
Contact-based Notation for Describing Rules on Sensor Nodes

Takeshi Kanda† Yutaka Yanagisawa‡ Michita Imai†

Yasue Kishino‡ Takuya Maekawa‡ Takeshi Okadome‡

†Graduate School of Science and Technology, Keio University
{takeshi,michita}@ayu.ics.keio.ac.jp

‡NTT Communication Science Laboratories
{yasue,yutaka,maekawa}@kecl.cslab.ntt.co.jp, houmi @idea.brl.ntt.co.jp

Abstract

In a ubiquitous computing environment, small comput-
ers attached to physical objects are required to send sensor
data to many other nodes on a narrowband wireless net-
work to provide various types of context-aware services.

To reduce the cost of sending sensor data, this paper pro-
poses a notation to indicate a pair of objects to share data
with each other, based on the ’contact’ relation between ob-
jects. We call this notation, contact-based notation (CbN).
In our method, because each node can send data only to
nodes contacting the node physically based on the nota-
tion, we can reduce both the distance between nodes and
the amount of nodes to which to send data.

Moreover, this paper describes an experiment conducted
to examine the communication costs on each sensor node
described in our proposed notation. The results show that
the cost of our method is lower than the cost of the simple
broadcasting method.

1. INTRODUCTION

In an indoor ubiquitous computing environment, small
sensor nodes will be embedded into a large number of ob-
jects in the real world. Each sensor node obtains events
related to the object by inference from the sensory data. In
this inference process, a node often shares sensor data with
other nodes to extract complicated events related to several
objects. To share data, in general, a node communicates
with another node using a wireless network. Although each
node has only a small battery, the process of communication
expends much battery power. An increase in the communi-
cation cost reduces the battery life of each sensor node.

In existing sensor network systems for indoor environ-
ments, each node searches for nodes with which to share

sensor data based on broadcasting. For example, when a
’chest’ node must check the situation of items included only
in the chest, the node broadcasts a message to all nodes
around the chest even if the nodes are not inside of the chest.
If most nodes are outside of the chest, the broadcasted mes-
sage incurs much useless communication cost.

To reduce such redundant costs of communication in a
sensor network, we introduce a method to limit pairs of ob-
jects that communicate with each other based on the ’con-
tact’ relations between objects. Our method has the follow-
ing two advantages:

1. Reducing the distance between a pair of nodes to com-
municate with.

In our method, nodeA can share its data with only
nodesA0, . . . , An, which are physically contacting
nodeA. Our limitation can reduce the communication
cost because the distance between contacting nodes is
quite short. When nodeA should send data to a dis-
tant nodeB, nodeA can send data recursively through
nodesC0, . . . , Cn betweenA andB, whereA is con-
tactingC0, C0 is contactingC1, andCn is contacting
B.

2. Pointing the nodes to send data without ambiguity.

Because contacting is a strictly physical relation be-
tween objects, we can indicate a pair of nodes to share
data without ambiguity. For example, in a description
”If a book is put near a fire, the system makes an alert,”
the relation ’near’ has ambiguity in each situation. So
the user must define the ’near’ relation for each ser-
vice. On the other hand, the physical ’contacting’ re-
lation can be strictly defined in any situation as long
as each object is not transformable, i.e., it is not a liq-
uid but a solid object. We consider that this strictness
guarantees the quality of the services.

Figure 1. Group Estimation

In this paper, we explain logic-based ’contact-based no-
tation’ to indicate a pair of nodes to share sensor data using
the physical contact relation. Since the logic languages are
one of the most available types of programming languages
to describe event-driven application services with short de-
scription, this paper describes how to introduce our notation
into a logic language. We consider, however, our proposed
contact-based notation can be introduced into another lan-
guage, for example, a functional language and an object-
oriented language.

After definition of our notation, we show an experiment
to evaluate the reduction of communication cost in our im-
plemented simulator. In this experiment, we compare the
cost of our method with the cost of the broadcasting method
using several typical arrangement patterns of many nodes.
As a result, our method can reduce the communication cost
in all cases.

2. APPROACH

This work focused on sensor nodes embedded in a num-
ber of objects in the physical world. An application devel-
oper must describe rules to extract events using a sensor
node as a smart object. By sharing data with nearby smart
objects, each smart object infers its surrounding situation.

