higher dimensional space Rn.

5

L1 L2

d

Q

L1

L2

L3 L4

ti

tj

tk

tl

(a) (b)

Fig. 2. Distance between trajectories

Q
L1

L2

L3 L4
Time

Val

n

L1

Q

(a) Previous Spatial kNN (b) Previous Temporal kNN

Fig. 3. Existing kNN approaches

3 Similarity Query based on Shapes of Lines

3.1 Shape-based Approach

The similarity query is useful in its own right as a tool for exploratory data
analysis[7], and it is a significant element in many data mining applications.
For instance, we may find the optimum arrangement of items in a market by
analyzing the trajectories of customers walking around in a shop. In addition
to its usefulness in the trajectory database, the similarity query is one of the
most interesting fields in time series databases. In time series databases, the
similarity between two sets of time series data is typically measured by the
Euclidean distance [6] [7], which can be calculated efficiently.

However, there have been few discussions on the similarity between two lines
in space because the previous approaches for spatial queries have focused on the
“distance” between a point and a line [2] [9] [15]. The interest of the previous
approaches was mainly to find objects that pass a point near the indicated point,
such as a car passing through a street. On the other hand, we are interested in the
“shape” of the trajectory. In order to calculate shape-based similarities among
trajectories, it is necessary to define a new similarity for the trajectories, as
shown in Figure 2(b).

6

In general, the similarity query is represented as a k Nearest Neighbor Query
(kNN) [2] [5] [9] . There are two types of existing approaches, one is based
on spatial similarities, the other is based on similarity between two time series
data. The example of the existing spatial kNN is illustrated in Figure 3(a). In
this case, the answer is L1, L2 when K is 2. On the other hand, the similarity
between two time series data is defined as the Euclidean distance between two
time series, where the length of each is n. The distance is defined as the Euclidean
distance between two n-dimensonal vector data [7] shown in Figure 3(b). While
this distance of the time series data is based on shape, the distance is defined
only in the case of R1 × T (T = [0,∞]), but not in the case of Rn × T , shown
in Figure 2(b). Since the trajectory has both spatial and temporal features, we
consider three types of similarity queries for trajectories as follows:

Spatio-Temporal Similarity: based on a spatio-temporal feature in R2 × T .
Spatial Similarity: based on a spatial only feature in R2 without temporal

features.
Temporal Similarity: based on a temporal only feature in R1 × T without

spatial features.

In the rest of this section, we define the similarity in the first two cases. We
do not define the temporal similarity because this similarity is the same as the
similarity defined for the time series databases.

3.2 Shape-based similarity query

As mentioned above, the trajectory has a time series data feature. We define
the similarity between two trajectories in the same manner as for the similarity
defined in the time series query[7]. For the time series database, the similarity
of the two time series data, where each has n value, is given by the Euclidean
distance between vectors in Rn. In [6] and [7], when there are two time series
data, c = 〈w1, w2, . . . , wn〉, c′ = 〈w′1, w′2, . . . , w′n〉, the distance D(c, c′) is defined
as follows:

D(c, c′) =
√

(w1 − w′1)2 + . . . + (wn − w′n)2

This definition can be extended if each vector x is a vector in space R2, when
the time series vectors are X = 〈x1,x2, . . . , xn〉, X ′ = 〈x′1, x′2, . . . , x′n〉 , and
the distance is D(c, c′). We define the distance between two time series vectors
D(X, X ′) by extending the definition of D(c, c′), as follows:

D(X, X ′) =
√

D(x1,x′
1)2 + . . . + D(xn, x′

n)2

Based on this definition, we consider the shape-based similarity query for
trajectories. Here, Λ̇ is the set of discrete trjectories stored in the database, and
each λ̇i (λ̇i ∈ Λ̇) is a discrete trajectory, such as λ̇i = 〈x1, . . . , xm〉. The query
trajectory λ̇q is given as λ̇q = 〈x1, . . . , xn〉. The shape-based range query can
then be defined using Λ̇, λq, and the previous defined distance between two time
series vectors, as follows:

7

Input : �̇, λ̇q and θ (θ is a natural number).
Output : �̇a, {λ̇a1, . . . , λ̇ak} ∈ �̇a.

function Qrange(θ: integer, λ̇q, �̇) : �̇a

begin
var j : integer, l := |λ̇q|, �̇a := φ;
for each λ̇i in �̇ do

for j := 1 to |λ̇i| − l + 1 do
begin

λ̇ij = subsequence(λ̇i, j, l);
{ This function will return a subsequence of the original sequence λ̇i,

such as 〈xj ,xj+1, . . . ,xj+l−1〉, each x ∈ λ̇i}
if D(λ̇q, λ̇ij) < θ then

Add λ̇ij to �̇a;
end;

return �̇a;
end.

