Location Traceability of Users in Location-based Services

Yutaka Yanagisawa'

Hidetoshi Kido'T

Tetsuji Satoh!f

TNTT Communication Science Laboratories, NTT Corporation
1T Graduate School of Information Science and Technology, Osaka University

yutaka@cslab.kecl.ntt.co.jp

Abstract

In this paper, we introduce Location Traceability as
an indicator to evaluate time-series location privacy for
users in location-based services (LBS), because recently
guaranteeing location privacy has become one of the
most significant issues in LBSes.

Although evaluating the location privacy of moving
users is important, we previously proposed a technique
that focused on the location privacy of users who do not
move but stay in one place. Therefore, we introduce
Location Traceability as an indicator to evaluate the
location privacy of dynamically moving users. The lo-
cation traceability of a user is calculated from a formal-
1zed tree structure, which represents all possible paths
of the moving user. As a result of simulation exper-
iments, we validated the effectiveness of this method.

1. Introduction

In recent years, based on developments in sensing
technology, we can obtain highly accurate trajecto-
ries of moving objects using positioning devices such
as GPS receivers [2] Moreover, these obtained position
data are used in various types of location-based services
(LBS). For example, a navigation system is a typical
LBS system using position data. A traffic information
system, such as VICS [6], provides drivers with traf-
fic information on city streets for avoiding traffic jams.
LBSes offer beneficial location information based on
user positions.

On the other hand, protecting user location privacy
is one significant problem in LBSes. Protecting loca-
tion privacy means preventing observers from specify-
ing a user position at a current or past time [5]. To ob-
tain location information around a users, the user must
transfer data including position p = (, y, t) of the user
to the system. In this manner, once the system re-
ceives user positions, a system manager can store data
and freely extract patterns from them. When wish-

h-kido@ist.osaka-u.ac.jp

satoh.tetsuji@lab.ntt.co.jp

ing to delete stored position data, the user can ask the
manager to delete them, but generally the user can-
not directly do so. In other words, users must trust
managers to protect location privacy; however, some-
times dishonest system managers disclose personal user
data. To avoid this problem, it is necessary to intro-
duce a mechanism that independently protects location
privacy from dishonest system managers.

Therefore, we previously proposed a dummy-based
anonymous communication mechanism for LBSes [3,
4]. In our proposed mechanism, when users transfer
true position p; to a system, they mix it with many
false positions pg1,Pgz - - -, Pan called dummies without
any marks on the true data. Even if an observer tries
to track a user, the numerous dummies confuse the
observer by camouflaging the true position of the user.
In this study, we also discussed indicators to estimate
the performance of our proposed mechanism[3] using
dummies. Our indicator is an extension of k-anonymity
[5], one of the most popular indicators for estimating
user privacy in databases.

To estimate user location privacy on non-tracking
LBSes in which users transfer their positions only once
to a server, we defined two extended location indica-
tors of k-anonymity on the user’s position data: "Ubig-
uity’ and ’Congestion.” These indicators are suitable
for estimating the performance of the communication
mechanisms of the location privacy of users in non-
tracking LBSes; however, a tracking LBS raises an-
other invasion of privacy issue problem. In tracking
LBSes, in contrast to non-tracking LBSes, users con-
tinuously and frequently transfer their positions to a
server. Frequent position transferring allows observers
(for example, dishonest system managers) to minutely
track the past positions of a user. Since past posi-
tions include much more private user information than
a position transferred only once, tracking LBSes are a
stronger threat to invade the location privacy of users
than non-tracking LBSes.

Therefore, in this paper, we discuss an indicator to

estimate location privacy in tracking LBSes and pro-
pose an extended dummy-based mechanism to protect

location privacy.