Our goal is reduction of the communication cost for shar-
ing sensor data among sensor nodes to infer the situation
and events occurring in the real world. To achieve this goal,
we introduce the contact-based notation to indicate a pair of
objects to share sensor data with each other. The contact-
based method can reduce the cost of communicating data
between a pair of sensor nodes, however, we must con-
sider how to describe the contact-based notation in prac-
tical application systems.Before considering the reduction
technique, we must discuss the requirements of application
systems and how to describe rules using CbN to satisfy the
requirements.

The rest of this section illustrates particular applications
that utilize smart objects before enumerating the detailed
requirements in describing rules.

2.1. Studied Applications

1. Group Estimation

In group estimation, smart agents detect a pre-defined
combination of things based on their spatial relations.
For example, at a banquet, a waiter puts several dishes
on a tray to serve guests. Each tray has a different role
that corresponds to the kind of dishes stacked on it.
Figure 1 illustrates the different roles of a tray. A tray
must be able to handle the information about the dishes
on it to decide its role.

2. Sorting Support

In a retail shop, a lack of commodities typically de-
creases the amount of sales [5]. In sorting support,
smart objects detect the lack of commodities or a mis-
take in their ordering. Sorting support can be used
in a large bookstore where books are generally sorted
based on such categories as magazine, novel, and non-
fiction, as well as by author and edition.

3. Monitoring

In monitoring, smart objects check the physical situ-
ations and spatial relations of objects to inform us of
pre-defined situations. We can adopt monitoring ap-
plications for security guard services in living spaces
that can decrease the cost of the guard checking all sit-
uations. For example, when breakable objects are laid
on a slanted desk, the application informs the guard
that the situation is dangerous.

4. Automated Electric Appliances

By attaching a sensor node (and an actuator device) to
an electric appliance, it can automatically function cor-
responding to defined situations. An automated appli-
ance decreases the cost of operating it by hand. We as-
sume an intelligent lighting application that performs

Figure 2. Monitoring

different operations corresponding to objects present.
If a user puts a magazine or a notebook on the table,
the table lamp becomes well lit. If a user puts a beer
on the table, the table lamp is dimly lit.

2.2. Requirements

The above applications require the following abilities.

1. Recursive Notation based on Contact Relations
Group estimation needs to extract the situation where
dishes are stacked. Sorting support needs to extract the
order of books sequenced. We can express such situa-
tions with recursive notation based on contact relations
between objects (Figure 3).

Figure 3. Recursive notation based on con-
tact relations

2. Path Specification based on Contact Relations

In monitoring applications, for example, a smart object
often needs to extract situations from the data obtained
from objects that do not have direct contact with it. For
example, when a desk monitors an object in a box that
is placed on it, sensor nodes attached to the desk must
receive data from the object that is in the box and not

directly contacting the desk. To achieve such commu-
nication, the application must specify the path between
distant objects based on contact relations (Figure 4).

Figure 4. Path specification based on contact
relations

2.3. Solution

To fulfill the above goals and requirements, CbN adopts
contact relations between objects in the following way.

• Sharing data between objects in contact,which
achieves efficient communication between sensor
nodes while the application is running.

• Propagation of data through the path of objects in
contact,which achieves recursive notation and relative
path specification by sensor nodes.

3. FRAMEWORK

Figure 5 shows the framework of application develop-
ment on smart objects. In our framework, an applica-
tion developer uniformly writes rules on several objects
with contact-based notation (CbN). The distributor gener-
ates sub-rules on each object from CbN rules and sends
them to each sensor node. The distributor can automatically
generate sub-rules because each CbN rule clearly specifies
categories of smart objects. Each sensor node executes a
lightweight inference engine to follow the sub-rules. Sen-
sor nodes communicate with contacting sensor nodes and
share data with them.

Figure 5. Entire Framework

4. NOTATION

4.1. Overview

This section explains our proposed contact-based rule
notation (CbN), which enables smart objects to extract an
event cooperatively at low communication costs. Many re-
searchers have suggested several types of Agent Commu-
nication Languages (ACLs) that notate the communication
between intelligent agents.

Existing ACLs do not, however, provide the kind of no-
tation that can express the spatial relations between agents,
since most ACLs are used to describe communications be-
tween agents existing on the Internet. Therefore, existing
ACLs cannot describe a communication between smart ob-
jects in the real world.

