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Abstract. This paper describes how we recognize activities of daily liv-
ing (ADLs) with our designed sensor device, which is equipped with het-
erogeneous sensors such as a camera, a microphone, and an accelerometer
and attached to a user’s wrist. Specifically, capturing a space around the
user’s hand by employing the camera on the wrist mounted device en-
ables us to recognize ADLs that involve the manual use of objects such
as making tea or coffee and watering plant. Existing wearable sensor
devices equipped only with a microphone and an accelerometer cannot
recognize these ADLs without object embedded sensors. We also propose
an ADL recognition method that takes privacy issues into account be-
cause the camera and microphone can capture aspects of a user’s private
life. We confirmed experimentally that the incorporation of a camera
could significantly improve the accuracy of ADL recognition.
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1 Introduction

Activity recognition is one of the most important tasks in pervasive comput-
ing applications. This task has a wide range of applications in, for example,
context-aware systems, life logging and monitoring and has thus been the sub-
ject of a large amount of research. Two main approaches are used for activity
recognition studies: environment augmentation and wearable sensing. The envi-
ronment augmentation approach attempts to recognize users’ activities by using
sensors embedded in indoor environments. In the computer vision community,
activity recognition tasks are accomplished by using cameras installed in a given
environment. For example, hand washing and operating medical appliances can
be recognized by domain specific solutions [23, 28]. However, the task has be-
come dominated by various types of embedded small sensors. Recently, many
researchers in the field of ubiquitous computing have tried to recognize activi-
ties based on dense object usage sensors such as RFID tags and switch sensors
installed in indoor environments [25, 32, 14]. With this approach, many studies
recognize activities of daily living (ADLs) such as using the toilet, making coffee,
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washing dishes, and taking medicine by using object usage sensors that are em-
bedded in or attached to such daily use indoor objects and appliances as toilets,
coffee makers, sinks, and cups.

The wearable sensing approach tries to recognize a user’s activities by em-
ploying such sensors as body-worn accelerometers and microphones to capture
characteristic repetitive motions, postures, and sounds of activities [19, 20, 2,
3, 16]. Using these types of wearable sensors, sensing studies have successfully
recognized such activities as walking, bicycling, brushing teeth, speaking and
laughing, and workshop activities such as sawing and drilling that have charac-
teristic motions and/or sounds. An advantage of this approach is that it does
not require environment embedded sensors. That is, this approach incurs no
cost in terms of money or time for embedding sensors in indoor objects and
furniture. Also, users can easily turn off their wearable devices when they want
to preserve their privacy. The ADL recognition method proposed in this paper
also uses body-worn sensors. However, because most existing studies use only
such sensors as accelerometers and microphones, they cannot recognize ADLs
that have no characteristic motions or sounds. For example, recognizing such
ADLs as making tea and taking medicine, which the environment augmenta-
tion approach can achieve by using object usage sensors, is difficult when using
only accelerometers and microphones. This study tries to recognize ADLs that
involve object use by employing many kinds of sensors including cameras, micro-
phones, and accelerometers attached to a single point on the body. In particular,
to recognize these ADLs, we leverage visual features of objects, obtained from
a camera on a user’s wrist with which we may also easily capture such other
features as the motion and sound of the ADLs. One of the characteristics of
this study is that it incorporates the visual features of object use into wearable
sensing. This permits us to recognize various kinds of ADLs that involve object
use without the need for environment embedded sensors. To our knowledge, no
work has reported object based ADL recognition employing the vision, sound,
and motion features of object use captured by wrist worn sensors.

First, we describe the design of our proposed practical wearable sensor de-
vice, which is attached to one point on the body to recognize ADLs that involve
object use, and then we build a prototype of the device. We report our design
of a wristband type sensor device equipped with such sensors as a camera and a
microphone. The device captures sensor data such as images of used objects and
the sound emitted when a user performs an ADL and sends them wirelessly to a
host PC. Second, we propose a supervised machine learning based ADL recogni-
tion method that uses the multi-modal sensor data. Note that, because the raw
data obtained from a camera and a microphone on the user’s wrist include pri-
vate information, we design a recognition method where the sensor device does
not send raw private information but abstracted information. Third, we collect
sensor data by using the implemented prototype device. We capture ADLs that
involve object use such as making tea, making green tea, taking medicine, vacu-
uming, washing dishes, and feeding fish, and annotate the collected data. Finally,
we evaluate our recognition method by using the collected data and investigate
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Fig. 1. (a) Conceptual image of wristband type sensor device and (b) prototype device.

the contributions of each sensor. In summary, our contributions reported in this
paper are (1) the design of a wearable device that enables us to recognize ADLs
that involve object use without environment embedded sensors, (2) the proposal
of an ADL recognition method that can detect ADLs involving object use, and
(3) an experimental evaluation of the proposed method.

2 Practical sensor device

Our goal is to recognize ADLs that involve the use of objects. Designing a sen-
sor device to achieve this goal, we must choose which types of sensor the device
should be equipped with and select which point on the body the device should
be attached to. We selected a camera, a microphone, an accelerometer, an il-
luminometer, and a digital compass from the range of commonly used sensors.
We can expect both the cost and size of such sensors to decrease. Specifically, a
camera captures visual information about objects used in ADLs. For example,
an image (frame) including a coffee maker that is captured when a user makes
coffee can be useful for recognizing the ADL of making coffee. The other four
types of sensors are usually used for wearable activity recognition [19, 16]. Also,
we attach just one wristband type device equipped with the above five sensors to
a user’s dominant wrist. We attach the device to a single body location because
wearing multiple devices on different parts of the body such as the waist, arms,
and legs may place a large burden on the user in her daily life. Because almost all
ADLs that involve object use are performed by hand, a sensor device attached
near the hand can capture ADL characteristics well. Moreover, we can embed
these sensors in a wristwatch.

