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Abstract

This paper proposes a new connectionist ap-
proach to numeric law discovery; i.e., neural
networks (law-candidates) are trained by using
a newly invented second-order learning algo-
rithm based on a quasi-Newton method, called
BPQ, and the Minimum Description Length
criterion selects the most suitable from law-
candidates. The main advantage of our method
over previous work of symbolic or connection-
ist approach is that it can efficiently discover
numeric laws whose power values are not re-
stricted to integers. Experiments showed that
the proposed method works well in discovering
such laws even from data containing irrelevant
variables or a small amount of noise.

1 Introduction

The discovery of a numeric law from a set of data is
the central part of scientific discovery systems. Such
systems, for example, can detect a relationship between
the distance r to the sun and the revolution period T of
five planets known to Kepler’s third law T = kr3/2 (k is
a constant).
After the pioneering work of the BACON systems

[Langley, 1978; Langley et al., 1987], several methods
[Langley and Zytkow, 1989; Falkenhainer and Michal-
ski, 1990; Langley and Zytkow, 1990; Schaffer, 1993;
Sutton and Matheus, 1991] have been proposed. The ba-
sic search strategy employed by these methods is much
the same: two variables are recursively combined into a
new variable by using multiplication, division, or some
predefined prototype functions. BACON and FAHREN-
HEIT [Langley and Zytkow, 1989] use trend detectors
to combine variables and employ a heuristic form of
depth-first search. ABACUS [Falkenhainer and Michal-
ski, 1990] creates a proportional graph and performs a
modified beam search. In IDS [Langley and Zytkow,
1990], correlation analysis is applied, and a beam search

is performed. The E* algorithm [Schaffer, 1993] con-
siders only bivariate functions. Also, Sutton-Matheus’
algorithm [Sutton and Matheus, 1991] performs a re-
gression, and the correlation between the squared error
and the square of the variable’s value [Sanger, 1991] is
used to combine variables.

These existing methods suffer from the following prob-
lems: first, because combining two variables into a new
one must be done in order, a combinatorial explosion
may occur when complex laws are sought for data con-
sisting of a large number of variables, or the desired
laws will be missed when some heuristic search param-
eters are inappropriate. Second, when some powers ap-
pearing in a law are not restricted to integers, the law
may remain unknown unless some appropriate prototype
functions such as r3/2 are prepared in advance. How-
ever, a priori information is rarely available. Third,
these methods are often criticized for their lack of ro-
bustness; noise tolerance is definitely required since real
observed data contain noise [Langley and Zytkow, 1990;
Schaffer, 1993].

We believe a connectionist approach has great poten-
tial to solve the above problems. In order to directly
learn a generalized polynomial term whose power val-
ues are not restricted to integers, a computational unit
called a product unit has been proposed [Durbin and
Rumelhart, 1989]; instead of calculating a weighted sum
of input values, this unit calculates a weighted prod-
uct, where each input value is raised to a power deter-
mined by a variable weight. However, serious difficulties
have been reported when using standard BP [Rumel-
hart et al., 1986] to train networks containing these units
[Leerink et al., 1995]. Although some heuristic strategies
such as multiple learning algorithms have been proposed
[Leerink et al., 1995], their improvements over BP have
been less than remarkable. Moreover, these earlier stud-
ies dealt only with binary data and did not specifically
address the problem of numeric law discovery.

In this paper, we propose a connectionist approach
called RF5 for discovering numeric laws. Section 2 ex-



plains how neural networks are used to discover a class of
numeric laws. Section 3 describes a second-order learn-
ing algorithm called BPQ which trains the neural net-
works described in Section 2. Section 4 explains a crite-
rion for selecting the most suitable candidate out of the
trained ones. Section 5 evaluates the proposed method
RF5 by doing experiments using artificial data, real data,
and time series data.

2 Law Discovery using Neural Nets

This section explains a connectionist problem formaliza-
tion for numeric law discovery, first proposed in [Durbin
and Rumelhart, 1989]. Let {(x1, y1), · · · , (xm, ym)} be
a set of examples, where xt is an n-dimensional input
vector and yt is a target value corresponding to xt. In
this paper, a class of numeric laws expressed as

yt = c0 +
h∑

i=1

cix
wi1
t1 · · ·xwin

tn (1)

is considered, where each parameter ci or wij is an un-
known real number and h is an unknown integer. If a
target law consists of periodic function or discontinuous
function, we cannot exactly discover it when Eq. (1) is
assumed. However, if the range of each input variable
is bounded, such a law can be closely approximated to
a multivariate polynomial function with a finite number
of terms. Moreover, since the power values are not re-
stricted to integer, we can expect that the approximated
polynomial function has a fewer number of terms. Here-
after, (c0, · · · , ch)T and (wi1, · · · , win)

T are expressed as
c and wi, respectively, where aT means the transposed
vector of a. In addition, a vector consisting of all param-
eters, (cT ,wT

1 , · · · ,wT
h )