We introduce CbN to describe inference rules and com-
munication rules on smart objects in the following way.

• CbN provides special predicates that express spatial re-
lations between contacting objects.

• CbN provides the transmission rules to send data ob-
tained by a smart object to a specified group of smart
objects.

4.2. Design

Basic Representation CbN’s basic logical model follows
first-order logic.

Each smart object is notated aso1, o2, . . . , on. Variables
are notated asx1, x2, . . ., while constants are notated as
A1, A2, A variable can be substituted by a character
string, a numerical number, or a smart object. Variables are
categorized into user variables, which a user can freely de-
fine, and reserved variables, which a system defines. We
explain reserved variables later. Variables and constants are
termed arguments and notated asX1, X2 A unit where
two arguments are combined with an arithmetic operator
+,− is also an argument. For example,A1 + A2 is an ar-
gument if bothA1 andA2 are arguments.

A predicate is notated asp(X1, X2, . . . , Xn), which is
termed an n-argument predicate. A predicate has a truth
value,true or false, which is determined corresponding to
the values of arguments. In this paper, we often abbreviate
the predicatep(X1, X2, . . . , Xn) top. CbN offers two types
of predicates: predicates that a user can freely define and
reserved predicates that the system automatically gives as
the truth value. We explain the reserved predicates later.

A predicate can be combined with another predicate with
a logical operator,∧ or∨. Such a combination of predicates
is also a predicate. An inference ruleR is defined asp1 →
p2, which means “ifp1 is true,p2 is also true.”

The truth value of a predicate is completed in each smart
object. For example, a true predicatep in a smart objecto1

does not affect the truth value of the same predicatep in an-
other objecto2. In order to notate a predicate for each smart
object, we introduce a special notationp@o, which indicates
the truth value of the predicatep in the smart objecto. This
notation is used for transmission rules.

Reserved Predicate A reserved predicate is managed by
the system. The form of a reserved predicate isp(o1, o2) or
p(o1, X1, . . .). p(o1, X1, . . .), which includes one or more
system variables. Table 1 shows CbN’s reserved predicates.

Table 1. Reserved Predicates
spatial relation sr on, sr in, sr neighbor
sensor value sn temperature, snluminance

sn acceleration, snhumidity
property pr owner, predition, pr author

pr weight
category category

sr on(o1, o2), sr in(o1, o2), and sr neighbor(o1, o2)
represent the spatial relations between smart objects (Fig-
ure 6). (a)sr on represents a support-supported relation
between smart objects. (b)sr in represents an inclusion re-
lation between smart objects. (c)sr neighbor represents a
neighbor relation between smart objects.

Figure 6. Spatial relations: (a)sr on (b)sr in
(c)sr neighbor

Transmission Rule A transmission rule provides the no-
tation needed to copy a predicate from one smrt object to
another. Using the transmission rule, each smart object can
extract an event and select an action with the data of another
smart object.

A transmission rule is notated in the following form.

(p1@x1 ∧ p2@x1 ∧ . . . ∧ pn@x1 → p0@x0)

Note thatp1, p2, . . . , pn must include a spatial relation
denoting thatx1 contactsx0.

Example of Recursive Notation CbN can describe recur-
sive notation based on contact relations. Below is an exam-
ple of recursive notation that represents a situation where
several smart objects are stacked.

• Inference Rule
sr on(o1, o2) → rec on(o1, o2, 1)
rec on(o1, o2, x2)∧rec on(o2, o3, x3)∧x1 = x2+x3

→ rec on(o1, o3, x1)

• Transmission Rule
sr on(o0, o1)@o1 ∧ rec on(o1, o3, x1)@o1

→ rec on(o1, o3, x1)@o0

sr on(o3, o4)@o3 ∧ rec on(o1, o3, x1)@o3

→ rec on(o1, o3, x1)@o4

Example of Path Specification to a Distant Object CbN
can describe relative path specification based on contact re-
lations. Below is an example of relative path specification
in the situation illustrated in Figure 4.