Fig. 4. The process of the shape-based range query of trajectories

Definition 7 : Shape-based Range Query
The process for calculation of the shape-based range query Qrange(θ, λ̇q, Λ̇)

is given in Figure 4. The range query is defined as a subsequence match of
trajectories as shown in Figure 5.

In addition, the nearest neighbor query can be defined using our distance
between trajectories. In our definition, the temporal features are not indicated
in the query, however, we consider that the temporal features can be indicated
independently from the range query. For example, a query “Qrange(θ, λ̇q, Λ̇) ∧
11:00 < T λ̇ai

(1) < 12:00” means retrieving subsequences λ̇ai where the distance
between λ̇q and λ̇ai is less than θ. Moreover, the first vector in λ̇ai is measured
within the interval [11:00, 12:00].

3.3 Spatio-temporal distance between two trajectories

Our defined distance D(X, X ′) can be used only in the case where each vector
x ∈ X is measured by the same interval, that is ∆t = ti+1 − ti (i = 1, . . . , n −
1), where ti is an interval from the time when xi is measured. However, each
vector in the trajectory is not always measured by the same interval ∆t because
sensor devices often lose the data. For example, a discrete trajectory illustrated
in Figure 6(a) has no measured vectors at t = 5, 7, 9.. Therefore, to calculate
the similarity using our definition, we define a temporal normalized discrete
trajectory λ̇∆t for trajectory λ, as follows:

Definition 8 : Temporal Normalized Discrete Trajectory

8

Stored Trajectory

X

Y

Query Trajectory

(a)
X

Y

A B
C

(b)

Subsequence Match

1 2

3

6

7

8

9

1
2

3

4

Fig. 5. Similarity query for trajectories

Given a trajectory λ defined for time interval [tS , tE], and a natural number
m, the temporal normalized discrete trajectory λ̇∆t is defined as follows:

λ̇∆t = 〈λ(tS), λ(tS + ∆t), . . . , λ(tS + m∆t)〉 , where tS + m∆t = tE

Intuitively, this discrete trajectory λ̇∆t is the re-sampled trajectory per fixed
interval ∆t from λ, shown in Figure 6(c). In other words, λ̇∆t is generated by
dividing λ into equal interval ∆t. For discrete trajectory λ̇, we can use the piece-
wise linear approximation λ̃ instead of λ. In the case of Figure 6, the temporal
normalized discrete trajectory (Figure 6(c)) is generated from the approximate
trajectory (Figure 6(b)).

Definition 9 : Spatial-Temporal Similarity between two Trajectories
Given two trajectories λ and λ′ with the same temporal length (i.e. LT (λ) =

LT (λ′)) and a natural number m, the spatio-temporal distance (similarity)
DTS(λ, λ′) between λ and λ′ is defined as follows:

DTS(λ, λ′) =
1

m + 1

√√√√
m∑

i=0

D(X λ̇∆t
(i), X λ̇′∆t

(i))2, where ∆t =
LT (λ)

m
=

LT (λ′)
m

Note that DTS(λ̇, λ̇′) can be defined as DTS(λ̃, λ̃′). In this definition, the
similarity is the Euclidean distance between trajectories represented as m + 1
dimensional vectors, and the interval of each trajectory is normalized. Using this
definition, it is possible to find trajectories whose shape is more similar to the
query trajectory than can be found using previous methods.

3.4 Spatial distance between two trajectories

In definition 8, we focused on the shapes of the trajectories in space R2 × T .
However, there are cases where the shapes in R2 (without temporal features) are
just as important, such as for example in the case of finding similar trajectories
to those of a specified user when focusing on the “spatial” shape. Hence, we also
define the spatial similarity between two trajectories.

