
A Rule-based Acceleration Data Processing Engine
for Small Sensor Node

Kenji KODAMA
Graduate School of

Engineering, Kobe University
kodama@stu.kobe-

u.ac.jp

Naotaka FUJITA
Graduate School of

Engineering, Kobe University
nfujita@stu.kobe-u.ac.jp

Yutaka YANAGISAWA
NTT Communication Science

Laboratories
yutaka@cslab.kecl.ntt.co.jp

Tsutomu TERADA
Graduate School of

Engineering, Kobe University
tsutomu@eedept.kobe-

u.ac.jp

Masahiko TSUKAMOTO
Graduate School of

Engineering, Kobe University
tuka@kobe-u.ac.jp

ABSTRACT
In recent years, various small sensor nodes have been devel-
oped for recognizing real world situations and events for the
development of context-aware systems. We consider that
the acceleration sensor is one crucial element for recogniz-
ing various types of situations because it has rich and simple
information. An application system using acceleration data
requires the following features: 1) rapid processing of data
without large memory since the amount of acceleration data
is much greater than the amount of other sensor data, 2) a
node that reduces the amount of data sent to a server, and 3)
systems that can be easily con�gured by users at low cost.
Current sensor nodes, however, do not have enough func-
tions to satisfy these requirements. We propose a rule-based
data processing engine for processing acceleration data. Our
proposed engine rewrites the rules on each node with a few
bytes of data. We evaluated our rule-based engine on our
small sensor node called the Motion sensing and Communi-
cation Minimized Chip (MoCoMi-Chip).

Categories and Subject Descriptors
C.2.4 [Distributed applications]: Distributed Systems

General Terms
Design, Implementation, Experimentation, Performance

Keywords
Acceleration Sensor, Rule Base, Wireless Sensor Node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’08,December 1-5, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-366-2/08/12 ...$5.00.

1. INTRODUCTION
Recent technological advances have created pervasive com-

puting systems using many small computer nodes with var-
ious types of sensors to recognize events in the real world.
The nodes enable us to develop new services, based on huge
amounts of information such as events, contexts, and situa-
tions.
Many nodes have several types of sensors such as temper-

ature, proximity, acceleration, light, pressure, and magnetic
for extracting bene�cial real information [1]. Among the
above, the acceleration sensor is one of the most signi�cant
devices for obtaining such sensor data as dynamic motions,
both of humans and objects, in real time. Therefore, most
sensor nodes have acceleration sensors.
Generally, the amount of acceleration data obtained in

one second is much larger than other sensor data because an
acceleration sensor obtains data at a high frequency. The
increase in the amount of data causes a corresponding rise in
communication cost between sensor nodes. Another prob-
lem that concerns users is they must frequently adjust each
setting of sensor nodes to accurately process the acceler-
ation data because these data are strongly a�ected by the
real world. For this reason, acceleration sensor nodes require
operation-speci�ed acceleration data.
We consider four requirements: 1) simple description of

program, 2) recon�gurable program, 3) promptitude, and
4) low communication cost. Currently, however, the same
method is used to process all types of sensors, even though
acceleration sensors have quite di�erent features from other
sensor nodes. In other words, previous sensor nodes do not
have functions that satisfy the requirements of acceleration
sensors because they use acceleration data as well as other
sensor data sampled at low frequency. To deal with the ac-
celeration data on sensor nodes, the data processing system
on a node must introduce speci�ed mechanisms to process
the acceleration data on each sensor node.
Therefore, we propose a rule-based data processing engine

for processing acceleration data on small sensor nodes. Us-
ing rule description, users describe the operations of sensor
nodes simply and compactly. Furthermore, to modify these
rules, users can change operations dynamically in real time.
Our proposed engine processes sensor data at high frequen-

1



cies because it uses a simple processing method. The en-
gine reduces communication cost because sensor nodes only
send sensor data or context information when the engine
detects events. Moreover, we describe an implementation
of our rule-based engine on our small sensor node called
the Motion sensing and Communication Minimized Chip
(MoCoMi-Chip). We also experimentally evaluated the per-
formance of our engine based on the above four system re-
quirements.
This paper is organized as follows: we survey related

works in Section 2. In Section 3, we introduce our approach
and describe the design of our proposed engine in Section 4.
In Section 5, we discuss an evaluation of our engine. Finally,
we conclude in Section 6 with our summary and directions
for future work.