• Inference Rule
rec on(o1, o3, 2) ∧ sr on(o4, o3) → path B(o1, o4)
path B(o1, o4) ∧ sr in(o5, o4) → path A(o1, o5)

• Transmission Rule
sr on(o4, o3)@o3 ∧ path B(o1, o4)@o3

→ path B(o1, o4)@o4

sr in(o5, o4)@o4 ∧ path A(o1, o5)@o4

→ path A(o1, o5)@o5

5. PROTOTYPE

Here, we mention our implemented prototype sensor
node. Our nodes (Figure 7) can detect the contact rela-
tions of other sensor nodes. Each sensor node also runs a
logical inference engine and can communicate with other
sensor nodes. Their specifications have been given in previ-
ous papers [3]. Accordingly, this section simply provides a
summary of the specifications.

In our prototype, we have a device to detect a pair of con-
tacting objects. Our device is similar to RFID. Each node
has a thin coil to generate lines of magnetic force, another
coil can detect the lines when a coil moves near the other
coil. The coil can send an ID signal to the other coil by
changing the strength of the magnetic force. In this way,
each node can know which node moves near the node. Our
current implemented coil can detect only one coil, but in the
future, we will improve this device to detect multiple coils.
Figure 8 illustrates our developed coils (wrapped by a thin
black package) to detect contacting objects.

Figure 7. Sensor node core

ID: 0012

0012

m a g n e tic fo rc e

a c o il

Figure 8. Sensor device to detect contacting
objects

Our sensor nodes can share data only with the other con-
tacting sensor nodes in the following ways. 1) When two
sensor nodes make contact, they send and receive their IDs
through their detection sensors. 2) After they recognize
each other, they start to share context data by unicast. 3)
Once the contact fails to be detected, the communication is
broken.

Figure 9 shows the composition of our developed infer-
ence engine that works on the sensor node.

The inference engine performs forward reasoning by us-
ing sensory data obtained from several sensor nodes. As
a result of the inference, it extracts a local situation from
shared sensory data.

6. EVALUATION

6.1. Read Counts

In order to confirm that our framework decreased com-
munication costs between sensor nodes, we comparedread
operations in the conventional communication method —
where each sensor node broadcasts data to other sensor
nodes within a constant distance — with those described
in CbN.

The experiment was conducted by computer simulation,
because we have only several prototype devices currently.

Figure 9. Inference engine on sensor node

We set up three indoor environments, each of which dif-
fers from the others in its density of smart objects (Figure
10): (a) illustrates an environment containing 5 smart ob-
jects within 1 square meter, (b) has 10 smart objects, and (c)
has 20 smart objects. In each environment, we simulated the
existing communication method (simple broadcasts) and
the proposed communication method (CbN’s transmission
rules). In the broadcast, the simulation program assumed
that each sensor node shares data only with the sensor nodes
that are within a constant distance, not with any sensor node
outside of this distance. The simulation program counted
the readoperations of each sensor node at three distances:
10 cm, 20 cm, and 50 cm. In the proposed communica-
tion method, the simulation program assumed that each sen-
sor node follows CbN’s inference rules and transmission
rules. The simulation program counted thereadoperations
of each sensor node under the assumption that they follow
therec on andrec in rules explained in section 4.

Figure 10. Simulation environments: (a) 5
smart objects (b) 10 smart objects (c) 20
smart objects

Table 2 shows the averagereadcounts of smart objects
in the three environments.

The results of the simulations reveal that the broadcast-
based communication proportionately increases the com-
munication costs as the number of smart objects increases.

Table 2. Average read counts
5 /m2 (a) 10 /m2 (b) 20 /m2 (c)

contact base 2.0 3.2 5.0
broadcast (10cm) 2.0 3.8 6.5
broadcast (20cm) 2.0 4.7 8.0
broadcast (50cm) 3.2 6.7 13.2

In the environment containing 5 smart objects (environment
1), for example, the averagereadcount in the broadcast (50
cm) was 3.2, while in the environment containing 20 smart
objects (environment 3), the count increased to 13.2. Simi-
larly, in environment 1, the averageread count in the broad-
cast (10 cm) was 2.0, while in environment 3, this count
increased to 6.5.

On the other hand, the results show that the increase in
the contact-based communication was smaller than that of
broadcast-based communication. For example, in environ-
ment 1, the averageread count was 2.0, while in environ-
ment 3, the count was 5.0.

We conclude that CbN enables each sensor node to com-
municate at low communication cost even in an environ-
ment dense with smart objects. This is because the number
of communication targets does not depend on the density of
smart objects but on the number of smart objects in direct
contact.

