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Abstract

This paper describes an experimental study for discovering underlying laws of market capitalization
using BS (Balance Sheet) items. For this purpose, we apply law discovery methods based on
neural networks: RF5 (Rule Finder) discovers a single numeric law from data containing only
numeric values, RF6 discovers a set of nominally conditioned polynomials from data containing
both nominal and numeric values, and MCV regularizer is used to improve both the generalization
performance and the readability. Our preliminary experimental results show that these methods
are promising for discovering underlying laws from financial data.

1 Introduction

The discovery of a numeric law, e.g., Kepler’s third
law T = kr3/2, from data is the central part of sci-
entific discovery systems. By using such methods, we
can expect to discover underlying laws in various types
of scientific and business data including financial data.
As a traditional AI (Artificial Intelligence) approach,
the BACON systems (Langley, 1978; Langley et al.,
1987) and many variants (Langley and Zytkow, 1989;
Falkenhainer and Michalski, 1990; Nordhausen and
Langley, 1993) have employed a recursive combination
of two variables, but these systems have suffered from
combinatorial explosion problems, troublesome prepa-
rations of appropriate model functions, and a lack of
robustness against unknown samples. As an alterna-
tive to these conventional methods, we have proposed
a connectionist approach that specially employs a gen-
eralized polynomial network structure referred to as a
Rule Finder (RF) (see (Saito and Nakano, 1990)).

Among several implementations of the RF methods,
we use two selections: RF5 (Saito and Nakano, 1997b)
and RF6 (Nakano and Saito, 1999). We are indeed
surrounded by a lot of numeric data, and RF5 is a
method developed to effectively discover numeric laws
from such numeric data. In contrast, RF6 is a method
for coping with another type of data, which consists
of both numeric and nominal values that can be easily
observed in our daily life.

Moreover, data usually contain several irrelevant
variables. Since these variables only work to over-
fit the training data, the generalization performance

is generally degraded. Here the generalization means
the performance with new data. In order to discover
relevant weights of neural networks, we have proposed
a new method, called MCV regularizer (Saito and
Nakano, 2000), to learn a distinct squared penalty fac-
tor for each weight as a minimization problem using
the cross-validation error. Since only the irrelevant
weights are severely penalized, and these values are
expected to be very small, the corresponding irrel-
evant variables will be negligible. In addition, this
makes the interpretation of the discovered laws easy.

This paper describes an experimental study for dis-
covering laws of market capitalization using BS (Bal-
ance Sheet) items. Section 2 briefly explains the law
discovery methods used in this study. Section 3 re-
ports our experimental results.

2 Law Discovery Methods
2.1 RF5 algorithm
Let (x1, · · · , xK , y) be a vector of variables describ-
ing each example, where xk is a numeric explanatory
variable and y is a numeric target variable. As a class
of numeric formula y(x;Θ), we consider a generalized
polynomial, whose power values are not restricted to
integers, expressed by

y(x;Θ) = w0 +
J∑

j=1

wj

K∏
k=1

x
wjk

k

= w0 +
J∑

j=1

wj exp

(
K∑

k=1

wjk lnxk

)
.(1)



Here each parameter wj or wjk is an unknown real
number, and J is an unknown integer corresponding
to the number of terms. Θ is an M -dimensional pa-
rameter vector constructed by arranging parameters
wj , j = 0, · · · , J , and wjk , j = 1, · · · , J, k = 1, · · · ,K.
Note that Eq. (1) can be regarded as a feedforward
computation of a three-layer neural network (Saito
and Nakano, 1997b).

Let D = {(xµ, yµ), µ = 1, · · · , N} be a set of train-
ing data, where N is the number of examples. Here
we assume that each training example (xµ, yµ) is in-
dependent and identically distributed. Now, our ulti-
mate goal in discovering laws is defined as a problem
of minimizing the generalization error, that is, finding
the optimal estimator Θ∗(D) that minimizes

G(Θ∗) = EDET (yν − y(xν ;Θ∗(D)))2 , (2)

where T = (xν , yν) denotes test data independent of
the training data D.

The least-squares estimate of Θ∗, denoted by Θ̂,
minimizes the error sum of squares

E1(Θ) =
1
2

N∑
µ=1

(yµ − y(xµ;Θ))2 . (3)

In order to efficiently and constantly obtain good
learning results, we employ a second-order learning
algorithm called BPQ (Saito and Nakano, 1997a). By
adopting the quasi-Newton method (Gill et al., 1981;
Luenberger, 1984) as a basic framework, we calculate
the descent direction on the basis of a partial BFGS
update and then efficiently calculate a reasonably ac-
curate step-length as the minimal point of a second-
order approximation.