2. RELATED WORK
In this section we show related systems using sensor nodes.

First, we introduce systems that recognize context from the
real world. Second, we introduce database systems that pro-
cess sensor data on sensor networks. Finally, we introduce
rule-based systems for sensor nodes.
Many researchers have attempted to obtain general hu-

man or object context information using sensor nodes. In
these systems, acceleration data are crucial to obtain both
context and situational information. For example, The Me-
diaCup uses sensor nodes to obtain general context infor-
mation [2]. The DigiClip uses sensor nodes attached to doc-
uments to manage them more e�ectively [3]. User activity
recognition systems also use acceleration data for inferring
activities. Kawahara et al. proposed methods to estimate a
person's motion using sensor nodes [4]. These systems pro-
cess the data stored in server computers without processing
on the sensor nodes.
To store sensor data in a server, each node must send data

via a wireless network. As the amount of sensor data ob-
tained by sensor nodes increases, the amount of data sent to
the server also increases. TinyDB can reduce the amount of
sensor data by using acquisitional query processing (ACQP)
in sensor networks [5]. TinyDB processes a query described
in a SQL-like query language, the user indicates the min-
imum set of necessary sensor data to send to the server.
However, this system is not suited for acceleration data for
estimating motion.
In the rest of this section, we mention the recon�gurable

mechanisms for sensor nodes. Over-the-air programming
(OTAP) is proposed to rewrite programs stored on many
sensor nodes in wireless networks [6]. For example, both the
MICA MOTE and Smart-Its Particle introduced OTAP for
reducing rewriting costs [7, 8]. However, since OTAP incurs
a large communication cost and cannot rewrite a program in
real time, this method cannot be adapted to sensor networks
in certain cases.
Some pervasive services using rule-based systems have

been proposed to adapt various environments for sensor nodes.
A rule-based system operates small devices as an event-
driven system and changes programs quickly. AhroD and
DYCOM use rule-based systems to operate small sensor
nodes for pervasive services [9, 10]. AhroD is a ubiqui-
tous computing device using event-condition-action (ECA)
rules whose description simply and compactly describes de-
vice operation. AhroD has operation rules that determine
which applications should be executed and processes them

7 561211108 4219 3
Data General

Sensor nodes

Host computer
Sensor dataContext code

Figure 1: An application image.

in sequence. However, AhroD cannot process sensor data
because it uses binary signals to evaluate input signals. DY-
COME is a context-oriented switcher using a rule-based sys-
tem to process sensor data for sensor nodes. By processing
raw sensor data, DYCOME dynamically switches an active
application at an event. However, the rule description in
DYCOM cannot describe a motion event because it only
processes raw acceleration and other sensor data.

3. APPROACHES
As mentioned in Section 1, we propose a method to oper-

ate small autonomous sensor nodes that process acceleration
data. After describing several examples of our application
systems and the framework of a sensor network, we discuss
the system requirements for processing acceleration data on
our sensor nodes for application systems. Finally, we show
an outline of the method to satisfy these requirements.

3.1 Example Application Systems
We focus on sensor nodes attached to various indoor ob-

jects. The application systems use collected data from each
sensor node to extract real-world events and context infor-
mation.
Figure 1 shows an example of an application system. In

the o�ce, each person and most objects have a sensor node.
Each sensor node obtains various types of sensor data, and
the node extracts bene�cial data from these data. After ex-
traction, the node sends the data via a wireless network to
a host computer. The host computer integrates the received
sensor data to calculate complex moving situations or events
that each node extracts. The host computer also sends the
information to an application system. As a result, the ap-
plication system provide meaningful context-aware services.
Generally, each node has many types of sensors, such as

acceleration, temperature and light. Acceleration sensors
are crucial in obtaining data of real-world situations since
they catch detailed motions or tilts of objects. Most context-
aware systems adapt acceleration sensors to extract contexts
such as human activities, situations, and events. The accel-
eration sensor nodes in these systems must have higher data
processing capability than other sensor nodes.
On the other hand, attachable sensor nodes have poor

calculation capabilities and battery capacities because they
must be small and low in cost. In other words, acceleration
sensor nodes must have sophisticated processing capabilities
with small resources. To satisfy these requirements, we must
develop a processing method for reducing processing costs.