7. RELATED WORKS

This section describes related works, which are catego-
rized into two groups: 1) Smart objects, where sensor nodes
embedded in objects cooperatively work to extract an event;
and 2) Rule description techniques in sensor networks.

First, we explain smart objects. MediaCup [1], Cooper-
ative Artefact [7], and u-Texture [4] are representative stud-
ies on smart objects. Beigl et al. proposed the MediaCup
project to create an intelligent cup with a small sensor node
that has sensing, data processing, and communication ca-
pability. Each cup can share data with neighboring cups
and comprehend the physical situation of the cups such as
“the cup is stationary,” “the cup is moving,” and “someone
is drinking out of the cup.” Strohbach et al. suggested Co-
operative Artefact, where several objects share knowledge
and cooperatively infer surrounding contexts. Each object
detects neighboring objects by using an ultrasonic transmit-
ter and an ultrasonic receiver and shares sensory data with
the neighboring objects to infer surrounding contexts. Co-
operative Artefact can be applied to chemical containers,
which allows cargo systems to detect hazardous situations.
Kohtake et al. designed and implemented u-Texture, a block
that can detect its situations. Each block can detect its verti-
cal direction and the existence of neighboring blocks. Each

block displays various information depending on the com-
bination of blocks. Consequently, u-Texture can support as-
sembly line workers.

Second, we explain the rule description techniques in
sensor networks. SICL [6] and RuleCaster [2] are repre-
sentative applications of this technology. Siegemund et al.
proposed a communication platform for smart objects that
takes an object’s current context into account and adapts
networking structures accordingly. They developed a high-
level description language, called SICL, and a compiler that
generates corresponding code for smart objects. The plat-
form provides mechanisms for implementing context-aware
communication services and a communication abstraction
for inter-object collaboration. Bischoff et al. proposed a
state-based programming framework in indoor sensor net-
works, named RuleCaster. RuleCaster provides a high-level
specification to individual tasks and assigns them to the
nodes. The RuleCaster compiler provides two strategies of
rule distribution: (1) centralized distribution, and (2) decen-
tralized distribution. In the centralized distribution strategy,
one central node is responsible for all rule processing, while
the other nodes only provide their services to the central
node for condition evaluation. In the decentralized distribu-
tion strategy, an overlay network consisting of several sub-
networks is generated. Processing is distributed over several
nodes that are responsible for their own spatial region.

8. CONCLUSIONS AND FUTURE WORK

This paper proposed a framework to describe rules for
extracting an event in smart objects. To reduce the number
of other sensor nodes with which each sensor node must
communicate, we introduced CbN to provide an applica-
tion developer with the notation needed for specifying the
communication pairs of sensor nodes. Our framework can
be used for building such applications as group estimation,
sorting support, and situation monitoring.

One experiment was conducted to evaluate the commu-
nication costs of our framework. The results revealed that
our framework reduced the number ofread operations on
each sensor node.

Finally, we concluded that CbN enables smart objects
to extract an event at low communication cost when sensor
nodes are embedded in a large number of objects.

References

[1] M. Beigl, H. W. Gellersen, and A. Schmidt. Mediacups: Ex-
perience with design and use of computer-augumented every-
day artefacts.Computer Networks, pages 401–409, March
2001.

[2] U. Bischoff and G. Kortuem. A state-based programming
model and system for wireless sensor networks.PerSens
2007, March 2007.

[3] T. Kanda, Y. Yanagisawa, T. Maekawa, M. Imai,
H. Kawashima, and T. Okadome. A distributed infer-
ence system on sensor nodes using neighbors’ context data.
SWOD 2007, April 2007.

[4] N. Kohtake, R. Ohsawa, T. Yonezawa, Y. Matsukura, M. Iwai,
K. Takashio, and H. Tokuda. u-texture: Self-organizable
universal panels for creating smart surroundings.UbiComp
2005, pages 19–36, September 2005.

[5] C. Metzger, J. Meyer, E. Fleisch, and G. Troester. Weight-
sensitive form to monitor product availability on retail
shelves.Pervasive 2007, May 2007.

[6] F. Siegemund. A context-aware communication platform for
smart objects.Pervasive 2004, pages 69–86, April 2004.

[7] M. Strohbach, H. W. Gellersen, G. Krtuem, and C. Kray. Co-
operative artefacts: Assessing real world situations with em-
bedded technology.UbiComp 2004, pages 250–267, Septem-
ber 2004.

