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Abstract

This paper proposes a new regularization method
based on the MDL (Minimum Description Length)
principle. An adequate precision weight vector is
trained by approximately truncating the maximum like-
lihood weight vector. The main advantage of the pro-
posed regularizer over existing ones is that it automat-
ically determines a regularization factor without as-
suming any specific prior distribution with respect to
the weight values. Our experiments using a regres-
sion problem showed that the MDL regularizer signif-
icantly improves the generalization error of a second-
order learning algorithm and shows a comparable gen-
eralization performance to the best tuned weight-decay
regularizer.

1. Introduction

It has been found that adding some regularization
(penalty) term to an objective function in the learning
of neural networks can lead to significant improvements
in network generalization. Such terms have been pro-
posed on the basis of several viewpoints such as weight-
decay [7], function-smoothing [11, 3], weight-pruning
[6, 8], and Bayesian priors [9, 17]. Some are calculated
by using simple arithmetic operations, while others uti-
lize higher-order derivatives.

Most of these methods require an adequate regu-
larization factor be determined by using some method
which can reasonably estimate the generalization
performance. Resampling methods such as cross-
validation [16] or bootstrap [4] have been widely used
for this purpose, but they require a large amount of
computation even for mid-scale problems. On the other
hand, Bayesian methods can automatically determine
a regularization factor (hyperparameter value) by as-
suming some specific prior distribution with respect to
the weight values; however, we generally cannot know

a suitable prior distribution in advance.

Standard statistical criteria such as AIC [1] or MDL
[12] cannot be applied directly to determine the regu-
larization factor, because they only compromise on the
number of model parameters. Quite recently, however,
it has been shown in the context of the VC-dimension
that the model complexity of neural networks increases
when we allow a wider range of weight values [2]. Thus,
it would be expected that some statistical criterion can
be used to automatically determine a value of the reg-
ularization factor without assuming any specific prior
distribution.

This paper proposes a new regularization method
based on the MDL principle. Section 2 explains the
proposed MDL regularizer and how to embed it in a
second-order learning algorithm. Section 3 shows ex-
perimental results for a regression problem and evalu-
ates the generalization performance of the MDL regu-
larizer in comparison to a weight-decay regularizer.

2. Regularization technique based on
MDL principle

2.1. Background

Let {(x1, y1), · · · , (xm, ym)} be a set of examples,
where xt denotes an n-dimensional input vector and
yt a target value corresponding to xt. In a three-
layer neural network, let h be the number of hidden
units, wj (j = 1, · · · , h) be the weight vector be-
tween all the input units and the hidden unit j, and
w0 = (w00, · · · , w0h)T be the weight vector between
all the hidden units and the output unit; wj0 means a
bias term and xt0 is set to 1. Note that aT denotes the
transposed vector of a. Hereafter, a vector consisting
of all parameters, (wT

0 , · · · ,wT
h )T , is simply expressed

as Φ = (φ1, · · · , φN )T , where N(= nh + 2h + 1) de-
notes the dimension of Φ. Then, the output value of



the three-layer neural network can be described as

z(xt;Φ) = w00 +
h∑

j=1

w0jf(wT
j xt), (1)

where

f(v) =
1

1 + e−v
.

Now, we assume that each value of y was corrupted
by Gaussian noise with a mean of 0 and an unknown
standard deviation of σ. Then, the learning problem
in neural networks can be formalized as the maximum
likelihood problem which maximizes the logarithmic
likelihood

m∑
t=1

logP (yt|xt;Φ, σ2)

= −m

2
log 2πσ2 − 1

2σ2

m∑
t=1

(yt − z(xt;Φ))2 . (2)

Here, since the maximum likelihood weight vector, Φ̂,
which maximizes (2), is nothing but the least-squares
estimate for the second term of (2), it can be calculated
by using some learning algorithm.

2.2. MDL regularizer

The intuitive idea of the MDL principle [12] can be
explained as a communication problem where a sender
wishes to transmit a data set to a receiver using a mes-
sage of the shortest possible length. In regression prob-
lems, we suppose that the input data values are already
known to the receiver, since we are trying to predict the
output data, using the input data.