Fig. 1 (a) shows our ideal wristband sensor device designed based on the
above discussion. We assume that the device sends preprocessed data obtained
from the five sensors wirelessly to a host PC. Feature extraction and ADL recog-
nition are performed on the PC (as shown in Fig. 4). The camera lens is placed
on the inside of the wrist to capture the space around the wearer’s hand because
then the camera can capture objects held by the user and objects around her
hand. Based on these assumptions, we fabricated the prototype wristband type
sensor device shown in Fig. 1 (b) for the experiment. We fixed together a USB
camera, a wired microphone, and a USB cable wired sensor board with a 3-axis
accelerometer, an illuminometer, and a 3-axis digital compass and attached them
to the wristband. The USB camera captures 352 by 288 pixel 24-bit color JPEG
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images at about 6 fps with an automatic focus and white balance function. We
used a monaural omni-directional microphone with a sampling rate of 44.1 kHz.
The sampling rates of the other three sensors on the sensor board were all about
30 Hz. The frequency of the accelerometer was sufficient compared with the 20
Hz frequency that is required to access daily activities [4]. We selected a small
camera and a thin USB cable to avoid disturbing the user’s activities. We also
bound the sensor cables together with tape. The bundle was fixed in place with
a band worn on the brachial region. These sensors are connected to a laptop
carried in a backpack via the cables and they send their data to the laptop.

3 Proposed method

We model each ADL class trained with annotated training data and use the
models to classify test data. To recognize ADLs by using sensor data, training
data should be acquired in each user’s environment because these sensor data
are environment dependent. For example, the sound of vacuuming may depend
on the type of vacuum cleaner used in the environment. That is, users should
label each ADL collected in their environment during a certain period of time.
Models of ADL classes for ADL recognition are then generated by using features
extracted from the annotated training data.

3.1 Annotating training data in our approach

To label an ADL, users should specify its ADL class and its start and end points.
Our sensor device is equipped with a camera thus making it superior to those
without a camera as regards labeling tasks. Assume that the sensor data are
acquired from a sensor device with a microphone and an accelerometer on a cer-
tain day. After the data acquisition, it is almost impossible for users to annotate
the acquired data solely by listening to the recorded sound. Here, we introduce
two approaches that deal with the problem. The first is a method where users
annotate the data while watching video recordings captured by cameras embed-
ded in the environment [17]. However, it is very expensive to install cameras in
various rooms in the users’ houses to track their activities. The second approach
uses an experience sampling method that permits users to make annotations in
real time [12]. In one example, users carry a PDA that is used as a timing device
to trigger self-reported activity entries. Although this approach is inexpensive,
users have to be continuously aware of the annotation process. This may result
in biased or unrealistic data [14]. To solve these problems, [14] proposes a voice
based annotation method, which permits users to make annotations easily in real
time via a headset. However, real time annotation methods have another prob-
lem in that users cannot easily modify mistakenly created labels. During long
periods of training data acquisition, users are certain to produce incorrect labels.
However, in an environment with no video recording, it is almost impossible for
users to review them solely by referring to captured non-visual sensor data. In
contrast, because our device has a camera, users can make an accurate label set
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Fig. 2. Example camera and acceleration data for making cocoa.

by viewing image sequences recorded by the camera. Because the label set is
used for training the models, it is very important to obtain training examples
that are as accurate as possible [14].

As above, users annotate the sensor data while viewing an image sequence
obtained by the camera and a chart of time-series acceleration data obtained
from the device on our implemented annotation tool. By using the track bar of
the tool, users can display an image captured at an arbitrary time on a panel
component of the tool. Users can also play recorded image sequences and sound.

3.2 Classification features

We extract features from annotated training data that are used to model and
recognize ADL classes. We deal with time-series data obtained from various types
of sensors with different sampling rates. Thus, after extracting features from the
sensor data for each sensor type in an appropriate size window, we combine
them into one second windows with a 50% overlap and compute averages for
each feature in each window. The 50% overlap has been employed successfully
in past studies [2]. We perform ADL modeling and recognition by using a feature
vector sequence generated by combining features extracted from all the sensors.
Here, we describe how to extract features from each sensor data.