We call this indicator “Location Traceability” (LT).
LT focuses on two factors: the “path length” of the
period or distance that users are moving and the pos-
sibility of distinguishing user positions. The LT value
is calculated by using a “location traceable tree” (LT-
tree), which we construct using the position data of
users. The length of the edges of an LT-tree denotes
the length of a path of time or distance in which users
are moving. The number of edges at a node of an
LT-tree offers a possible way to specify user positions.
Intuitively, while the value of LT is high, the safety of
a user is strongly protected.

On the other hands, we also present an extended
dummy-based mechanism adapted to tracking LBSes,
and the mechanism let dummies move such that the
trajectories of dummies frequently cross each other and
the user’s trajectories. In this paper, we explain the
mechanism to move dummies naturally on the road
map from user’s trajectory.

Moreover, we conducted experiments to evaluate our
proposed mechanism using our implemented simulation
system. In the experiments, we used several types of
real road networks and several typical user trajectories.
The simulation system calculated the Location Trace-
ability of our proposed algorithms of dummies moving
using road networks and the given trajectories. As a
result of the experiments, we concluded that our pro-
posed mechanism can protect the location privacy of
users in tracking LBSes. This paper describes the de-
tailed results of experiments with the implementation
of the simulation system.

The rest of our paper is organized as follows. In
Section 2, we discuss how to estimate the location pri-
vacy of tracking LBS. Section 3 describes a method to
construct LT-trees from position data. Furthermore,
we explain a method to calculate LT from the LT-tree
in Section 4. In Section 5, we explain dummy-based
mechanisms to protect location privacy, and Section 6
shows simulation experiments.

2. Location privacy for an LBS

LBS is a service that provides users with geographic
information by using position data obtained from GPS.
Although an LBS is a useful service, position data
stored in an LBS may invade user privacy. This prob-
lem is called invasion of location privacy. Beresford
and Stajano argue that a system storing position data
often invades location privacy [1]. For preventing the
invasion of privacy, it is necessary to consider mech-
anisms to protect location privacy. To solve this in-
vasion problem, we present two methods: protection
and evaluation of location privacy. In this section, we
explain the mechanism of a LBS and our anonymous
communication technique and discuss methods to eval-
uate location privacy.

Service
p

rovider © (0Je)

° 0o

N] I./ QQ Ry 2

O QF(';Q -

dsaa |

i e

- : "i J—b

(a) A normal LBS | ® (b) An anonymous LBS
using dummies

2

S

: i el
G P
e - e R

o
i i

Figure 1. Location-based services

2.1. LBS and protection of location privacy

Figure 1 shows an example of the LBS service pro-
cess. In this example, after user (a) sends both a user
ID and position data to a service provider, the user re-
ceives service data corresponding to the position. Al-
though the user ID includes information about who
uses the service, anonymizing the user ID is difficult
because it requires a toll to the identified user. On
the other hand, the service provider can find a posi-
tion and a time for the user from the received position
data. It’s highly unlikely that observers can invade lo-
cation privacy from the position data only. However, if
observers can obtain both position data and personal
information, position data may allow an invasion of lo-
cation privacy.

To avoid this problem, we proposed a technique in
which users send several false position data (dummies)
along with true position data [3], as explained using
Figure 1 where another user (b) sends several dum-
mies with its own position data to a service provider.
The service provider replies with all service data in
response to receiving all position data. The user re-
ceives the service data and selects only the necessary
data by using its own position data, which it previously
memorized. In this technique, the service provider can-
not distinguish true position data from the dummies.
Therefore, the user can obtain the service without re-
vealing its true position. Moreover, in [3], we proposed
algorithms that allow dummies to move naturally.

2.2. Evaluation of location privacy

For evaluating location privacy for LBS, in [3] we
also proposed ”Ubiquity,” defined as a quantifier rep-
resented as the degree of scatter of a user and dum-
mies at one time. If the user and dummies are spread
widely over the entire area, it is extremely difficult for
observers to specify the user’s location. In this case,
the Ubiquity value is high.