2



3.2 System Requirements
We discuss the requirements of this method for processing

acceleration data on a small sensor node.

3.2.1 Application System Requirements

• Simple description
Application systems are used by many people, some of
whom do not have experience con�guring sensor nodes.
Therefore, sensor node programs should be simple and
brief.

• Recon�gurable
In the example application system, sensor node pro-
grams may be di�erent for each node due to the pro-
vided services or their locations. The application sys-
tem should change the method for processing sensor
data of each node for each purpose. For example, if a
user wants to add a new event for detection, the pro-
gram for processing the data on the sensor nodes must
be rewritten in a routine. The features of the sensor
data are di�erent for each attached node. Moreover,
each node has di�erent hardware features so that we
must give individual settings for each node. Since sen-
sor nodes often need recon�guration, they require a
large recon�guration costs. To adapt the processing
method to frequently changing situations, it is neces-
sary to introduce a mechanism for rewriting programs
on a node without much communication and process-
ing cost.

3.2.2 Acceleration Data Requirements

• Promptitude
Acceleration data have di�erent features from other
types of sensor data, for example, high frequency sam-
pling, volatility of data, and independence of data.
Therefore, acceleration sensor nodes need high frequency
sensing and rapid response. For example, to track such
human motions as walking and running, the nodes
must sense the acceleration data of the person's body
between 10-100 Hz. On the other hand, temperature
and light are sampled up to 10 Hz. If an alert system
detects such anomalous events as collisions or products
falling in a factory, the system must respond rapidly
until a person comes to help.

• Low communication cost
In general, the amount of acceleration data is larger
than other sensing data because the acceleration sensor
must obtain data to trace a motion at a high frequency.
If a node sends all obtained data to the host com-
puter via a wireless network, the amount of data sent
from a number of nodes may exceed the capacity of the
wireless network because a small sensor node has only
a low band-rate wireless communication device. To
avoid such situations, acceleration sensor nodes must
reduce their transmitted data; that is, sensor nodes
must only send the necessary data. Thus, acceleration
data should be processed on the sensor nodes. How-
ever, processing must be simple, because sensor nodes
have a small amount of resources.

3.3 Our Approach
We propose an acceleration data processing engine that

satis�es the above four requirements for small acceleration
sensor nodes. We brie�y show how to satisfy these require-
ments with this engine. For a simple description, we adapt
a rule-based language to process sensor data. Our engine
uses an If-Then rule that consists of conditions and actions.
The condition of the rules is based on acceleration data. If
a condition is implemented, a corresponding action is exe-
cuted. Using rule-based language, we can rewrite the sensor
node program. To add or delete rules, application systems
quickly change the operation of sensor nodes and reduce the
communication cost of recon�guration. For promptitude,
we adapt threshold comparisons for determining the condi-
tions, which are described as feature values: instantaneous
value, average value, sum of deviation, derivative value, and
number of counters. By event-driven operating to process
the rules based on acceleration data, sensor nodes reduce
communication costs. Most sensor nodes only send context
information as a short piece of text data to a host computer,
not long raw sensor data.

4. RULE ENGINE
FOR ACCELERATION DATA

4.1 Rule Engine Design
Since both sensing acceleration and processing data are el-

ementary tasks on sensor nodes, an engine must have their
tasks before every evaluation process cycle. To operate sen-
sor nodes at accurate intervals, the engine uses a hardware
timer for sensing in a cycle. In other words, since the hard-
ware timer announces when the next cycle starts after pro-
cessing all rules, the engine periodically operates the pro-
cesses on a sensor node. The engine processes the stored
rules in order. By having several rules, the sensor nodes op-
erate for several situations. The engine allows combinations
of conditions or actions for rule �exibility.