9

1
2

4 6

8

10

11
12

X

Y

X

Y

(a) Original Data (b) Approximate Trajectory

X

Y

1
2

4

6

8

10

11
12

3
5

7

9

(c) Temporal Normalization
X

Y

d

d

1
2

4 6

8

10
11

3
5

7

9
12

(d) Spatial Normalization

Fig. 6. Normalization of trajectories

Definition 10 : Spatial Normalized Discrete Trajectory
Given a trajectory λ and a natural number m, the spatial normalized discrete

trajectory λ̇δ is defined as follows;

λ̇δ = 〈λ(t0), . . . , λ(tm)〉 , where LS(λ, [ti−1, ti]) = δ, (i = 1, . . . , m)

Similar to λ̇∆t, λ̇δ is generated by dividing λ into equal spatial length δ. In
the case of Figure 6, the spatial normalized discrete trajectory (Figure 6(d)) is
generated from the approximate trajectory (Figure 6(b)).

Definition 11 : Spatial Similarity between Trajectories
Given two trajectories λ and λ′ with the same spatial length (i.e. LS(λ) =

LS(λ′)) and a natural number m, the spatial distance (similarity) DS(λ, λ′)
between λ and λ′ is defined as follows:

DS(λ, λ′) =
1

m + 1

√√√√
m∑

i=0

D(X λ̇δ
(i),X λ̇′

δ
(i))2 where δ =

LS(λ)
m

=
LS(λ′)

m

Using this definition, it is possible to find the trajectories whose spatial shape
is similar to that of the query trajectory without temporal features.

4 Indexing

With our proposed method for calculating similarity between trajectories, the
database system can find the trajectories that have similar shapes to the shape

10

C1

C2

C1

t

X

C2

t

X

t

X

D(c1, c2)

C1

C2

D(c1, c2)

C1

C2

(a) (b) (c)

Fig. 7. Distance between two sequences c1, c2, and Distance between approximate
sequences c̄1, c̄2

of the query trajectory. However, the cost of calculating our defined similarity
is very high, because it is necessary to calculate Euclidean distances between
each point on the query trajectory and each point on all trajectories stored in
the database. In general, database systems store a lot of trajectories, and the
amount of data is increasing rapidly. Therefore, it is important to reduce the
cost of calculating similarities. In this section, we present an indexing method
to reduce the cost of calculating similarities, which is based on techniques for
reducing the dimensions of vector data.

4.1 Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) [7] is a technique for reducing the
cost of comparing two sets of time series data. The essential idea of this technique
is the reduction of the number of compared data using the lower limit values of
time series data. Here, we describe only an outline of this technique because it
was fully presented in [7].

As mentioned in Section 3, the similarity between two time series data sets
can be defined as Euclidean distance between two sequences represented as multi-
dimensional vectors. Even if the query sequence has a shoter length m than the
candidate sequence, the similarity can be defined as the distance between the
query sequence and each subsequence of the candidate sequence, as illustrated in
Figure 3(b). According to the definition of the similarity between two sequences
(mentioned in Section 3.3), when the length of the query sequence is m and
the maximum length of a candidate sequence is n, the order of calculating the
similarity is obviously O(mn) for each stored sequence. In order to reduce cost of
comparison, it is necessary to reduce the number of compared values in sequence.

The PAA is a technique for generating approximate sequences to efficiently
calculate similarity. If the original sequence has n values, the approximate se-
quence has only k values (k is a factor of n and k is much less than n). Each

11

t

Y

X

Original Data
t

X

t

Y

t

X

t

Y

1. Projection 2. Approximation

3. Plotting on
XY Plane

Y

X

Y

X
4. Generating R -Tree+

Fig. 8. The process for generating indexes to trajectories

member of the approximate sqeuence c̄ = 〈w̄, . . . , w̄k〉 is given as follows:

w̄i =
1
k

ki∑

j=k(i−1)+1

wj

In short, each w̄i is calculated as the average of
〈
wk(i−1)+1, . . . , wki

〉
. Moreover, it

was proved in [7] that the approximate sequences c̄, c̄′ have a special relationship
with the original sequences c, c′ (|c| = |c′| = k):

D(c̄, c̄′) < D(c, c′)

This relationship means the distance between the approximate sequences is the
lower limit of the distance between the original sequences. For example, in the
case of Figure 7(a), the distance between c1 and c2 (Figure 7(b)) is always greater
than the distance between approximate sequences c̄1 and c̄2, shown in Figure
7(c). Using this result, the database system can reduce the number of compared
sequences with the query sequence.

