
Discovery of Nominally Conditioned

Polynomials using Neural Networks, Vector
Quantizers and Decision Trees

Kazumi Saito1 and Ryohei Nakano2

1 NTT Communication Science Laboratories
2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japan

saito@cslab.kecl.ntt.co.jp
2 Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan
nakano@ics.nitech.ac.jp

1 Introduction
The discovery of a numeric law, e.g., Kepler’s third law T = kr3/2, from data
is the central part of scientific discovery systems. The data considered in many
real fields usually contains both nominal and numeric values. Thus, we consider
discovering a law that governs such data in the form of a rule set of nominally
conditioned polynomials. Recently, a connectionist method called RF6 [1] was
proposed to solve problems of this type. RF6 can learn multiple nominally con-
ditioned polynomials with single neural networks; besides, RF6 can discover gen-
eralized polynomials whose power values are not restricted to integers. However,
for real complex problems, RF6 will suffer from a combinatorial explosion in the
process of restoring rules from a trained neural network. Therefore, this paper
proposes a new version of RF6 by greatly improving its procedure of restoring
nominally conditioned polynomials from a trained neural network.

2 Restoring Nominally Conditioned Polynomials
Let {q1, · · · , qK1 , x1, · · · , xK2 , y} be a set of variables describing an example,
where qk is a nominal explanatory variable, xk is a numeric explanatory variable
and y is a numeric target variable. For each qk we introduce a dummy variable
expressed by qkl, i.e., qkl = 1 if qk matches the l-th category; otherwise 0, where
l = 1, · · · , Lk, and Lk is the number of distinct categories appearing in qk. As a
true model governing data, we consider the following set of multiple nominally
conditioned polynomials whose power values are not restricted to integers.

if
∧

qkl∈Qi

qkl = 1 then y(x;Θi) = wi
0 +

Ji∑
j=1

wi
j

K2∏
k=1

x
wi

jk

k , i = 1, · · · , I∗ (1)

where I∗ is the number of rules, Qi denotes a set of dummy variables corre-
sponding to the i-th nominal condition and Θi is a parameter vector used in the
i-th generalized polynomial. Here, each parameter wi

j or wi
jk is a real number,

and J i is an integer corresponding to the number of terms.

Consider a function c(q;V) = exp(
∑K1

k=1

∑Lk

l=1 vklqkl), where V denotes a
vector of parameters vkl. We can show [1] that with an adequate number J , cer-
tain type of neural network y(q, x;Θ) = w0+

∑J
j=1 wj exp(

∑K1
k=1

∑Lk

l=1 vjkl qkl+∑K2
k=1 wjk lnxk) can closely approximate Eq. (1). Let D = {(qµ, xµ, yµ) : µ =

1, · · · , N} be a set of training data, where N is the number of examples. Then,
each parameter can be estimated by minimizing an objective function E(Θ) =∑N

µ=1(y
µ − y(qµ, xµ;Θ))2 +ΘT ΛΘ, where a penalty term is added to improve

both the generalization performance and the readability of the learning results.
2.1 Restoring Procedures
Assume that we have already obtained a neural network trained as the best
law-candidate. In order to restore a set of nominally conditioned polynomials as
described in Eq. (1), we need a suitable efficient procedure.

RF6 [1] has a decomposition procedure for this purpose; i.e., a set of nom-
inally conditioned terms is extracted from each hidden unit, and then each of
these terms is in turn combined through all of the hidden units. When α de-
notes the average number of terms over each hidden unit, the total number of
these combined terms approximately amounts to αJ . Thus, as the number of
hidden units or the number of nominal variables increases, this procedure comes
to suffer from a combinatorial explosion.

As another approach, we can extract nominally conditioned polynomials for
each training example, and simply assemble them to obtain a final set of rules
as a law. Then, the following set of nominally conditioned polynomials can be
obtained directly from the training data and the trained neural network.

if
∧

{k,l:qµ
kl=1}

qkl = 1 then y = ŵ0 +
J∑

j=1

cµ
j

K2∏
k=1

x
ŵjk

k , µ = 1, · · · , N, (2)

where cµ
j denotes the j-th coefficient calculated from the nominal values of the

µ-th training example, i.e., cµ
j = ŵj exp(

∑K1
k=1

∑Lk

l=1 v̂jklq
µ
kl). However, in com-

parison with the true model governing the data defined in Eq. (1), the results of
this naive procedure can be far from desirable because they will contain a large
number of similar polynomials, and each nominal condition will be too specific
in terms of representing only one training example.