However, Ubiquity is not powerful enough to ade-
quately evaluate location privacy. Ubiquity can only
evaluate the location privacy of non-moving users, not

‘BE A hospital

numl

gﬂ A hospital
Crm===1]

You can find the
location of the home!

(a) (b)

Figure 2. Example of crossing position data
in road navigation services

of moving users. Most users of practical LBS systems
frequently send position data to obtain the latest in-
formation. For example, a user of a navigation service
must continuously send position data to receive the lat-
est direction information about the user’s destination.
Thus, evaluating the location privacy of a moving user
is more important than evaluating a non-moving user.

Since a moving user risks being traced by observers
who monitor its position data, Ubiquity cannot eval-
uate the user’s location privacy. If a user frequently
sends position data, the sent position data construct
a trajectory, as shown in Figure 2(a). Such a trajec-
tory enables observers to easily find past position data,
a risk defined as location traceability. As explained
above, Ubiquity cannot evaluate location traceability.

Therefore, we must consider a new location pri-
vacy evaluation method for moving users. We call our
method that accomplishes this “Location Traceability”
(LT).

3. Location Traceable Tree (LT-tree)

In this section, we describe how to construct an LT-
tree from position data. For legibility, we denote ele-
ments (x,y) of the position data as a position. We also
denote a sequence of positions as a trajectory.

As a method to prevent observers from tracing a
location, we consider the crossing between a user’s tra-
jectory and dummy trajectories, since the crossing of
trajectories causes observers to confuse past user posi-
tions, as shown in Figure 2(b). Figure 2(b) illustrates
two trajectories leading to a hospital. Observers can-
not find the route of a user who goes to the hospital due
to the crossing of trajectories. Therefore, we introduce
a tree structure in which crossing is defined as a node.
We define the tree structure as a Location Traceable
Tree (LT-tree).

Before explaining LT-tree, we give the following
moving user assumptions in LBS.

1. Users move on a road network that consists of
roads and intersections.

2. A service provider cannot distinguish a user from
a dummy. For example, it assumes that a user and

Root node—,

4

EX T)

2

1

(b) (c) LT-tree
Figure 3. Construction of an LT-tree

a dummy enter the same intersection. Next, the
user and the dummy move in different directions.
In this case, the service provider cannot specify
the true position of the user.

An LT-tree is a weighted and directed tree that has
a root node, which is the most current position. The
root node is the top ancestor, and each node has at
least one edge. We explain LT-tree construction using
Figure 3.

Figure 3(a) shows a road map and the positions of
both a user and dummies. In (a), the number writ-
ten near a position shows time. When focusing on one
of the most current positions, as shown by an unfilled
square, the positions surrounded by dotted lines are
trajectory candidates of the focused data. The can-
didate positions sorted in order of time are shown in
Figure 3(b). An LT-tree shown in Figure 3(c) can be
created using (b). Because an LT-tree clearly shows
the crossing of trajectories, it can be effectively used
to discuss LT value.

Generally, an LT-tree has the following features:

1. For any position, we can construct a unique LT-
tree whose position is the root node.

2. When an LT-tree has few nodes and long edges,
observers can easily trace users.

3. If an LT-tree has numerous edges, observers do not
trace users at all. In this case, we define the LT
value of the LT-tree as zero. (Figure 4(a))

4. If an LT-tree has just one edge whose length is
infinity, observers can completely grasp all user
tracks. In this case, we define the LT of the LT-
tree as infinity. (Figure 4(b))

5. A node might have multiple parents (discussed be-
low).

Next, we explain how to determine the weights of
edges in LT-trees and focus on two elements: moving
period and moving distance. Two types of LT-trees
using these elements are defined as follows:

Time-based LT-tree We define the weights of edges
as the period during the movement between two
intersections. Users who stay at one place for a
long time have larger weights of edges than users
who visit many places.