4.2 Extended Indexing Method for Shape-based Similarity Query

The PAA is a simple and efficient technique for reducing the number of compared
time series data; however, this technique has only been adapted to the data in

12

space R1×T . Hence, we extend this technique to trajectory data in space R2×T .
Moreover, we present an efficient indexing method for trajectories by combining
two techniques: PAA and a spatial indexing technique (R+-Tree [13]) 2 We only
describe the case of the spatial similarity query, but the essential idea can also
be adapted to the spatio-temporal similarity query.

First, we define the extension of PAA for the 2-dimensional space:

Definition 12 : 2-Dimensional PAA (2D-PAA)
Given a normalized spatial trajectory λ̇δ (LS(λ̇δ) = nδ) and k, which is a

factor of n, 2-Dimensional PAA of λ̇δ is:

X̄ = 〈x̄1, x̄2, . . . , x̄k〉 such that x̄i = (x̄i, ȳi)

x̄i =
1
k

ki∑

j=k(i−1)+1

xj , ȳi =
1
k

ki∑

j=k(i−1)+1

yj where xj = (xj , yj)

Intuitively, 2D-PAA can approximate the trajectory’s shape by calculating
the center of the points contained in the trajectory. Using 2D-PAA and R+-Tree,
the indexes to trajectories can be generated as shown in Figure 8.

In order to retrieve trajectories whose distance to the query trajectory is less
than θ, the database system processes the following steps;

1. Calculating X̄q = 〈x̄q1, . . . , x̄qk〉 for the query trajectory λq (λδq).
2. Searching sequences X̄1, X̄2, . . . (the length of each sequence is k) on R+-

Tree, such as DS(X̄i, X̄q) < θ.
3. Finding answer trajectories λ1, λ2, . . . such as DS(λi, λq) < θ.

In our approach, the number of compared data is reduced in two steps. The
combination of both reduction techniques enables databases to retrieve answer
trajectories efficiently. Therefore the trajectory databases can support the shape-
based similarity query without a heavy load. Our indexing method’s performance
is evaluated in Section 5.

5 Performance Study

5.1 Experimental Settings

There are basically three variables that could affect the similarity between tra-
jectories. The first is the length of a query, because as the length of query in-
creases, the similarity decreases, but the cost of calculating similarities increases.
The second variable is the density of the points in a space, since the similarity
increases and the number of compared trajectories increases with the density of
2 APCA [6], which is an extension of PAA, uses R-Tree based indexing techniques.

However, the indexing method only uses R-Tree techniques to retrieve time series
data (in space R1 × T) efficiently, not to retrieve sequences of vectors such as tra-
jectories in space R2 × T .

13

4 8 16 32 64 128 256
2000

8000

32000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Time
(msec)

Length

Points

4 8 16 32 64 128 256
2000

8000

32000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Time
(msec)

Length

Points

Fig. 9. The comparison of our proposed indexing method with the existing method

the points. The final variable is the complexity of the trajectory’s shape. Gen-
erally, the irregularity of an object, motion causes greater complexity of shapes;
in other words, people walking randomly generate the most complex shapes.

Therefore, we generate sample trajectories by changing these variables. The
number of trajectories is 2-32, the length of trajectories is just 1000 (i.e., the
maximum number of points is 32000), and the sampling interval ∆t is fixed3.
Each trajectory has shapes that represent people walking freely on a plane while
changing speed and direction, and the frequency of the change in these values is
altered in order to generate various complex shapes. In addition, the trajectories
are embedded into a fixed area (size is 500 × 500) without any tendencies, in
other words, the density of points can be controled by the number of embedded
trajectories.

5.2 Efficiency

We have an experiment to assess the performance of our indexing method. For
the experiment, we implemented two types of engine to find the trajectory which
is the “nearest” to the query trajectory. The first engine checks every point on
all trajectories (without any index), while the second engine checks only points
filtered by our proposed index. We generated random trajectories for a query,
and measured the calculation time required to find the nearest trajectory to
the generated query trajectory. Since this is a simple performance evaluation of
our approach, we gave a very simple query for each engine; the length of the
query is fixed to k. In other word, the query trajectory λ̇q has just k items,
such as λ̇q = 〈x1, . . . , xk〉 , and the approximate trajectory λ̄q has only one item
x̄ = (1/k

∑k
i=1 xi, 1/k

∑k
i=1 yi) where xi = (xi, yi).