Based on the above considerations, we propose a new restoring procedure.
step1. finding subspace representatives
In order to find subspace representatives, a set of coefficient vectors {cµ =
(cµ

1 , · · · , cµ
J)

T : µ = 1, · · · , N} calculated from the training data is quantized
into a set of representative vectors {ri = (ri

1, · · · , ri
J)

T : i = 1, · · · , I}, where
I is the number of representatives. Among several vector quantization (VQ)
algorithms, we employ the k-means algorithm due to its simplicity.
step2. criterion for model selection
Consider the following set of rules using the representative vectors.

if i(q) = i then y = ŵ0 +
J∑

j=1

ri
j

K2∏
k=1

x
ŵjk

k , i = 1, · · · , I, (3)

where i(q) denotes a function that returns the index of the representative vec-
tor minimizing the distance, i.e., i(q) = argmini

∑J
j=1(cj − ri

j)
2. Here, since

each element of c is calculated as cj = ŵj exp(
∑K1

k=1

∑Lk

l=1 v̂jklqkl), Eq. (3)
can be applied to a new example, as well as the training examples. Thus,
to determine an adequate number I of representatives, we employ the pro-
cedure of cross-validation which divides the data D at random into S dis-
tinct segments {Ds : s = 1, · · · , S}. Namely, by using the final weights Θ̂

(s)

trained without data segment Ds, we can define a cross-validation error func-
tion CV = N−1

∑S
s=1

∑
ν∈Ds

(yν − (ŵ(s)
0 +

∑J
j=1 r

i(qν)
j

∏K2
k=1(x

ν
k)

ŵ
(s)
jk))2.

step 3. generating conditional parts
The indexing functions {i(q)} described in Eq. (3) must be transformed into a
set of nominal conditions as described in Eq. (1). One reasonable approach is to
perform this transformation by solving a classification problem whose training
examples are {(qµ, i(qµ)) : µ = 1, · · · , N}, where i(qµ) indicates the class label
of a training example qµ. For this classification problem, we employ the c4.5
decision tree generation program due to its wide availability. From the generated
decision tree, we can easily obtain the final rule set as described in Eq. (1).

Clearly, these steps can be executed within the computational complexity of
linear order with respect to the numbers of training examples, variables, hidden
units, representatives, iterations performed by the k-means algorithm, and data
segments used concerning cross-validation; i.e., this new restoring procedure can
be much more efficient than the old decomposition procedure which requires
the computational complexity of exponential order. Hereafter, the law discovery
method using the above restoring procedure is called RF6.2.
2.2 Evaluation by Experiments
By using three data sets, we evaluated the performance of RF6.2. In the k-
means algorithm, initial representative vectors {ri} are randomly selected as a
subset of coefficient vectors {cµ}. For each I, trials are repeated 100 times with
different initial values, and the best result is reported. The cross-validation error
is calculated by using the leave-one-out method, i.e., S = N . The candidate
number I of representative vectors is incremented in turn from 1 until the cross-
validation error increases. The c4.5 program is used with the initial settings.
Artificial data set.
We consider an artificial law described by

if q21 = 1 ∧ (q31 = 1 ∨ q33 = 1) then y = 2 + 3x−1
1 x3

2 + 4x3x
1/2
4 x

−1/3
5

if q21 = 0 ∧ (q32 = 1 ∨ q34 = 1) then y = 2 + 5x−1
1 x3

2 + 2x3x
1/2
4 x

−1/3
5

else then y = 2 + 4x−1
1 x3

2 + 3x3x
1/2
4 x

−1/3
5

(4)

where we have three nominal and nine numeric explanatory variables, and the
numbers of categories of q1, q2 and q3 are set as L1 = 2, L2 = 3 and L3 = 4,
respectively. Clearly, variables q1, x6, · · · , x9 are irrelevant to Eq. (4). Each value
of nominal variables q1, q2, q3 is randomly generated so that only one dummy
variable becomes 1, each value of numeric variables x1, · · · , x9 is randomly gener-
ated in the range of (0, 1), and we get the corresponding value of y by calculating

Eq. (4) and adding Gaussian noise with a mean of 0 and a standard deviation
of 0.1. The number of examples is set to 400.

In this experiment, a neural network was trained by setting the number of
hidden units J to 2. We examined the performance of the experimental results
obtained by applying the k-means algorithm with the different number of rep-
resentative vectors, where the RMSE (root mean squared error) was used for
the evaluation; the training error was evaluated as a rule set by using Eq. (3);
the cross-validation error was calculated by using the function CV ; and the gen-
eralization error was also evaluated as a rule set and measured by using a set
of noise-free 10, 000 test examples generated independently of the training ex-
amples. The experimental results showed that the training error almost mono-
tonically decreased (2.090, 0.828, 0.142, and 0.142 for I = 1, 2, 3, and 4, re-
spectively); the cross-validation error was minimized when I = 3 (2.097, 0.841,
0.156, and 0.160 for I = 1, 2, 3, and 4, respectively, i.e., indicating that an ad-
equate number of representative vectors is 3); and the generalization error was
also minimized when I = 3 (2.814, 1.437, 0.320, and 0.322 for I = 1, 2, 3, and
4, respectively). Since the cross-validation and generalization errors were mini-
mized with the same number of representative vectors, we can consequently see
that the desirable model was selected by using the cross-validation.