A—-
infinity

Anuyur

Iln 2n Z\‘ b/ N

(e) ()

n
(€3]

it

Figure 4. Examples of LT-trees

(@) (b) © @

Distance-based LT-tree We define weights of edges
as the distance that a user moves between two in-
tersections. In an LT-tree using this distance, a
user who visits many places has larger weights of
edges than a user who seldom moves.

4. Location Traceability (LT)

In this section, we explain how to calculate LT value
by using an LT-tree.

4.1. Relationship between LT and LT-tree

First, we describe the relationship between the
shape of an LT-tree and the LT of a user.

Figure 4 shows examples of LT-trees. Figure 4(a)
shows the LT-tree of the safest user. In this LT-tree,
an observer cannot specify the past positions of the
user. On the other hand, Figure 4(b) shows the LT-
tree of the most at-risk user. In this LT-tree, observers
can trace positions during past infinite periods. The
LT-tree shown in Figure 4(c) (notated as (c)) and the
LT-tree shown in Figure 4(d) (notated as (d)) have just
one edge whose weights are n and 2n. The difference in
weights shows that the value of the LT of (d) is twice as
large as (c). (e) has two edges whose weights are n. In
this case, we define the value of the LT of (e) as half as
large as (c). Similarly, the LT value of (f) is one third
as large as (c). Based on the above discussion, the LT
value of any complicated LT-tree can also be calculated
because complicated LT-trees also consist of edges and
nodes.

4.2. Calculation processes of LT value

We describe the LT definition in detail by using an
LT-tree. We denote the LT value of node x as 7,,. When
node x is a root node, we denote its value as 7.

First, we define the 7,;; of the LT-tree shown in Fig-
ure 4(a) as zero and the 7,y of an LT-tree shown in
Figure 4(b) as infinity. Then, the 7, of all LT-trees

7&% "R
Iy Qi
) WA\
Clpy Cl
(@ (b)

Ql
a

©

is between zero and infinity (0 < 7 < 00). When an
LT-tree has just one edge, we define 7,;; as the weight
of edge I (tqu =1).

Next, when an LT-tree has a node with multiple
downward edges, we recursively integrate the edges
from the leaves of the LT-tree. Figure 4(g) shows an
example of the integration of edges. In this figure, n
means the number of edges, and l,1, [0, -, lzn means
the weights of edges. When each edge has the same
weight, we define 7, as follows:

Figure 5. Division of nodes

zﬂ:zmgz-.-:zmzkﬁrzzg (1)

On the other hand, when the weights of the edges are
not the same, we calculate 7, using one of the following
two expressions:

Te = (Z lrk)/n27 (2)

o

In expression (2), 7, is the value that divides the
summation of the weights of all edges by the second
power of the number of edges. Expression (3) is the
same calculation of combined parallel electric resis-
tances. Both expressions satisfy expression (1). When
the difference in weights of the edges is large, the value
of expression (3) is smaller than the value of expres-
sion (2). We denote the integration of edges using ex-
pression (2) as simple integration and the integration
of edges using expression (3) as resistance integration.
Because of the recursive integration of edges, we can
calculate 74, as shown in Figure 4(h).

Because multiple trajectories often cross each other,
a node of an LT-tree might have multiple parent nodes.
In this case, we have to divide the node to integrate
edges, as shown in Figure 5. In Figure 4(a), node R has
two parents: P and). However, we cannot integrate
edges belonging to node P,Q. For the integration of
such edges, we propose a method to divide R into two
nodes, as shown in Figure 5(b). Because the 74 of (a)
is larger than (c), we multiply all edges connected to
R by constant C(> 1). After the division of a node is
complete, we can integrate the edges.