Visual features If we can detect which object the user is currently employing
from the camera images, the information may be very useful for ADL recognition.
In the following, after describing the characteristics of images captured by the
camera and problems with the images such as privacy concerns, we use them
as a basis for determining what kind of visual features are used to model ADL
classes. Also, to achieve real time ADL recognition, we must extract the features
from the image quickly. Note that we compute features for each captured image.
[Characteristics of camera images]
We introduce images captured by the camera in a data acquisition experiment.
Fig. 2 shows a sequence of images and a chart of time-series acceleration data
that were captured while a participant made cocoa. Fig. 2 (a) shows an image
of when he took the cocoa tin from the cabinet, (b) shows an image of when
he was spooning the cocoa powder, (c) shows an image of when he was moving
toward the refrigerator, (d) shows an image of him holding a milk carton, (e)
shows an image of him holding the cocoa tin prior to storing it in the cabinet,
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and (f) shows an image of him stirring the cocoa. Images of objects captured
by the wrist mounted camera have the following characteristics: (1) Objects
are captured from various angles. (2) Most images show only a portion of the
objects. (3) Objects seen in most images are blurred because of hand movement.
(4) The brightness of an object can vary depending on the relationship between
the lighting, camera, and object positions. Many studies try to detect objects
from images while taking occlusion, rotation, scale, and blur into account [27, 18].
However, to detect an object from images captured from various angles, we must
generate a model of the object from many images of objects. This may place a
large burden on the end user because we must generate expensive models for each
end user environment. Also, most existing object recognition algorithms are very
costly if they are designed to achieve real time ADL recognition. On the basis
of the above, we consider that we can leverage only rough visual information.

[Problems with camera images]
We describe two problems related to images captured by the wrist camera. The
first concerns privacy. We assume that the sensor device sends such sensor data
wirelessly as camera images to a host PC. Users may feel reluctant to send images
related to their private lives wirelessly, e.g., those captured in a toilet. The second
problem relates to communication traffic. Continuously transmitting raw images
in real time occupies a communication band constantly. Our implemented device
requires about 90 KB/sec for raw image transmission. This may also exhaust the
device batteries very quickly. As a result, we determined that the device should
send images consisting of small quantities of abstracted data.

[Summary of our approach to visual feature extraction]
Based on the above, we decided to extract rough visual features from an ab-
stracted image sent from the device. The data volume of this image is small and
the image is secure. Specifically, we use a color histogram of an image sent from
the device. Some studies also achieve fast object recognition/tracking [30, 7] by
comparing histograms and object models prepared in advance. In our approach,
by using a histogram sent from the device, we simply count the number of pixels
in the image (histogram) that are similar to a color characteristic of an ADL. For
example, if a color of a cocoa tin is magenta, the number of pixels whose color
is similar to magenta in an image may be useful for recognizing cocoa making
activities. For each ADL, we obtain several characteristic colors from annotated
training data in advance. For each characteristic color, we count the number of
pixels in the histogram whose color is similar to the characteristic color. The
result is used for the visual feature. Our purpose in using the histograms and
characteristic colors is to achieve rough visual feature extraction with low com-
munication and computation costs. In the following, we describe how to find
the colors characteristic of each ADL, how to generate histograms, and how to
compute features.

[Finding characteristic colors of each ADL]
We obtain the colors characteristic of each ADL in advance by using images of
the annotated training data. Fig. 3 (a) shows the procedure. (I) We cluster all
the color pixels in all the raw images labeled as the ADL into 64 clusters by
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Fig. 3. (a) Clustering pixels of all images of an ADL class and ranking the clusters
(features) by their computed information gains, and (b) clustering color pixels of an
image and constructing a histogram from the clusters.

using the k-means algorithm in the hue, saturation, and brightness (HSB) color
space with a slight modification. Then, we compute the average color of each
cluster. This procedure provides 64 representative colors of the ADL. Here, we
focus on the HSB color space because it has a brightness axis. As mentioned
above, the brightness of an object can change depending on the positional rela-
tionship of the lighting, camera, and object. Thus, we multiply the brightness
values of the pixels by 0.5 to reduce the importance of the brightness axis. (II)
From the obtained 64 candidate (representative) colors of the ADL, we extract
the top-m candidate colors as the characteristic colors of the ADL. We rank the
64 candidate colors in terms of information gain. The information gain is usually
used to find distinguishable attributes (features) of instances. The information
gain of an attribute increases the better the attribute classifies the instances.
We compute each attribute’s information gain when distinguishing images (in-
stances) of the ADL class from those of other ADL classes by using the attribute
values of the images. In this case, each attribute corresponds to the number of
pixels in an image whose colors are similar to each candidate color. (How to
count the similar pixels is mentioned below.) We compute the information gain
of each attribute by using the computed attribute values of the images and then
rank the attributes by their information gains to obtain the top-m attributes
as characteristic colors of the ADL. Note that, before obtaining the top-m at-
tributes (colors), we remove colors that are similar to other higher ranked colors
from the ranking.

Here, we provide an example. Assume that the color of a cocoa tin used in
making cocoa is magenta and other ADLs do not include objects whose colors
are similar to magenta. The number of magenta pixels in an image captured
while making cocoa is large and so the information gain of the attribute (the
number of magenta pixels) becomes high because the attribute contributes to
distinguish the cocoa making images from the others. (An image in which the
number of magenta pixels is above a certain threshold may correspond to cocoa
making images.) See [34] for detailed explanation of computing the information
gain. From the above procedure, we can obtain m characteristic colors for each
ADL.