4.2 The Processing Flow
Figure 2 shows the essential processing �ow of our de-

signed rule engine on a sensor node.

1. The engine obtains a piece of acceleration data from
the sensor device on the node before calculating the
feature values of the acceleration data as a preparation
for evaluating the conditions. The feature values are
used to recognize the motions, tilts, and states of the
sensor node.

2. The engine fetches rules one by one before comparing
the condition with extracted feature values in the pre-
vious step. If the engine �nds a matched condition
in a rule description with a feature values, the engine
checks the next rule. In another case, if the checked
condition is a combined condition, the engine fetches
each rule from the combined condition and evaluates
every fetched condition recursively.

3. If all fetched conditions are matched with the values,
the engine executes the action. The engine also checks
the rules one by one from the next rules from the �rst
one described rule to the end of the last.

4. The engine waits until there is an interruption from
the hardware timer when the engine has completely
evaluated the rules.

3



Processing of rule sets PreparationSTART
Evaluate it ENDYesNo

Obtain acceleration data
Processing of conditions

Evaluations completed
Finished processing all rule sets

Processing of actions
Executions completedFetch a condition Fetch an actionExecute it

Figure 2: System �owchart.

4.3 Conditions
Traditional systems capture motions or situations from

acceleration data to calculate average, variance, deviation,
FFT, and support vector machine (SVM) as feature values.
However, sensor nodes cannot calculate such sophisticated
processes as FFT and SVM in real time.
Our engine calculates the next three feature values of the

acceleration data for high-speed evaluation of the conditions
at the preparation. The engine simply calculate these fea-
ture values on the sensor nodes. The average shows tilts or
smooth sensor data. Variance is the available value for de-
tecting the presence of motion, but it cannot be calculated
rapidly using a low-cost MCU. The conditions of our rules
use a sum of deviation that resembles variance to detect the
presence of motion. The engine calculates an average and
a sum of deviation in the last ten samples. The sum of
deviation is the sum of the distances between the average
and each sample. To detect rapid motions such as an object
hits, the engine also uses a derivative value. In addition,
the engine uses four counter values (condition counters) to
describe continuous situations further to the feature values
for evaluation of the conditions. The engine increments and
resets the condition counters by executing an action. By
using the condition counters, we can describe the condition
of continuous situations: if a state occurs more than once,
the engine measures the number of occurrences. The engine
allows descriptions of conditions that regard a continuous
state as an event. Therefore, we can describe the condition
of an event starting where a state is continuously detected.
The engine evaluates conditions to compare the threshold
and feature values by simple processing.

4.4 Actions
The engine allows the execution of the next ten actions

by processing the rules for sensor nodes.
Sending acceleration data is a basic operation of sensor

nodes. This action sends raw acceleration data, feature val-
ues, and condition counters values. The engine must also
send acceleration data continuously when the host com-
puter requests for streaming data. To reduce communication
cost, the engine enables the context information that detects
events and situations of sensor nodes to be sent. Putting the
node to sleep is important to conserve the battery. In ad-
dition, the engine modify the sampling rate and sensibility
range for adapting to situations by executing actions. Port
outputs are used for indicator such as LED lights. The con-
dition counters are edited by action to increment and reset
for continuous situations. The engine also enables sending

15 00 10 bit5 bitflag
Action detailsAction ID00000：Send Acc. data               00001：Send Acc. data continuously00010：Send contexts                 00011： Sleep node00100：Output ports                    00101：Modify sampling rate00110：Modify sensitivity range   00111：Edit the condition counters01000：Check rules editing          01001: Send stored rules

15 01
Threshold valueFeature value000： Inst.001：Ave.010：Sum of dev.011：Der.100：Count.