2.2 RF6 algorithm
Let (q1, · · · , qK1 , x1, · · · , xK2 , y) be a vector of vari-
ables describing an example, where qk is a nominal ex-
planatory variable. For each qk we introduce a dummy
variable qkl defined by

qkl =
{

1 if qk matches the l-th category,
0 otherwise, (4)

where l = 1, · · · , Lk, and Lk is the number of distinct
categories appearing in qk. As a true model governing
data, we consider the following set of multiple rules

if
∧

qkl∈Q(1)

qkl = 1 then y = y(x;Θ(1)),

· · · · · · · · · · · · ,
if

∧
qkl∈Q(R)

qkl = 1 then y = y(x;Θ(R))
(5)

where Q(r) denotes a set of dummy variables corre-
sponding to the r-th nominal condition and R is the
number of rules.

We introduce a framework to learn nominal condi-
tions from data.

g(q; V (r)) = exp

(
K1∑
k=1

Lk∑
l=1

v
(r)
kl qkl

)
, (6)

where V (r) denotes a vector of parameters v
(r)
kl . By

setting the adequate values of V (r), we can see that
the following formula can closely approximate the final
output value from a set of multiple nominally condi-
tioned polynomials, defined by Eq. (5).

F (q,x;Ψ) =
R∑

r=1

g(q; V (r)) y(x;Θ(r)). (7)

Here Ψ consists of all parameters V (r),Θ(r), r =
1, · · · , R. With an adequate number J , the following
can completely describe Eq. (7),

y(q,x;Θ) = w0+ (8)
J∑

j=1

wj exp

(
K1∑
k=1

Lk∑
l=1

vjkl qkl +
K2∑
k=1

wjk lnxk

)
.

Eq. (8) can also be regarded as the feedforward com-
putation of a three-layer neural network.

2.3 MCV regularizer
To improve both the generalization performance and
the readability, we consider a distinct penalty fac-
tor for each weight. Hereafter, an M -dimensional
vector λ is defined by λ = (λ1, · · · , λM )T , and
an M -dimensional diagonal matrix Λ is defined by
diag(Λ) = (exp(λ1), · · · , exp(λM )), where aT denotes
a transposed vector of a. Here, since the penalty fac-
tor must be non-negative, we adopted exp(λm), in-
stead of a standard parameterization λm. As a result,
the discovery of laws subject to Eq. (1) can be defined
as the following learning problem in neural networks.

E(Θ) = E1(Θ) +
1
2
ΘTΛΘ. (9)

In our own experiments (Saito and Nakano, 1997c),
the combination of the squared penalty term and the
BPQ algorithm drastically improves the convergence
performance in comparison to the other combinations,
while at the same time bringing about excellent gen-
eralization performance.

We introduce an objective function for penalty fac-
tors derived from the procedure of cross-validation,
which is frequently used to evaluate the generalization
performance of learned networks (Bishop, 1995). The
procedure of cross-validation divides the data D at
random into S distinct segments (Gs, s = 1, · · · , S);
it uses S − 1 segments for training, and uses the re-
maining one for the test. This process is repeated



Table 1: target and explanatory variables
names meanings
y market capitalization
x1 current assets
x2 property and equipment
x3 total assets
x4 current liabilities
x5 long-term debt
x6 total liabilities

S times by changing the remaining segment, and the
generalization performance is evaluated by using the
following MSE (mean squared error) over all S test
results.

MSECV =
1
N

S∑
s=1

∑
ν∈Gs

(
yν − y(xν ; Θ̂s)

)2

.(10)

Here Θ̂s denotes the optimal weights obtained by min-
imizing the following objective function for weights

Es(Θs) =
1
2

∑
µ�∈Gs

(yµ−y(xµ;Θs))2+
1
2
ΘT

s ΛΘs.(11)

The extreme case of S = N is known as the leave-
one-out method, which is often used for a small data
size. Note that Eq. (10) is regarded as a reasonable
approximation to Eq. (2) for a given data set D.

According to the implicit function theorem, since
Θ̂s can be regarded as a vector consisting of implicit
functions of λ, Eq. (10) can be defined as the objective
function for penalty factors. Thus, we can calculate
the λ̂ that minimizes Eq. (10). Then, with λ̂, we
calculate the Θ̂ that minimizes Eq. (9). Finally, Θ̂ is
adopted as the final weight vector of the discovered
law (Saito and Nakano, 2000).