[Histogram generation]
Fig. 3 (b) shows the procedure. (I) The device reduces the color of an image to 64
colors simply by using the k-means algorithm to cluster the pixels in the image
into 64 clusters. The representative color of each cluster corresponds to an aver-
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age value for the colors in the cluster. (II) We compute a histogram of the image
with 64 bins where each bin corresponds to one color of the 64 representative
colors of the clusters. (The histogram is different from the commonly used color
histogram.) The histogram includes only HSB data of each color (bin) and the
number of pixels of the color in the reduced image. Comparing a characteristic
color with colors of bins enables us to count the number of pixels in the image
whose color is similar to the characteristic color. The histogram also permits us
to compress an image into 64 pairs of 24 bit HSB data and 32 bit numeric data,
i.e., (24+32)*64 = 3584 bit = 448 bytes. This enables us to reduce the com-
munication traffic of our device, which captures images at 6 fps, to about 2.7
KB/sec. Moreover, we can solve the privacy problem because it is impossible to
restore the original image from the histogram. Here, we use k-means clustering
for color reduction in the device. We can process the algorithm at high speed by
using a special purpose processing circuit [24]. We consider that all sensor data
processing should be performed on special purpose circuits. Note that, in our
prototype device shown in Fig. 1 (b), the host PC performs the color reduction
and histogram generation offline. Also, to annotate training data, our approach
requires raw captured images as described above. The device should be designed
to store raw images in its flash memory card during training data acquisition
periods. This enables users to safely transmit the data to the PC via the card.
[Visual feature extraction]
For each characteristic color, on the host PC, we count the number of pixels
in the histogram whose color is similar to the characteristic color to model and
recognize ADLs. The similarity is computed by using the Euclidean distances
between the colors in the modified HSB color space. That is, we simply count the
number of pixels whose similarity is smaller than a threshold th. The approach is
identical to that used for the characteristic color extraction. Then, we normalize
the result by dividing it by the dimensions of the image. The normalized result
corresponds to the visual feature. That is, the number of visual features extracted
from one image corresponds to the number of characteristic colors.

We employ this simple method because it requires low computational power.
In fact, this method can extract visual features from a histogram in about 0.5
msec on a PC with a 2.4 GHz CPU by using 75 characteristic colors. We set
m = 5 and th = 15 because they resulted in good performance in a preliminary
experiment.

Sound features We extract features from sound that is emitted during ADLs
that involve object use. For example, the sound of using a vacuum cleaner, tooth
brushing, and running water may be useful for ADL recognition. We focus on
the characteristic frequencies of such sounds. In [8], the Mel-Frequency Cep-
stral Coefficient (MFCC) is reported to be the best transformation scheme for
environmental sound recognition. [5] achieves the highly accurate recognition
of bathroom activities such as showering, flushing, and urination by using the
MFCC. Thus, we decided to use the MFCC to recognize ADL related environ-
mental sounds. Computing the MFCC is not expensive because it is based on
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Fast Fourier Transform (FFT). Note that sound recorded by the microphone
has problems related to data volume and privacy as well as the camera images.
We thus extract sound features on the sensor device and send only them to the
host PC. Also, the extraction of sound features from all sound data captured at
a high sampling rate is costly. Thus, we intermittently capture short periods of
sound and then compute a 13 order MFCC of each captured sound windowed by
a Hamming window. In this implementation, we record 25 milliseconds of sound
six times a second. From the sound data, we can obtain thirteen features.

Acceleration features We can extract features of postures and repetitive hand
movements from acceleration data. For example, we can find a characteristic fre-
quency in the acceleration data captured while the participant was stirring cocoa
as shown in Fig. 2 (f). We extract features based on the FFT components of each
64 sample window acceleration data. We use the mean, energy, frequency-domain
entropy, and dominant frequency as features. The mean can characterize the
hand posture. For example, the hand posture during tooth brushing may have
particular characteristics. The mean is the DC component of the FFT. The en-
ergy can be used to distinguish low intensity activities such as standing from
high intensity activities such as walking [33]. The energy feature is calculated by
summing the magnitudes of the squared discrete FFT components. For normal-
ization, the sum was divided by the window length. Note that the DC component
of the FFT is excluded from this summation. The frequency-domain entropy and
dominant frequency can distinguish between repetitive motions with similar en-
ergy values. For example, the major FFT frequency components of stirring cocoa
were between about 2 and 4 Hz in our experiment. Those of brushing teeth were
between about 4 and 6 Hz. The frequency-domain entropy is calculated as the
normalized information entropy of the discrete FFT component magnitudes [2].
The dominant frequency is the frequency that has the largest FFT component,
and this component is three times larger than the average component of all the
frequencies in this implementation. If there is no frequency that satisfies the
conditions, we set the feature at zero. As above, we extract a total of twelve
features from the 3-axis acceleration data.

Illuminance and direction features We use raw sensor data captured by
the illuminometer and 3-axis digital compass directly as features. The digital
compass captures the characteristic human orientation of each ADL. Assume
that a user habitually brushes her teeth in front of a sink in her house. Her
orientation during brushing may always be the same.

3.3 Classification methodology

We model ADL classes in advance by using annotated training data and the ob-
tained feature vector sequence. We classify each feature vector in the test data
into an estimated ADL class. The classification approaches used in machine
learning are divided into two groups: one group uses discriminative techniques
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that learn the class boundaries and the other uses generative techniques that
model the conditional density functions of the data classes. The classification
performance of the discriminative techniques, which find discriminant features
of the classes, often outperform those of generative techniques. By contrast,
handling missing data is often easier with the generative techniques. The ML
community has shown increasing interest in a hybrid discriminative/generative
approach that can combine the advantages of the two techniques [13, 26]. State-
of-art activity recognition studies also achieve high accuracy by employing this
approach [15, 16, 11]. In addition, because we deal with time-series data, incor-
porating the hidden Markov model (HMM), which is a generative model that
can be used to model activities with temporal patterns [20, 14], into the hybrid
approach, can improve the performance and smoothness of ADL recognition.