8 bit1 bit2 bitflag
Axis/Counters00 : X / A01 : Y / B10 : Z / CH11 :  - / CL Compare sign0： <Th1： >Th

3 bit 1 bit
Continuous situation0： regard1： non regard

Condition description

Action description

Figure 3: Format of rule description.

9 0 9 0
09

9 0Transmission header
Send Acc. data：00000

Transmission header Context ID
Send contexts：00010

Td：Sleeping timeTd×10 ms
Sleep node：00011

Ts：Sampling timeTs×1 ms
Modify sampling rate：00101

Transmission data0000： 12bit Acc.(X,Y,Z)0001： Inst. (X,Y,Z)0010：Ave. (X,Y,Z)0011：Sum of dev.(X,Y,Z)0100：Der. (X,Y,Z)0101：All X-axis data0110：All Y-axis data0111：All Z-axis data1000：Counter value

9 0Transmission times
Send Acc. Data continuously：00001

Figure 4: Part of detail formats of action description.

of stored rules on sensor nodes and checking for the request
of rule editing from the host computer.

4.5 Rule Editing Mechanism
The engine runs the rule-editing mechanism to follow the

next four steps. First, a sensor node checks the request of
rule editing to send a code to a host computer as an action
or a routine in the engine processes. Second, after receiving
the code, the host computer sends the request and areas of
rule editing. Third, if the rules need to be edited, the sensor
node sends a request for rule forwarding. Finally, after rule
forwarding, the sensor node veri�es the rules by check sum
and sends a �nished message or a retransmission request.

4.6 Rule Description
The rules consist of combinations of conditions and ac-

tions. We use a binary rule that enable us to easily evaluate
conditions to compare the threshold value with feature val-
ues. The rules are described based on the formats of the
rule descriptions shown in Figures 3 and 4. The descrip-
tions of the conditions and actions are �xed-length two-byte
data. Users program multi-conditions and multi-actions us-
ing a most signi�cant bit(MSB) �ag. In fact, continuing
conditions that have MSB �ags are evaluated as �AND con-
ditions.� To program an �OR conditions,� a user should
describe each set of rules. Continuing actions are executed
for each action.
A description of a condition consists of �ve components:

kind of values, axis or kind of counter, sign, and regard of
continuous situation and threshold values. The threshold
value is an 8-bit abbreviated feature values or a value of the
condition counters. The feature values are calculated based

4



on the acceleration data at the preparation.
A description of an action consists of an action ID and a

con�guration of an action detail. Except for MSB, higher
6-bits are allocated for each action, and the lower 10-bits
show the con�guration of an action detail. Figure 4 shows
a detail part of the formats of the action description. The
con�guration of an action detail di�ers for each action. For
example, for an action that sends acceleration data, users
select the kind of data and sending the data to each axis.

5. EVALUATION
We experimentally evaluated the performance of our pro-

posed mechanism from the viewpoint of the four system re-
quirements. In the experiments, we attached the MoCoMi-
Chip to humans and objects. Table 1 lists the speci�cations
of our developed chip, and Table 2 lists the evaluation re-
sults. The engine detected events based on rule descriptions.
Figure 5 shows our chip attached to a pen, and Figure 6
shows the acceleration data obtained from the chip while
writing. The engine had rules that provided accurate de-
scriptions based on exploratory experiments. The size of a
transmission packet between the node and server was set to
15 bytes, and the payload was set to 8 bytes.

5.1 Simple Description
To evaluate the simpli�cation of operation description, we

compared the amount of code written with our description
language with the amount of code description in C language.
Because C language is the most popular language for pro-
gramming MCUs, we adapted a language to compare the
simpli�cations. Using the rule description, a rule is com-
posed of conditions and actions described as binary code
whose size is only two bytes. A set of rules is described as
four bytes in hex format. When we describe an operation to
detect an event, the rule description is 20% of the code de-
scribed in C language. It should be noted that C language
is used to describe the details of operation using calcula-
tions, control statements, and functions for sensor nodes.
For sensor node operations that only have cyclical routines,
however, our rule description is simpler to use than C lan-
guage.