By applying the c4.5 program, we obtained the following decision tree whose
leaf nodes correspond to the following.

q21 = 0: q34 = 1: 2 (83.0) ⇔ r2 = (+5.04,+2.13)
| q34 = 0: q32 = 0: 3 (129.0) ⇔ r3 = (+3.96,+2.97)
| | q32 = 1: 2 (53.0) ⇔ r2 = (+5.04,+2.13)
q21 = 1: q34 = 1: 3 (36.0) ⇔ r3 = (+3.96,+2.97)
| q34 = 0: q32 = 0: 1 (73.0) ⇔ r1 = (+3.10,+4.07)
| | q32 = 1: 3 (26.0) ⇔ r3 = (+3.96,+2.97)

where the coefficient values were rounded off to the second decimal place; each
number of training examples arriving at the corresponding leaf node is shown in
parenthesis. Then, the following rule set was straightforwardly obtained.

if q21 = 1 ∧ (q31 = 1 ∨ q33 = 1)
then y = 2.01 + 3.10x−1.00

1 x+3.01
2 + 4.07x+1.02

3 x+0.51
4 x−0.33

5

if q21 = 0 ∧ (q32 = 1 ∨ q34 = 1)
then y = 2.01 + 5.04x−1.00

1 x+3.01
2 + 2.13x+1.02

3 x+0.51
4 x−0.33

5

else then y = 2.01 + 3.96x−1.00
1 x+3.01

2 + 2.97x+1.02
3 x+0.51

4 x−0.33
5 .

(5)

Recall that each nominal variable matches only one category, e.g., (q32 = 1∧q34 =
0) ≡ (q32 = 1). Therefore, although some of the weight values were slightly
different, we can see that a law almost equivalent to the true one was found.
Financial data set.
We performed an experimental study to discover underlying laws of market capi-
talization from six fundamental BS (Balance Sheet) items and the type of indus-
try (the 33 classifications of the Tokyo Stock Exchange). Our experiments used
data from 953 companies listed on the first section of the TSE, where banks,

and insurance, securities and recently listed companies were excluded. In order
to understand the effect of the nominal variable intuitively, the number of hidden
units was fixed at 1. The cross-validation error was minimized at I = 3. Then,
the following rule set was obtained.

if
∨

ql∈Qi

ql = 1 then y = 12891.6 + rix+0.668
2 x+1.043

3 x−0.747
6 , i = 1, 2, 3 (6)

where r1 = +1.907, r2 = +1.122, r3 = +0.657 and each of the nominal con-
ditions was as follow: Q1 = {“Pharmaceuticals”, “Rubber Products”, “Metal
Products”, “Machinery”, “Electrical Machinery”, “Transport Equipment”, “Pre-
cision Instruments”, “Other Products”, “Communications”, “Services”}; Q2 =
{“Foods”, “Textiles”, “Pulp & Paper”, “Chemicals”, “Glass & Ceramics”, “Non-
ferrous Metals”, “Maritime Transport”, “Retail Trade”}; and Q3 = {“Fisheries”,
“Mining”, “Construction”, “Oil & Coal Products”, “Iron & Steal”, “Electric-
ity & Gas”, “Land Transport”, “Air Transport”, “Wearhousing”, “Wholesale”,
“Other Financing Business”, “Real Estate”}. Since the second term on the right
hand side of the polynomials appearing in Eq. (6) is always positive, each of
the coefficient values ri can indicate the stock price setting tendency of industry
groups in similar BS situations, i.e., the discovered law tells us that industries
appearing in Q1 are likely to have a high setting, while those in Q3 are likely to
have a low setting.
Automobile data set.
The Automobile data set contained data on the car and truck specifications in
1985, and was used to predict prices based on these specifications. The data set
had 159 examples with no missing values, and consisted of 10 nominal and 14
numeric explanatory variables and one target variable (price). In this experiment,
since the number of examples was small, the number of hidden units was also set
to 1. The cross-validation error was minimized at I = 3. The polynomial part of
the discovered law was as follows:

y = 1163.16 + rix+1.638
2 x+0.046

4 x−1.436
5 x+0.997

6 x−0.245
9 x−0.071

13 (7)

where r1 = +1.453, r2 = +1.038, r3 = +0.763 and the relatively simple nominal
conditions were obtained. Similarly as described for the experiments using the
financial data set, since the second term on the right hand side of Eq. (7) is always
positive, the coefficient value ri can indicate the car price setting tendency for
similar specifications. Actually, the discovered law verbally told us that cars of
a high price setting are: “5-cylinder ones”, “BMW’s”, “convertibles”, “VOLVO
turbos”, “SAAB turbos”, and “6-cylinder turbos”; cars of a middle price setting
are: “PEUGOT’s”, “VOLVO non-turbos”, “SAAB non-turbos”, “HONDA 1bbl-
fuel-system ones”, “MAZDA fair-risk-level ones”, “non-BMW non-turbos & 6-
cylinder ones”, “non-5-cylinder turbos & fair-risk-level ones”; and other cars are
of a low price setting.

Reference
1. R. Nakano and K. Saito. Discovery of a set of nominally conditioned polynomials.

In Proc. 2nd Int. Conference on Discovery Science, LNAI 1721, pp. 287–298, 1999.