These facts provide our motivation for using the hybrid discriminative/generative
approach with HMMs. Hybrid classification employs two main modules: static
classifiers and HMM classifiers as shown in Fig. 4. The input of the first mod-
ule is the extracted feature vector sequence. The first module consists of some
discriminative binary classifiers trained with feature vector sequences. We build
each binary classifier to recognize its corresponding ADL class. That is, the
number of binary classifiers n corresponds to the number of ADLs the method
learns. Each binary classifier computes the class probability for each feature vec-
tor in the feature vector sequence. That is, each binary classifier outputs the
class probability sequence. The input of the second module consists of the class
probability sequences computed by the n binary classifiers. The second module
also comprises some HMM classifiers trained with a sequence of output class
probabilities of the static classifiers. We also build each HMM to recognize its
corresponding ADL class, that is, each HMM also outputs the likelihood of its
corresponding ADL. The class with the highest likelihood is the classified class.
We train the HMMs using the class probabilities of the static classifiers, which
provide high levels of performance. The use of HMMs can smooth out sporadic
errors of the static classifiers.

4 Data collection

For our experimental evaluation, we collected sensor data from participants by
using our prototype device shown in Fig. 1 (b). Then, each participant annotated
her own data using our annotation tool. In this study we learned the fifteen
ADLs listed in Table 1. We selected these ADLs, which involve daily objects, by
referring to ADLs dealt with by some reported ADL recognition studies.
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Table 1. ADLs and their average duration (min).

ADL duration (min) ADL duration (min)

A brush teeth 3.65 I make juice 1.77
B cook pasta 5.98 J make tea 1.37
C cook rice 4.33 K practice aromatherapy 0.66
D feed fish 0.40 L take supplement 0.82
E listen to music 1.69 M vacuum 1.26
F make cocoa 1.37 N wash dishes 3.68
G make coffee 1.63 O water plants 0.27
H make green tea 1.16

4.1 Data set

The most natural data would be acquired from the normal daily lives of the par-
ticipants. However, obtaining sufficient samples of such data is costly because
researchers have to observe their normal daily lives. We collect sensor data by
using a semi-naturalistic collection protocol [2] that permits greater variability in
participant behavior than laboratory data. In the protocol, participants perform
a random sequence of ADLs (obstacles) following instructions on a worksheet.
The participants are relatively free as regards how they perform each ADL be-
cause the instructions on the the worksheet are not very strict, e.g., “vacuum
the room” and “listen to an arbitrary track from a CD in the rack.”

Data were collected from 10 participants who wore our prototype device in
our experimental environments. The participants were workers (not researchers)
in our laboratory. Because the features of the sensor data obtained from our
device may vary depending on the environment, we collected sensor data in two
environments: environment 1 and environment 2, and tested our method by using
each data set. That is, we evaluated the test data obtained in environment 1 by
using a classifier trained on training data also obtained in environment 1 and vice
versa. Environment 1 is our home-like experimental environment [21]. We had
equipped the environment with a cabinet, break time items, cooking utensils, etc.
to emulate a home environment. In the experiment, we used objects originally
installed in the environment. Also, four video cameras were fixed to the ceiling
of the environment. The participants were familiar with environment 1 because
they entered and left it many times every day. Because environment 2 is simply
a room in our laboratory, we equipped it with new objects required for the ADLs
for our experiment. We taught the participants the locations of the objects before
undertaking data collection. Each data collection session included a random
sequence of the fifteen ADLs listed in Table 1. We conducted fourteen sessions,
which correspond to about two weeks data, in each environment. That is, each
participant took part in a total of about three sessions in two environments.
When performing the ‘brush teeth,’ ‘cook rice,’ and ‘wash dishes’ ADLs, they
used sinks outside the environments. During data collection in environment 2, the
participants used a timing device. The timing device is a PDA and can record
the time at which its button is pushed. The participants can easily annotate
collected data by referring to the recorded times. For example, they can push
the button just before starting to vacuum.
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The data obtained in this experiment were various and practical. Because
the experiments were conducted from 9 a.m. to 6 p.m., images obtained under
various light conditions are included. Also, because the experiment involved ten
participants, their ways of performing the ADLs differed. For example, some
participants made tea while standing and others while sitting. Of course, the
participants’ clothes, which were sometimes captured by the camera, were also
different in different sessions. Furthermore, the experiment involved various kinds
of objects such as those with complex textures, e.g., floral and arabesque patterns
and translucent objects. Also, colors of some objects were similar with each other.

4.2 Labeling sensor data

The participants annotated their own collected data by using our tool. We asked
them to select the start and end points of labels as they liked. After they had
completed the task, we asked them to provide comments about the tasks. To
enable us to compare our annotation method with conventional labeling in lab-
oratory settings, the participants also annotated their data for environment 1
by watching video recordings captured by the cameras fixed to the ceiling. We
call the label sets of environments 1 and 2 obtained by using the sensor data
provided by our device label sets 1A and 2. We call the label set of environment
1 obtained using the video recordings provided by the fixed cameras label set 1B.