Kyoto graph

Suita graph

Figure 6. Examples of road graphs

(@) 6=16,,6,.6,,6,}

(b) Random walk (c) Direction control

Figure 7. Random walk and direction control

5. Dummy control methods for tracking
LBS

In tracking LBSes, the set of position data of a user
illustrates a sequence line called a trajectory, as shown
in Figure 2. In our proposal, anonymous communi-
cation technique, when a user generates dummies at
random positions, they do not configure the trajectory.
This allows an observer to determine whether position
data are true or false. To avoid this, we must con-
trol the positions where dummies are generated. In
this section, we propose three dummy control methods
to reduce the location traceability of users: random
walk, direction control, and collaborative direction con-
trol. For simplification, we assumed that an LBS user
moves on a graph that consists of edges and nodes, as
shown in Figure 6. An edge represents a road, and
a node represents an intersection. The user generates
dummies on the graph.

5.1. Random walk
A user must generate dummies so that they cannot

be distinguished from true position data. Generally
speaking, the distance each user can move in a fixed

time is limited. Therefore, we estimate a dummy gen-
eration position by using the previous dummy genera-
tion position. First, we propose the following symbols,
P, (t) and V,(¢).

P,(t) = (z,y) : position (x,y) of dummy n in time
t(t=0,1,2,...,m)

Vo(t) = (Vp,,,V,,) : displacement value of dummy
n among [t — 1,1]

In the case of ¢ = 0, a user generates several dum-
mies on nodes chosen at random. The velocity at which
a dummy moves is v, identical to the velocity in which
a user moves. Therefore,

Vo) =/ (Va,)?+, (Vy,)? = v. (4)

When P, (t) is on an edge, the position of the next
dummy P, (t + 1) is decided by the following formula,
unless the distance between P,(t) and P,(t + 1) is
shorter than the distance between P, (t) and the node
for which dummy 7 heads.

Po(t+1) = P,(t) + Vu(t) (t>1). (5)

If dummy n arrives at a node, P, (¢t + 1) is the position
of the node. We do not consider cases where ¢ = 0
because we assume that dummies are generated on one
of the nodes in ¢ = 0.

Next, when P, (t) is on a node, the position of the
next dummy P, (t + 1) is decided by the following for-
mula:

P, (t) 4+ |Va(t)|(cos 0, sin 9)
(move to another node) (6)
P, (t) (stop at the node)

Py(t+1)=

Symbol 6 represents one of the angles of the edges
connecting a node, as shown in Figure 7(a). In the
case of Figure 7(a), 6 takes four values: (61, 03,03, 0,).
Again, values 0 are chosen randomly. Therefore, when
arriving at a node, a user chooses an edge without
reference to the direction from which the dummy ap-
proaches, as shown in Figure 7(b). We denote this
method as random walk.

5.2. Direction control

In the random walk algorithm, the movement of a
dummy is not natural because it moves too randomly.
Because a user needs to generate natural movement
for dummies, we propose another algorithm based on
the behavior of a real user. Generally speaking, when
a user arrives at an intersection, the user often goes
straight and rarely retreats. Therefore, we consider
the behavior of dummies on a node, that is, how to
determine value 0 of the random walk algorithm. We

The dummy d, stays because the user u, approaches.

The dummy d; goes to node C because of a
prediction that the user u; goes to node C.

Figure 8. Examples of collaborative direction
control method

propose the following algorithm to determine value 6.
We denote the angle that a dummy arrives at a node
as 0;, and the angle that a dummy leaves as 0,y;.

r An algorithm to determine value 6 —
i (150° < 3|0 — 0| < 210°)

{ 0out = {ome of 8} with a probability of 60 %}
else if (3|0 — 0;,] #£0°)

{0out = {one of 8} with a probability of 90%}
else {Oput = bin }

N J

Figure 7(c) shows the behavior of a dummy around
a node by using the algorithm. Figure 7 shows that the
dummy comes from the left side, often goes straight,
sometimes turns left or right, and rarely retreats. This
behavior resembles the behavior of a real user. We
denote the method as direction control.

5.3. Collaborative direction control

In the direction control algorithm, each dummy
moves independently. If dummies and the true user
cross each other, the user’s location traceability de-
creases. Therefore, we propose a method in which dum-
mies move so that they and the true user frequently
cross each other. The method is based on the direction
control method. We add the following two conditions
to the direction control method.