Now, by sending an adequate weight vector, the
receiver can estimate some approximated output val-
ues. Thus, by sending only the difference between the
actual and approximated values, the receiver can ob-
tain the complete output data values. In the case of
the maximum likelihood weight vector Φ̂, the message
length for the difference values can be optimally given
by −∑m

t=1 logP (yt|xt; Φ̂, σ2); however, the message

length for Φ̂ usually requires a large number of bits,
due to its high precision. To compromise these two
message lengths, Rissanen [12] proposed a criterion for
deriving the standard MDL criterion, by introducing
a truncated weight vector Φ̄ for Φ̂. Here, Rissanen’s
criterion is almost equivalent to the following one.

min
Φ̄,σ2

{
−

m∑
t=1

logP (yt|xt; Φ̄, σ2) −
N∑

k=1

log |φ̂k − φ̄k|
}

(3)

Indeed, the second term goes down if we use a coarser
precision, while the first term generally increases be-
cause the coarser truncated vector can deviate more
from Φ̂.

On the basis of the criterion (3), we propose a new
regularization technique. For any truncated weight
vector Φ̄, there exists an N -dimensional vector u =
(u1, · · · , uN)T such that φ̄k = f(uk)φ̂k. Here, recall
that f(uk) represents a sigmoidal function, f(uk) =
1/(1 + e−uk), and 0 < f(uk) < 1. Conversely, for

any vector u, f(uk)φ̂k gives an approximation to some
truncated weight value φ̄k. Thus, the following crite-
rion can be regarded as a continuous version of (3).

min
u,σ2

{
−

m∑
t=1

logP (yt|xt; Φ̄(u)), σ2)

−
N∑

k=1

log |φ̂k − f(uk)φ̂k|
}

≡ min
u,σ2

{
m

2
log 2πσ2 +

1

2σ2

m∑
t=1

(
yt−z(xt; Φ̄(u))

)2

−
N∑

k=1

log(1 − f(uk)) −
N∑

k=1

log |φ̂k|
}

(4)

Note that the fourth term,
∑N

k=1 log |φ̂k|, is constant
and independent of the minimization process. Inciden-
tally, directly minimizing (3) with respect to Φ̄ will be
a tough constrained minimization problem, because we
must always assure that Φ̄ is a truncation of Φ̂.

In the minimization problem defined by (4), since
there are two kinds of parameters, u and σ2, we employ
a coordinate descent strategy. Namely, for a fixed u,
by differentiating (4) with respect to σ2 and setting it
to 0, we obtain the relative minimum for σ2 as follows:

σ̂2 =
1

m

m∑
t=1

(
yt − z(xt; Φ̄(u))

)2
. (5)

Conversely, for a fixed σ̂2, by ignoring independent
terms and multiplying σ̂2, (4) can be equivalently
transformed to a problem which minimizes the follow-
ing objective function.

F (u) = F1(u) + σ̂2F2(u) (6)

where F1(u) =
1

2

m∑
t=1

(
yt − z(xt; Φ̄(u))

)2
,

F2(u) = −
N∑

k=1

log(1 − f(uk)).

Here, we can see that the second derivative of F2(u)



with respect to uk is always positive, since

∂F2(u)

∂uk
= f(uk),

∂2F2(u)

∂u2
k

= f(uk)(1 − f(uk)) > 0.

Therefore, the second term of (6) can be regarded as a
regularization term whose regularization factor is au-
tomatically determined by (5).

2.3. Second-order learning algorithm

In order to minimize the objective function defined
by (6), we employ a newly invented second-order learn-
ing algorithm based on a quasi-Newton method [5],
called BPQ [14], where the descent direction, ∆u, is
calculated on the basis of a partial BFGS update and
a reasonably accurate step-length, λ, is efficiently cal-
culated as the minimal point of a second-order approx-
imation. In first-order learning algorithms [13] which
calculate the search direction as the gradient direction,
a large number of iterations are often required until
convergence. On the other hand, in existing second-
order methods [5] which converge more quickly by us-
ing both gradient and curvature information, it is dif-
ficult to suitably scale up for large problems, and a
large amount of computation is required for calculating
the optimal step-length. The newly developed second-
order algorithm called BPQ can be reasonably scaled
up by introducing a storage space parameter, and the
computational complexity for calculating the optimal
step-length is reasonably small, almost equivalent to
that of gradient vector evaluation. Incidentally, we can
employ other learning algorithms, but BPQ has worked
the most efficiently among several representative algo-
rithms in our experiences [14].