The average times needed to label the sensor data for one session were 44.1
and 36.4 min for set 1A and set 2, respectively. The participants annotated the
data of environment 2 while referring to a printed list of times recorded by the
timing device. Although we found no significant difference between two sets of
results with a two-tail t-test (p > 0.05), all the participants commented that the
timing device was useful. When end users annotate sensor data obtained during
training data acquisition periods in their daily lives, they should determine their
ADLs from sensor data obtained over long periods. Thus, the timing device may
be useful to end users. The timing function should be embedded in our wristband
device. The average labeling time for label set 1B was 27.0 min. While this
approach is very costly, the average time was shorter than that of our device.
Also, some participants commented that the images captured with our device
can cause motion sickness. However, they also commented that labeling by using
the images provided by our device was easier than they had thought because they
could easily recognize routinely used objects in the images.

In label set 1A, there were three incorrect labels: a ‘cook pasta’ label did
not include about half of a boil water activity in the ADL, a ‘make juice’ label
ended while the participant was using a juicer, and a ‘vacuum’ label included
part of another ADL. In label set 2, a participant forgot to label a ‘feed fish’
ADL. In label set 1B, there were two incorrect labels: a ‘cook pasta’ label did
not include about half of a boil water activity and a ‘listen to music’ label did
not cover the whole ADL. We could not find any significant differences between
label sets 1A and 1B in terms of labeling accuracy. We asked the participants
to correct these mistakes. In addition, each participant had a different labeling
strategy. When labeling ‘brush teeth’ and ‘wash dishes,’ six participants selected
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start and end points to include walking with related objects such as a dish rack
from the environment to the sink. The labels of four other participants did not
include this. In addition, some labels of the two participants did not include the
ADL preparation time. For example, when making cocoa, the participants have
to prepare a cup, a cocoa tin, and a milk carton. We should instruct end users
in the same environment to establish a consensus on labeling strategy. We asked
the participants in the minority to modify their labels in accordance with those
of the majority.

5 Evaluation

We evaluated the performance of our method by using the annotated sensor data
(label sets 1A and 2). We conducted a ‘leave-one-session-out’ cross validation
evaluation. That is, we tested one session by using a classifier trained on thirteen
other sessions. In this evaluation experiment, we used AdaBoost M1 and the
C4.5 decision tree implemented on the Weka toolkit [34] as binary classifiers.
AdaBoost is a boosting algorithm that combines weak classifiers to construct a
strong classifier. We use a decision stump as a weak classifier.

5.1 Performance of our method

Table 2 lists the accuracies of the various recognition methods in some metrics.
The AdaBoost+HMM (window) and C4.5+HMM (window) columns present
precisions and recalls calculated based on feature windows (vectors). That is,
precision is the ratio of the number of feature windows correctly classified into
an ADL class to the number of all feature windows classified into the class. Re-
call is the ratio of the number of feature windows correctly classified into an
ADL class to the number of actual feature windows of the class. C4.5+HMM,
which uses C4.5 as a discriminative binary classifier and HMMs as a genera-
tive classifier, achieves relatively high accuracies for many ADLs and outper-
forms AdaBoost+HMM, which uses AdaBoost and HMMs. The accuracies of
AdaBoost+HMM for certain ADLs such as ‘feed fish,’ ‘take supplement,’ and
‘water plants’ whose duration was short were zero. Because of the short duration
of these ADLs, few feature windows were labeled as these ADLs. The AdaBoost
algorithm combines weak classifiers, which usually ignore a minor class because
they can achieve high accuracy by classifying all instances (windows) into a ma-
jor class. This led to zero accuracies for these ADLs. [16] achieved the highly
accurate recognition of primitive activities such as walking and sitting with a
combination of AdaBoost and HMM. However, it was difficult to use this com-
bination to recognize complex and/or brief ADLs.

The accuracies of C4.5+HMM for short duration ADLs such as ‘feed fish,’
‘practice aromatherapy,’ ‘take supplement,’ and ‘water plants’ were also rela-
tively low. This was caused by the head and foot margins of the labels. Hand-
crafted labels inevitably start and end with margins with no distinguishable
feature window. For example, in ‘take supplement,’ the margin can correspond
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Table 2. Averaged accuracies (precision / recall) of the recognition methods. The
values are percentages.

AdaBoost+HMM C4.5+HMM AdaBoost+HMM C4.5+HMM
(window) (window) (instance) (instance)