1. Predicting destination

The key idea of this condition is that a dummy
predicts the destination of another dummy. The
condition is defined as follows.

Predicting destination
4 &)

A dummy is on node X. A user is on node
Y, which is two hops away from node X. The
user comes from node Z.

In this case, if node U is one hop away from
both nodes X and Y, and node Y is between
node U and node Z, the dummy goes to node

W)

We explain this condition using Figure 8. In Fig-
ure 8, symbols A, B, C, D, E, andF' show nodes at
the white squares, w1, us show the true user or a
dummy at the black circles, and dy, ds show dum-
mies illustrated at the black circles. User u; on
node B comes from node A. Dummy d; is on node
D. In this case, dummy d; goes to node C because
of the prediction that user u; goes to node C.

2. Waiting for approaching user
The condition’s key idea is that a dummy waits for
the approaching user. This condition is defined as
follows.

e Waiting for approaching user —

A dummy is on node I. A user is on an edge

that connects to node I. Symbol r shows the

accuracy of position data.

In this case, if the user approaches node I and

the distance between the user and the dummy

is between r and 27, the dummy stays at node

L.
N J
We also explain the condition using Figure 8, in
which dummy ds stops at node F because another
user uy approaches node F.

The above two conditions create a chance for a cross-
ing between a dummy and the true user or another
dummy. Moreover, because the movement of each
dummy only slightly changes, the dummy rarely moves
along with the true user. As a result, the user’s loca-
tion traceability decreases. We denote this method as
collaborative direction control.

6. Experiments

To evaluate LT validity, we implemented a simula-
tor. In this section, we describe the experiments con-
ducted using the implemented simulator.

6.1. Simulation environment

To validate the effectiveness of our proposed tech-
nique for tracking LBS, we implemented another simu-
lator. Figure 9 illustrates a user interface of the simu-
lator, which can load a graph that has edges and nodes,

~Generate

Number |10 3 Initializz
(i Time [0=] ¥ Display
Velocity [25 =] [Fixed

[Trace 52 Generation

N
0 /2 =] Cale. LT
Gonbine Rangs [10 =

Clsr | Debus | dvs |

,_— Distance:0 Copy
Display area
LTof No [T

Time:7.122109375
Distance: 146 500390625 27

Figure 9. User interface of our implemented
simulator for tracking LBS

as shown in Figure 6. The simulator can also load the
position data of a user moving on the graph. Moreover,
the simulator can generate dummies that also move on
the graph. Our proposed dummy control methods de-
termine dummy behavior. When users or dummies A
and B come close within a fixed distance, the simula-
tor recognizes that they are crossing. The simulator
generates an LT-tree from the crossing data and then
calculates location traceability by using the LT-tree.

In this experiment, we set up the following parame-
ters and data:

Graphs Kyoto, USJ, and Suita (shown
in Figure 6)

Dummy control Random walk, Direction con-

methods trol, Collaborative direction

control
Distance users are 5,10,15,20 (default: 10)
crossing
LT-tree type

Integration type

Time-based LT-tree
Simple integration

Velocity of users 3or 4 km/h
Number of dummies : 1~ 14,
Data gathering time : 100,

6.2. Results

Figure 10 shows the values of location traceability in
each dummy control method. The X axis in Figure 10
shows the number of dummies, and the Y axis shows
the values of location traceability (74;). We use the
Kyoto graph. As shown in Figure 10, to halve location
traceability, a user needs eight dummies in the random
walk and direction control algorithms. In the case of
collaborative direction control, however, the user only

100 ~ T T T T T T T T T T T
A\ Random walk —+—
Direction control
80 Collaborative direction control ---*--- |
2
-
Q 60 - .
§ . e
~ * *\\\F
= —
*
.% 40 L . ,*\ —
o K .. S
S .
%
20 K-y
O 1 1 1 1 1 1 1 1 1 1 1