In BPQ, the descent direction is calculated from the
gradient vector, by directly applying the partial BFGS
update. Here, the derivative of (6) with respect to uk
is calculated by

∂F (u)

∂uk
=

∂F1(u)

∂uk
+ σ̂2 ∂F2(u)

∂uk

∂F1(u)

∂uk
=

∂F1(Φ̄)

∂φ̄k

∂φ̄k(uk)

∂uk

=
∂F1(Φ̄)

∂φ̄k
f(uk)(1 − f(uk))φ̂k

∂F2(u)

∂uk
= f(uk)

where ∂
∂φ̄k

F1(Φ̄) can be calculated by using the stan-

dard back propagation algorithm.

In order to explain the step-length calculation, we
introduce Pearlmutter’s operators [10] defined by

�∆u{F (u)} =
∂

∂λ
F (u+ λ∆u)|λ=0,

�2
∆u{F (u)} =

∂2

∂λ2
F (u+ λ∆u)|λ=0.

Then, when �∆u{F (u)} < 0 and �2
∆u{F (u)} > 0, the

optimal step-length of a second-order approximation to
the objective function is expressed by

λ = −�∆u{F (u)}
�2

∆u{F (u)} .

Here, the method for coping with the other cases is
exactly the same as described in [14].

In the case of the objective function defined by (6),
the first-order derivative is calculated as follows:

�∆u{F (u)} = �∆u{F1(u)} + σ̂2�∆u{F2(u)}
�∆u{F1(u)} =

(∇Φ̄F1(Φ̄(u))
)T
Φ̄′(u)

�∆u{F2(u)} =
N∑

k=1

f(uk)∆uk

On the other hand, the second-order derivative is cal-
culated as follows:

�2
∆u{F (u)}
= �2

∆u{F1(u)} + σ̂2�2
∆u{F2(u)}

�2
∆u{F1(u)}
=

(�∆u{Φ̄(u)})T(∇2
Φ̄F1(Φ̄)

)�∆u{Φ̄(u)}
+
(∇Φ̄F1(Φ̄)

)T �2
∆u{Φ̄(u)}

= �2
�∆u{Φ̄(u)}{F1(Φ̄)}

+
(∇Φ̄F1(Φ̄)

)T �2
∆u{Φ̄(u)}

�2
∆u{F1(u)}

=
N∑

k=1

f(uk)(1 − f(uk))(∆uk)2

Here, by regarding �∆u{Φ̄(u)} as the search direction,
�2

�∆u{Φ̄(u)}{F (Φ̄)} can be calculated as the second-

order derivative with respect to a standard three-layer
neural network; thus, we can use BPQ [14]. Therefore,
by noting that

�∆ui{φ̄i(ui)} = f(ui)(1 − f(ui))φ̂i∆ui,

�2
∆ui

{φ̄i(ui)} = �∆ui{φ̄i(ui)}
×(1 − 2f(ui))φ̂i(∆ui).

we can see that a reasonably accurate step-length is
calculated efficiently.



2.4. Learning algorithm with MDL regular-
izer

In the coordinate method described above, σ̂2 can
be updated by using (5) at any time while minimizing
the objective function defined by (6). However, since
BPQ is based on a quasi-Newton method, the best op-
portunity for updating σ̂2 is when an approximation
to the inverse Hessian matrix is restarted by discard-
ing the accumulated search information. Let s be the
value of the partiality parameter used for the partial
BFGS update; then, the proposed algorithm can be
summarized as follows:

step 1: Calculate the maximum likelihood weight
vector Φ̂;

step 2: Initialize u, calculate σ̂2 by using (5),
and set k = 1;

step 3: Terminate the iteration if a stopping criterion
is satisfied;

step 4: Calculate the current descent direction ∆uk,
calculate the step-length λk,
and update the vector u;

step 5: If k ≡ 0 (mod s),
update σ̂2 by using (5);

step 6: Set k = k + 1, and return to step 3;

3. Evaluation by experiments

3.1. Regression problem

By using a regression problem for a function

y = (1 − x + 2x2)e−0.5x2

,

the performance of the proposed MDL regularizer was
evaluated. In the experiment, the value of x was ran-
domly generated in the range of [−4, 4], and the corre-
sponding value of y was calculated from x; each value
of y was corrupted by adding Gaussian noise with a
mean of 0 and a standard deviation of 0.2. The total
number of training examples was set to 30, and the
number of hidden units was set to 10.