5.2 Reconfigurable
We measured the time of the rule editing routine to test a

real-time recon�guration. In this experiment, our chip had
32 rules and edited eight and 16 rules into new rules. The
routine took 12.4 ms when eight rules were changed, and
14.5 ms when 16 rules were changed. This result suggests
that the engine edits the rules in the sampling cycle to sense
the motions of humans and objects. In the other words, the
engine changes the rules dynamically without pausing oper-
ation to installed sensor nodes in the example application.

5.3 Promptitude
To evaluate the promptitude, we measured the operation

time of our proposed engine. The operation times includes
both obtaining the sensor data and sending messages of
events as context codes to the server. To measure operation
time, we used a hardware timer on MCU in our chip. In this
experiment, the engine detects such events as opening and
closing a door, dropping a chip, writing, and a moving hu-
man. Table 2 lists the processing time results. In most cases,
the processing time was less than 2.5 ms. In other words,

Table 1: Speci�cations of MoCoMi-Chip.MCU 8051 compatible microcontrollerOperation frequency 16 MHzProgram memory 4 KBData memory 256 byteRadio transceiver nRF2401RF data rate 1 Mbps/250 KbpsCommunication distance approx. 25 mTechnical regulations conformity certif ication 2.4 GHz band wide-band low-power data communication system in JapanInterfaces UART, SPI, Digital I/O, PWMAcceleration full scale ±2 G/6 G  selectableAcceleration resolution 12 bitConsumption current Transmission： Typ.20 mA， Sleep： 4μAPower supply DC 3 to 9 VOverall size 20×20×3.9 ㎜Weight approx. 1 g
MoCoMi-ChipMCU & Transceiver nRF24E1

AntennaAcceleration sensor LIS3LV02DQ
[top view]

[bottom view]
Figure 5: MoCoMi-Chip mounted on a pen

Table 2: Evaluation resultsName of detected events Tx data[Byte] Amount of data rate Number of occurred events Processing time [ms] Number of rules Amount of codeIn C language[Byte]Transmit raw 3-axis acceleration data 75000 100 - - - -Start of free fall 150 0.2 10 2.47 7 138Fall to floor 585 0.78 39 2.49 12 294Spots on a dice 270 0.36 18 2.58 18 396Opening and closing a door 180 0.24 12 2.33 6 130Opening and closing a drawer 180 0.24 12 2.47 10 216Start of writing 1575 2.1 105 2.30 4 84Standing and sitting of human 435 0.58 29 2.38 8 169Human moving 2010 2.68 134 2.11 3 59Stop hand motions 240 0.32 16 2.30 4 88

-2-1
01
2

0 5 10 15 20time [sec]
Accelera
tion [G]

050100150200250

Sum of d
eviation [
-]

Average Sum of deviation

Detect Writing Detect Writing

Figure 6: Acceleration data in pen operation

5



the engine processed events of over 400 Hz. To recognize
human motions, an event detection system must generally
process detection between 10-100 Hz. Thus, the results in-
dicate that the engine has enough power to detect human
events in real time. In addition, we measured the processing
time of each part of the operation. The longest processing
time was transmission, which took 1.0 ms. Evaluating the
rule's condition required about 0.04 ms. To completely �n-
ish processing a cycle, we must strictly describe the rule and
reduce the number of events found within a process cycle.
This technique enables us to reduce the processing time, al-
though it increases the number of rules described in a sensor
node.

5.4 Low Communication Cost
To evaluate the communication cost, we experimentally

measured the amount of data sent from a sensor node to the
server computer. We measured the amount of transmission
data by transmitting event context codes and raw three-axes
acceleration data to evaluate the communication cost. For
the settings, our chip contains rules for detecting the start
of each event; an event occurs 10 times per 100 seconds.
Table 2 lists the results of this experiment. The amount
of transmission data was less than 2,000 bytes when our
proposed engine transmitted the context codes of an event.
On the other hand, for transmitting raw three-axes acceler-
ation data within 100 seconds, the amount of transmission
data was 75,000 bytes. This result indicates that our en-
gine reduces communication cost by one hundredth of the
transmission data. Therefore, we believe our engine saves
more power of the sensor-node power than the conventional
transmission method.