Env. 1 Env. 2 Env. 1 Env. 2 Env. 1 Env. 2 Env. 1 Env. 2

A: brush teeth 42.1/73.0 75.2/91.4 74.3/79.0 84.3/88.1 27.5/78.6 50.0/92.9 92.9/92.9 77.8/100
B: cook pasta 97.3/86.4 99.2/90.4 97.2/83.7 98.7/84.7 100/92.9 100/100 100/100 100/92.9
C: cook rice 76.2/93.1 79.1/96.0 88.3/85.1 88.3/87.5 54.2/92.9 66.7/100 81.2/92.9 87.5/100
D: feed fish 44.9/3.0 0.0/0.0 60.5/67.7 74.1/58.7 0.0/0.0 0.0/0.0 92.3/85.7 88.9/57.1
E: listen to music 86.7/81.2 50.2/65.3 84.7/90.1 58.4/82.4 80.0/85.7 45.0/64.3 93.3/100 72.2/92.9
F: make cocoa 0.0/0.0 87.9/72.0 74.6/64.4 85.2/76.4 0.0/0.0 84.6/78.6 91.7/78.6 92.9/92.9
G: make coffee 36.4/61.3 49.2/77.8 73.8/66.5 85.2/90.4 24.2/57.1 40.7/78.6 69.2/64.3 93.3/100
H: make green tea 16.4/16.6 69.9/7.0 50.1/13.8 34.5/72.9 18.8/21.4 100/7.1 40.0/14.3 45.8/84.6
I: make juice 86.1/72.9 27.0/53.1 79.7/78.2 76.4/70.4 92.3/85.7 17.9/50.0 93.3/100 92.3/85.7
J: make tea 0.0/0.0 72.1/47.8 24.5/70.3 72.7/42.3 0.0/0.0 60.0/42.9 47.6/71.4 75.0/42.9
K: practice aroma. 66.2/38.7 97.4/57.7 72.8/68.6 77.1/75.4 83.3/35.7 90.9/71.4 100/85.7 100/85.7
L: take supplement 0.0/0.0 0.0/0.0 50.8/69.2 73.7/62.4 0.0/0.0 0.0/0.0 70.6/85.7 90.9/71.4
M: vacuum 96.8/82.0 89.4/80.1 89.0/87.8 93.2/83.1 100/85.7 86.7/92.9 100/100 100/92.9
N: wash dishes 98.3/80.9 97.6/77.5 93.1/82.6 94.3/89.9 100/85.7 100/92.9 93.3/100 93.3/100
O: water plants 100/88.4 0.0/0.0 84.5/92.4 40.5/59.8 100/100 0.0/0.0 100/100 100/71.4

Average 56.5/51.8 59.6/54.4 73.2/73.3 75.8/75.0 52.0/54.8 56.2/58.1 84.4/84.8 87.3/84.7

to a time duration where a participant walks from a chair to a cabinet to get
a pill case. Feature windows involved in these margins may be wrongly classi-
fied. For an ADL with a short duration, the ratio of the time duration of its
margins to those of the whole label is large and so the accuracy becomes rela-
tively low. However, in C4.5+HMM, most feature windows in each label were
correctly classified. For ease of understanding, the AdaBoost+HMM (instance)
and C4.5+HMM (instance) columns in Table 2 show instance based accuracies,
which are computed based on majority voting. That is, we compute the accura-
cies based on the strategy: In an ADL instance, we regard the instance itself to be
classified into the majority vote of the recognition results of each feature window
included in the instance. While our recognition method depends on environmen-
tal conditions, C4.5+HMM achieved high accuracies in both environments.

Distinguishing between ‘make green tea’ and ‘make tea’ was difficult in both
environments as also described in Table 3, which shows the confusion matrices
of C4.5+HMM in environments 1 and 2. This is because the motions involved in
making green tea and making tea are the same, and most of the objects used in
these ADLs such as a kettle and a cup are also the same. In addition, each side
of the tea caddy in environment 1 is a single color; red or gold. In many sessions,
the camera on our device could capture only the red colored portion of the caddy
depending on how the caddy was held. Because the green tea caddy is also red,
it was difficult to distinguish these ADLs in environment 1. Also, the recognition
of such ADLs as ‘feed fish,’ ‘take supplement,’ and ‘water plants,’ which involve
small numbers of objects and do not have characteristic sound or hand activities
sometimes failed. In particular, when the colors of objects involved in the ADLs
were similar to those of objects used in other ADLs, it was difficult to distinguish
between these ADLs. In environment 2, for example, the color of the fish food
tin was similar to that of a kettle used for making tea.
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Table 3. Instance based confusion matrices of C4.5+HMM in environments 1 and 2.
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5.2 Contributions of each sensor

Table 4 (a) lists the accuracies of the C4.5+HMM recognition results in various
sensor combinations. For example, the ‘only camera’ row shows instance based
accuracies under a condition where the accuracies were computed on the basis of
only features extracted from the camera sensor data. Also, the ‘w/o camera’ row
shows accuracies under a condition where the accuracies were computed without
features extracted from the camera sensor data. Surprisingly, we could achieve
very high accuracies (about 75%) with just the camera. We also found that us-
ing only a camera could achieve almost the same accuracies as when combining
an accelerometer, a microphone, a direction sensor, and an illuminometer. The
camera played a significant role in ADL recognition when using our device. Sen-
sors with a high contribution were the camera, accelerometer, and microphone
in that order. The illuminometer and digital compass barely contributed to the
recognition and sometimes even decreased the accuracy.

Table 4 (b) lists the accuracies of each ADL when we use only the camera
and only the accelerometer. The accuracies of most ADLs when using only the
camera were high. However, it was difficult to distinguish between ‘make tea’
and ‘make green tea’ in environment 1 because the colors of the objects involved
in these ADLs were similar. Also, the accuracies for ‘cook pasta’ and ‘listen to
music,’ which were characterized by their sound features, were not very high.
With only the accelerometer, the accuracies of ‘brush teeth,’ ‘cook rice,’ and
‘wash dishes’ were relatively high. However, without the camera, it was difficult
to distinguish between these ADLs with high accuracy because all three ADLs,
which involved long periods of walking (and the sound of running water), were
similar. Moreover, without a camera, it is very difficult to distinguish such ADLs
as ‘feed fish,’ ‘practice aromatherapy,’ ‘take supplement,’ and ‘water plants.’
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Table 4. (a) instance based average accuracies (precision/recall) of C4.5+HMM in
various sensor combinations and (b) instance based average accuracies of C4.5+HMM
for each ADL with only camera features and with only accelerometer features.