In learning without the regularizer to obtain the
maximum likelihood weight vector, the initial values
for the weights between the input and hidden units
were independently generated according to a normal
distribution with a mean of 0 and a standard deviation
of 1; the initial values for the weights between the hid-
den and output units were set to 0, but the bias value
at the output unit was initially set to the average out-
put value of all training examples. The iteration of
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true function

(a)  without  regularizer
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(b)  with  MDL  regularizer

Figure 1. Curves obtained

learning was terminated when the gradient vector was
sufficiently small,

‖∇F1(Φ)‖2/N < 10−8.

In learning with the MDL regularizer, the initial val-
ues for the vector u were set to the same value such that
f(uk) = 0.9. The iteration of learning was terminated
when the gradient vector was sufficiently small,

‖∇F (u)‖2/N < 10−8,

and the modification value to σ2 was sufficiently small,

‖σ2 − 2F1(u)/m‖ < 10−4σ2.

3.2. Learning results

Figure 1(a) shows a function obtained through learn-
ing without the regularizer, together with the training
examples and the true function. We can see that the
result was over-fitted to the training examples to some
degree. On the other hand, Figure 1(b) shows a func-
tion obtained through learning with the MDL regu-
larizer. Clearly, the result with the regularizer more
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Figure 2. Performance of MDL regularizer

closely approximated to the true function than the re-
sult without it.

Figure 2(a) compares the generalization perfor-
mance with and without the MDL regularizer, where
trials were performed 10 times. Here, the generaliza-
tion performance was evaluated by using the average
RMSE (root mean squared error) for a set of 5, 000
test examples. The best possible RMSE level is 0.2 be-
cause each test example includes the same amount of
Gaussian noise as given to a training example. The av-
erage generalization error of the MDL regularizer was
3.7 times as small as that without it. Moreover, by ap-
plying the proposed regularizer, the standard deviation
got much smaller. This indicates that the MDL regu-
larizer played a leading role in stabilizing the learning
performance. Figure 2(b) compares the number of iter-
ations required for the learning process with and with-
out the regularizer. This figure shows that the MDL
regularizer shortened the number of iterations by 3.8
times on average.

3.3. Comparison with weight-decay regular-
izer

To evaluate how much the proposed regularizer im-
proves the generalization performance, we compared
it with a weight-decay regularizer which employs a
squared penalty term Ω defined by

Ω = µ
N∑

k=1

φ2
k.

0

0.2

0.4

0.6

0.8

4-94-84-74-64-54-44-34-24-140

Generalization error

Regularization factor µ

MDL regularizer

Figure 3. MDL regularizer vs. weight-decay
regularizer

In our previous experience [15], this term gave the
best result among other simple terms such as absolute
penalty or normalized penalty. In the experiments, the
regularization factor µ was changed from 40 to 4−9 by
multiplying by 4−1; trials were performed 10 times for
each regularization factor.

Figure 3 compares the average generalization per-
formance of MDL and weight-decay regularizers. This
figure shows that the MDL regularizer has the best
performance for any of the regularization factors of the
weight-decay regularizer; only the weight-decay regu-
larizer with adequate factors worked comparably. Since
the performance of the weight-decay regularizer de-
pends on its regularization factors, finding suitable fac-
tors mean a considerable amount of computation if we
have little prior knowledge about the problems. Thus,
it has been shown that the proposed technique is a
promising approach for learning neural networks with
a regularizer.

4. Conclusion

This paper proposed a new regularization method
based on the MDL principle. In the MDL regularizer,
an adequate precision weight vector is trained by ap-
proximately truncating the maximum likelihood weight
vector. The main advantage of the proposed regularizer
over existing ones is that it automatically determines a
regularization factor achieving excellent generalization
without assuming any prior distribution. Our experi-
ments using a regression problem showed that the MDL
regularizer significantly improves the generalization er-
ror of a second-order learning algorithm and shows
a comparable performance to the best tuned weight-
decay regularizer. In the future, we plan to do further
evaluations using a wider variety of problems.
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