1 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of dummies

Figure 10. Location traceability values by
dummy control methods

needs six dummies. Therefore, the tracing algorithm
improves the effect of reducing location traceability.
The reducing rate of location traceability is shown as
Figure 11. The X axis shows the number of dummies,
and the Y axis shows the reducing rates (%). The
following formula calculates the reducing rates:

(reducing rates) =

(100 _ (random walk) or (direction control)> 100

(7)
This figure shows that when the number of dummies
is large, the reducing rate is also high. In particu-
lar, when there are more than six dummies, the re-
ducing rate is more than 20Therefore, the collaborative
direction control method improves location traceability
more than the other two algorithms.

Figure 12 shows the values of location traceability
in each graph. The dummy control method is collabo-
rative direction control. In the USJ (Universal Studio
Japan) and Suita campus of Osaka Univ. graphs, we
investigate the location traceability of two types of user
movements. User ‘USJ-1’ moves throughout the entire
network, while user ‘USJ-2" moves only in a compli-
cated section. User ‘Suita-1’ stops frequently, but user
‘Suita-2’ stops infrequently. This figure shows that the
location traceability of users ‘Kyoto’ and ‘USJ-2’ is
lower than other users because the Kyoto graph has
more nodes than the other graphs. Dummies are dis-
tributed throughout the entire graph, unlike user ‘USJ-
2.” Therefore, we found that the complexity of graphs
or the behavior of users directly effects the values of
location traceability.

Figure 13 shows the values of location traceability
for each distance at which users cross each other. Here
we use the Kyoto graph. The dummy control method

(collaborative direction control)

50 T T T T T T T T T T T T
Random walk / Collaborative DC —+—
Direction control / Collaborative DC
40 s
30 ~

Reducing rate (%)

20 | // .

H
0

| 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 45 6 7 8 9 10 11 12 13 14
Number of dummies

Figure 11. Reducing location traceability rate
in each dummy control method

is collaborative direction control. This figure shows that
when the distance is longer, values of location traceabil-
ity are larger, but the difference between the values is
not so large.

As aresult, we conclude that our proposed technique
strongly protects the location privacy of users in an
LBS.

7. Conclusion

In this paper, we proposed a method to protect the
location privacy of continuously moving users in track-
ing LBSes. We described how to create location trace-
able trees needed for the proposed method. As a result
of simulation experiments, we validated the effective-
ness of this method, moreover, we proposed a genera-
tion algorithm for dummies. In future, we will imple-
ment our mechnisms to the real LBSes to evaluate the
performance of our proposed mechanisms.

References

[1] A. R. Beresford and F. Stajano. Mix zones: User pri-
vacy in location-aware services. In Proceedings of Sec-
ond IEEE Annual Conference on Pervasive Computing
and Communications Workshops, pages 127-131, Mar.
2004.

[2] 1. Getting. The global positioning system. In IEEE
Spectrum, volume 30, pages 36—47, December 1993.

[3] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous
communication technique using dummies for location-
based services. In Proceedings of IEEE International
Conference on Pervasive Services 2005 (ICPS52005),
pages 8897, July 2005.

100

P (o] ©
o o o

Location Traceability

N
o

01 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of dummies

Figure 12. Location traceability values in each
graph

Location Traceability

T R R
01 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of dummies

Figure 13. Location traceability values for
each distance at which users cross

[4] H. Kido, Y. Yanagisawa, and T. Satoh. Protection of
location privacy using dummies for location-based ser-
vices. In Proceedings of the International Special Work-
shop on Databases For Next Generation Researchers
(SWOD2005), pages 118-122, Apr. 2005.

[5] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforce-
ment through generalization and suppression. In the
IEEE Symposium on Research in Security and Privacy,
May 1998.

[6] VICS. http://www.vics.or.jp/english/.