3 Law Discovery from Financial Data
3.1 Experimental data
Our experiments used 953 companies listed on the first
section of the Tokyo Stock Exchange, where banks,
and insurance, securities, and recently listed compa-
nies were excluded. The market capitalization of each
company was calculated by multiplying the shares of
outstanding stocks with the stock price at the end of
October, 1999. As the first step in this study, we se-
lected six fundamental items from all of the BS items,
and the values of these items were also calculated at
the end of October, 1999. Table 1 summarizes target
and explanatory variables.

3.2 Experimental settings
Before the analysis, the following scaling was ap-
plied to the variables: ỹ = (y − avg(y))/std(y), and
ln x̃k = (lnxk − avg(lnxk))/std(lnxk), k = 1, · · · , 6.

Table 2: RF5+MCV results
MSE MSECV

avg std avg std
J = 1 0.2878 0.0031 0.3090 3.0814
J = 2 0.2350 0.0029 0.2437 2.7761
J = 3 0.2314 0.0026 0.2516 2.6004

When a distinct squared penalty factor is adopted for
each weight, this penalty term is known to be consis-
tent with any linear scaling of input and/or output
variables. Here consistency requires that we obtain
equivalent networks that differ only by the scaling of
the weights as given (Bishop, 1995).

In the experiments, the initial values for the weights
wjk were independently generated according to a nor-
mal distribution with a mean of 0 and a standard devi-
ation of 1; the initial values for the weights wj were set
to 0. The initial values for the penalty factors λ were
set to 0, i.e., Λ was set to the identical matrix. The it-
eration was terminated when the gradient vector was
sufficiently small, i.e., maxm{‖∂/∂θm E(Θ)‖} < 10−6

for learning over Θ; maxm{‖∂/∂λm MSECV (λ)‖} <
10−6 for learning over λ. The cross-validation error
was calculated by using the leave-one-out method, i.e.,
S = N .

3.3 RF5+MCV result

The number of hidden units was changed from 1 to 3
(J = 1, 2, 3). Table 2 shows the performance of the
learning results. The MSE values were minimized
when J = 3, while the MSECV values were minimized
when J = 2. This indicates the suitable number of
hidden units is considered to be 2. When J = 2, an
example of the discovered laws was as follows:

y = −25055.171654
+6.983186x+0.000008

1 x+0.013135
2 x+0.967862

3

x+0.000000
4 x−0.000001

5 x−0.000001
6

−8.205773x+0.000005
1 x+0.000005

2 x+0.592110
3

x+0.000002
4 x−0.006089

5 x+0.378892
6 , (12)

where the weight values were rounded off to the sev-
enth decimal. These weight values were transformed
to correspond to the original scale of variables. When
the weight values were rounded off to the second dec-
imal, the discovered law was as follows:

y = −25055.2 + 7.0x1.0
3 − 8.2x0.6

3 x+0.4
6 . (13)

Note that existing numeric discovery methods can-
not find such laws, as described in Eq. (13), without
preparing some appropriate prototype functions. This
point is an important advantage in RF5 over existing
methods.



3.4 RF6+MCV result
Since laws of market capitalization can differ accord-
ing to the type of industry, the 33 classifications of the
Tokyo Stock Exchange were used as a nominal vari-
able. In this experiment, to understand the effect of
the nominal variable intuitively, we fixed the number
of hidden units at 1. An example of the discovered
laws was as follows:

y = 12944.3 + 1.9 exp(−1.4q1 − 1.3q2 − 1.0q3
−0.4q4 − 0.6q5 − 0.7q6 − 0.5q7 + 0.2q8
−1.0q9 − 0.6q11 − 0.9q12 − 0.3q13 − 1.6q20
−0.8q21 − 0.7q22 − 0.9q23 − 1.2q24 − 1.1q26
−1.0q31 − 0.9q32)x+0.7

2 x+1.0
3 x−0.7

6 , (14)

where the above qk denotes the k-th type of industry,
and the weight values are rounded off to the second
decimal. Here the MSE and MSECV values of the
discovered law were 0.2365 and 0.2668, respectively.
This formula can be easily decomposed into a set of
rules. Since the second term on the right hand side
of Eq. (14) is always positive, a weight for qk indi-
cates the price setting tendency of the k-th type of
industry for similar BS situations. More specifically,
Eq. (14) tells us that the pharmaceutical industry (q8)
is likely to have a high setting due to the largest weight
(0.2), while the electric power or gas industry (q20) is
likely to have a low setting due to the smallest weight
(−1.6).

4 Conclusion
This paper has reported an experimental study for
discovering underlying laws of market capitalization
using BS items. Namely, both a single numeric law
and a set of nominally conditioned polynomials were
discovered by using RF5 and RF6 algorithms. Our
preliminary experimental results showed that these
methods are promising for discovering laws from fi-
nancial data. Currently, we are investigating possible
interpretations of the laws discovered in experiments.
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