(a) (b)

Sensor Condition Env. Accuracy

camera

1 76.7/73.2
only

2 75.1/71.8

w/o
1 77.7/75.2
2 71.8/67.6
1 28.3/32.9

micro-
only

2 21.8/28.6
phone

w/o
1 84.9/83.3
2 83.8/81.0
1 48.5/44.3

accele-
only

2 47.3/43.8
rometer

w/o
1 82.1/80.5
2 84.9/79.5
1 0.1/6.7

illumi-
only

2 0.4/6.7
nometer

w/o
1 81.7/82.4
2 89.6/88.0
1 23.1/21.9

digital
only

2 10.8/10.0
compass

w/o
1 85.9/84.8
2 89.9/87.0

only camera only accelerometer
Env. 1 Env. 2 Env. 1 Env. 2

A: brush teeth 75.0/85.7 41.2/50.0 71.4/71.4 59.1/92.9
B: cook pasta 88.9/57.1 31.2/35.7 39.3/78.6 47.1/57.1
C: cook rice 70.0/100 72.2/92.9 50.0/78.6 54.5/42.9
D: feed fish 90.9/76.9 88.9/57.1 100/7.1 0.0/0.0
E: listen to music 72.2/92.9 62.5/71.4 53.8/50.0 21.2/50.0
F: make cocoa 66.7/42.9 84.6/78.6 23.5/28.6 61.5/57.1
G: make coffee 84.6/78.6 73.3/78.6 18.8/42.9 23.6/92.9
H: make green tea 35.0/50.0 52.4/84.6 7.7/7.1 0.0/0.0
I: make juice 76.5/92.9 81.8/64.3 100/78.6 60.0/42.9
J: make tea 27.8/35.7 83.3/71.4 9.5/14.3 28.6/28.6
K: practice aroma. 100/71.4 100/92.3 0.0/0.0 100/14.3
L: take supplement 77.8/50.0 81.8/64.3 0.0/0.0 0.0/0.0
M: vacuum 100/78.6 85.7/85.7 86.7/92.9 78.6/78.6
N: wash dishes 85.7/85.7 87.5/100 66.7/71.4 75.0/85.7
O: water plants 100/100 100/50.0 100/42.9 100/14.3

Average 76.7/73.2 75.1/71.8 48.5/44.3 47.3/43.8

These ADLs have few distinguishable features other than visual features. We
consider that, without the camera, it is difficult to recognize the complex ADLs
studied here.

From the above results, we consider that the wrist is a good place on the body
to attach a single sensor device designed to capture ADLs that involve object
use. Hand posture (mean) contributed to the recognition of many ADLs such
as ‘brush teeth’ and ‘make juice’. However, it is difficult to capture the features
when using body locations other than the wrist. Without the mean features,
instance based precision and recall decreased to 82.3 and 79.5 in environment 1.
In addition, the wrist worn camera, which was the best contributor, can easily
capture hand manipulated objects. [22] uses a shoulder mounted robot with a
camera to recognize and record hand activities such as operating a keyboard
and operating a calculator. However, the robot has to control the direction of
its camera to track the hand.

6 Related work

We introduce related work that relates to vision based wearable sensing. [9]
achieves gait analysis and floor recognition by using a shoe mounted camera and
accelerometers. Floor recognition permits us to know the user’s location. [35]
recognizes kitchen activities by using RFID tags attached to kitchen objects and
a camera that overlooks the kitchen counter. An RFID reader bracelet worn on
a user’s wrist and the camera detect the use of the objects. [6] uses a camera and
a microphone attached to a chest strap to detect location related events such as
entering an office, kitchen, or courtyard. [29] uses two hat mounted cameras to
determine user’s actions in a game, e.g., aiming a gun. On the other hand, we
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use a wrist mounted camera, a microphone, an accelerometer, an illuminometer,
and a digital compass to recognize ADLs that involve object use by capturing
various characteristic features of manually used objects. Also, [1] uses a wrist
mounted camera to realize a virtual keyboard by tracking the fingers with the
camera.

There exists some works that recognize activities by using a single sensor
device embedded in a home. These works also attempt to reduce costs of sensor
deployment. For example, HydroSense [10] employs a water pressure sensor to
understand activities that involve water use.

7 Conclusion and future work

We implemented a prototype wristband sensor device to recognize ADLs that
involve the manual use of objects. The device is equipped with a camera, a mi-
crophone, an accelerometer, an illuminometer, and a digital compass to capture
various characteristic features of object use. This device enables us to recognize
various kinds of ADLs that existing wearable sensor devices cannot recognize
without environment embedded sensors. In the experiments, we confirmed that
the incorporation of a camera could achieve highly accurate ADL recognition.

As a part of our future work, we plan to solve the problems thrown up by
the experiment. In both the environments, it was difficult to distinguish between
such ADLs as ‘make green tea’ from ‘make tea’ that involve the same hand
activities and the similar colored objects. To cope with such scalability problems,
we should extract more detailed features such as SIFT features [18] from ‘good’
images, e.g., those including logos, while taking account of privacy concerns and
communication costs. Furthermore, our ML-based approach cannot deal with
situations where residents replace objects, e.g., residents frequently replace milk
cartons. Because the types of milk that a family regularly purchases may be
limited, we should instruct end users to prepare ADL training data that include
various product types of such objects or we should realize an object replacement
detection technique to induce users to prepare new training data.

We also plan to develop a new wristband sensor device that works without a
laptop. The device permits us to capture sensor data in real environments and
evaluate the performance of our method by using the data.
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