Figure 9 illustrates the experimental result in the case where the shape of
trajectories is simple. While the left graph in the figure shows the calculation
3 Even in the case where ∆t is not fixed, we can take similar results from the case

where ∆t is fixed, because fixed trajectories can be mechanically generated from
original trajectories with the piecewise linear approximation defined in Section 2.

14

time with our indexing methods, the right graph shows without any index. With
our proposed index, the calculation time is 60%–75% less than without the index
in each situation. For example, in the case where the query length is 256 and
the number of points is 32000 (it is the worst case), the calculation time is 3,325
msec with the index. On the other hand the calculation time without the index
is 18,206 msec. Although the time taken to generate indexes (overhead) is 3,377
msec when the number of points is 32,000, it is less than the time required
without the index. As a result of our experiment, the advantage of our indexing
method is clear.

In addition, we measured the calculation time in cases where the shape of
trajectories is very complex, such as trajectories where each object moves almost
randomly. In this case, the calculation time is 15%–20% greater than the time
in the simple case; however, the rate of increase is the same in cases with the
index and without the index.

6 Conclusion

The main contribution of this paper is the presentation of an efficient indexing
method for processing shape-based similarity queries for trajectory databases.
In order to calculate similarity between trajectories, we defined discrete trajec-
tories that were re-sampled per fixed interval. Furthermore, we described the
performance of our proposed indexing method, and we show the advantage of
our method over the existing methods.

As future work, we will implement the trajectory database system to eval-
uate our proposed model, Furthermore, we will develop several real application
programs such as a car navigation system, a personal navigation system, and
other location-wares.

References

1. G. Chen and D. Kotz. Categorizing binary topological relations between regions,
lines, and points in geographic databases. Technical Report TR2000-381, A Sur-
vey of Context-Aware Mobile Computing Research, Dept. of Computer Science,
Dartmouth College, 2000.

2. H. Chon, D. Agrawal, and A. E. Abbadi. Query processing for moving objects
with space-time grid storage model. In MDM2002 Conference Proceedings, pages
121–129, 2002.

3. E. Clementini and P. D. Felice. Topological invariants for lines. IEEE Transaction
on Knowledge and Data Engineering, 10(1):38–54, 1998.

4. L. E. Elsgolc. Calculus of Variations. Pergamon Press LTD, 1961.
5. E. G. Hoel and H. Samet. Efficient processing of spatial queries in line segment

databases. In O. Gunther and H. J. Schek, editors, SSD’91 Proceedings, volume
525, pages 237–256. Springer-Verlag, 1991.

6. E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzan. Locally adaptive di-
mensionality reduction for indexing large time series databases. In SIGMOD2001
Conference Proceedings, pages 151–162, 2001.

15

7. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems, 3(3):263–286, 2001.

8. G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In
SIGMOD’99 Conference Proceedings, pages 261–272, 1999.

9. G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, and M. Hadjieleftheriou. Index-
ing animated objects using spatiotemporal access methods. IEEE Transactions on
Knowledge and Data Engineering, 13(5):758–777, 2001.

10. Y.-S. Moon, K.-Y. Whang, and W.-S. Han. General match: A subsequence match-
ing method in time-series databases based on generalized windows. In SIGMOD
2002 Conference Proceedings, pages 382–393, 2002.

11. K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatio-
temporal databases. In C. S. Jensen, M. Schneider, B. Seeger, and V. J. Tsotras,
editors, SSTD 2001, volume 2121 of Lecture Notes in Computer Science, pages
59–78. Springer-Verlag, 2001.

12. N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for
context-aware mobile applications. In MOBICOM2001 Conference Proceedings,
pages 1–14, 2001.

13. T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for
multidimensional objects. In VLDB’87 Conference Proceedings, pages 3–11, 1987.

14. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying
moving objects. In ICDE’97 Proceedings, pages 422–432, 1997.

15. M. Vazirgiannis and O. Wolfson. A spatiotemporal model and language for moving
objects on road networks. In C. S. Jensen, M. Schneider, B. Seeger, and V. J.
Tsotras, editors, SSTD 2001, volume 2121 of Lecture Notes in Computer Science,
pages 20–35. Springer-Verlag, 2001.

16. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases:
Issues and solutions. In Statistical and Scientific Database Management (SSDM’98)
Conference Proceedings, pages 111–122, 1998.