5.5 Discussion
We detected the events of humans and object motions

using our proposed engine. However, it could not detect
complex situations such as human activities because the en-
gine uses feature values calculated by simple processing. To
detect complex situations, we must con�gure the rules to
transmit acceleration data when a motion occurs and cal-
culate them on a host computer, as in traditional systems.
Therefore, an system that combines our proposed engine for
sensor nodes and host processing conserves battery power of
sensor nodes and reduces communication costs.
We implemented our engine to our chip on an Intel 8051

compatible MCU. The program size of the engine was 4 KB.
Therefore, we can implement it on most conventional sensor
nodes because they have more resources than our chip.

6. CONCLUSION
In this paper, we proposed and designed a rule engine to

process acceleration data on small sensor nodes. We devel-
oped an acceleration sensor node called MoCoMi-Chip and
evaluated the performance of the engine with a node from
the viewpoint of the four system requirements. Evaluation
results show that the engine satis�es the four requirements.
In the future, we plan to develop a system that easily de-
scribes and generates rules. We also plan to develop a rule
engine that processes other sensor data.

7. ACKNOWLEDGMENTS
This research was partially supported by the Ministry of

Education, Science, Sports and Culture, Grant-in-Aid for

Scienti�c Research on Priority Areas, 19024056, 2007 and
Scienti�c Research (A), 20240009, 2008.

8. REFERENCES
[1] Beigl, M., Krohn, A., Zimmer, T. and Decker, C.:

Typical Sensors needed in Ubiquitous and Pervasive
Computing, In Proc. of INSS 2004, pp. 153�158
(2004).

[2] Beigl, M., Gellersen, H.-W. and Schmidt, A.:
Mediacups: Experience with Design and Use of
Computer-Augmented Everyday Artefacts, Computer
Networks, vol.35, No.4, pp.401�409 (2001).

[3] Decker, C., Beigl, M., Eames, A. and Kubach, U.:
DigiClip: Activating Physical Documents, In Proc. of
the Intl. Conf. on Distributed Computing Systems
Workshops (ICDCSW'04), pp.388�393 (2004).

[4] Kawahara, Y., Kurasawa, H. and Morikawa, H.:
Recognizing User Context Using Mobile Handsets
with Acceleration Sensor, In Proc. of the IEEE Intl.
Conf. on Portable Information Devices (IEEE
Portable 2007) (2007).

[5] Madden, S., Franklin, M., Hellerstein, J. and Hong,
W.: TinyDB: an Acquisitional Query Processing
System for Sensor Networks, ACM Tran. on Database
Systems, Vol.30, No.1, pp.122�173 (2005).

[6] Kulkarni, S., Wang, L.: MNP: Multihop Network
Reprogramming Service for Sensor Networks, In Proc.
of the IEEE Intl. Conf. on Distributed Computing
Systems, pp. 7�16 (2005).

[7] Crossbow Technology, inc.
http://www.xbow.com/.

[8] Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P.,
Beigl, M. and Gellersen, H.-W.: Smart-Its Friends: A
Technique for Users to Easily Establish Connections
between Smart Artefacts, In Proc. of the Intl. Conf.
on Ubiquitous Computing (UbiComp 2001), pp.
116�122 (2001).

[9] Terada, T., Tsukamoto, M., Hayakawa, K., Yoshihisa,
T., Kishino, Y., Nishio, S. and Kashitani, A.:
Ubiquitous Chip: a Rule-based I/O Control Device for
Ubiquitous Computing, In Proc. of the Intl. Conf. on
Pervasive Computing (Pervasive 2004), pp. 238�253
(2004).

[10] Koizumi, K., Sakakibara, H., Iwai, M. and Tokuda, H.:
A Context-Oriented Application Switching Mechanism
for Daily Life Supports, the Intl. Conf. on Ubiquitous
Computing (UbiComp 2005), Poster Session (2005).

6