T is simply expressed as Φ, and
N(= nh+ h+ 1) denotes the dimension of Φ.
By adding an adequate value to each element of the

input vectors, if necessary, without losing generality we
can assume xti > 0; then, Eq. (1) is equivalent to

yt = c0 +
h∑

i=1

ci exp




n∑
j=1

wij ln(xtj)


 . (2)

Equation (2) can be regarded as the feedforward com-
putation of a three-layer neural network where the acti-
vation function of each hidden unit is exp(s) = es. Here
h, wi, and c denote the number of hidden units, the
weights between the input units and hidden unit i, and
the weights between the hidden units and the output
unit, respectively. Hereafter, the output value of hidden
unit i is described as

vi(xt;wi) = exp




n∑
j=1

wij ln(xtj)




and then the output value of the output unit is described
as

z(xt;Φ) = c0 +
h∑

i=1

civi(xt;wi).

The hidden units defined by v(x;w) are called product
units [Durbin and Rumelhart, 1989]. The discovery of
numeric laws subject to Eq. (1) can thus be defined as the
following learning problem in neural networks. That is,
the problem is to find theΦ that minimizes the following
objective function:

f(Φ) =
1

2

m∑
t=1

(yt − z(xt;Φ))
2. (3)

3 BPQ Algorithm

In our early experiments and as reported in earlier stud-
ies [Leerink et al., 1995], the problem of minimizing
Eq. (3) turned out to be quite tough. Thus, in order to
efficiently and constantly obtain good results, this paper
employs a new second-order learning algorithm called
BPQ [Saito and Nakano, 1997]; by adopting a quasi-
Newton method [Gill et al., 1981; Luenberger, 1984] as a
basic framework, the descent direction, ∆Φ, is calculated
on the basis of a partial BFGS update and a reasonably
accurate step-length, λ, is efficiently calculated as the
minimal point of a second-order approximation. In first-
order learning algorithms which calculate the search di-
rection as the gradient direction, a large number of itera-
tions are often required until convergence. On the other
hand, in existing second-order methods [Gill et al., 1981;
Luenberger, 1984] which converge more quickly by using
both gradient and curvature information, it is difficult to
suitably scale up for large problems, and a large amount
of computation is required for calculating the optimal
step-length. BPQ can be reasonably scaled up by in-
troducing a storage space parameter, and the computa-
tional complexity for calculating the optimal step-length
is reasonably small, almost equivalent to that of gradient
vector evaluation.
For the problem of minimizing Eq. (3), the partial

BFGS update can be directly applied, while the ba-
sic procedure for calculating the step-length λ must be
slightly modified. In the step-length calculation, since λ
is the only variable, we can express f(Φ + λ∆Φ) sim-
ply as ζ(λ). Its second-order Taylor approximation is
given as ζ(0) + ζ′(0)λ+ 1

2ζ
′′(0)λ2. When ζ ′(0) < 0 and

ζ′′(0) > 0, the minimal point of this approximation is
given by

λ = − ζ′(0)
ζ′′(0)

.

Here, the method for coping with the other cases is ex-
actly the same as described in [Saito and Nakano, 1997].



For three-layer neural networks defined by Eq. (3), we
can efficiently calculate both ζ′(0) and ζ ′′(0) as follows.
By differentiating ζ(λ) and substituting 0 for λ, we ob-
tain

ζ′(0) = −
m∑
t=1

(yt−z(xt;Φ))z
′(xt;Φ),

ζ′′(0) =
m∑
t=1

(
(z′(xt;Φ))

2−(yt−z(xt;Φ))z
′′(xt;Φ)

)
.

Now that the derivative of z(xt;Φ) is defined as

z′(xt;Φ) =
d

dλ
z(xt;Φ+ λ∆Φ)|λ=0,

we obtain

z′(xt;Φ) = ∆c0+
h∑

i=1

(∆civi(xt;wi)+civ
′
i(xt;wi)) ,

z′′(xt;Φ) =
h∑

i=1

(2∆civ
′
i(xt;wi)+civ

′′
i (xt;wi)) ,

where

v′i(xt;wi) = vi(xt;wi)
n∑

j=1

∆wij ln(xtj),

v′′i (xt;wi) = v′i(xt;wi)
n∑

j=1

∆wij ln(xtj),

and ∆ci and ∆wij are modification values corresponding
to ci and wij , respectively.
Incidentally, we can employ other second-order learn-

ing algorithms such as SCG [Møller, 1993] or OSS [Bat-
titi, 1992], but BPQ worked the most efficiently among
them in our own experience.

4 Criterion for Selection

In general, for a given set of data, we cannot know the
optimal number of hidden units in advance. Moreover,
since the data is usually corrupted by noise, the law-
candidate which minimizes Eq. (3) is not always the best
one. We must thus consider a criterion to adequately
evaluate the law-candidates discovered by changing the
number of hidden units. In this paper, by assuming
that the target output values are corrupted by Gaussian
noise with a mean of 0 and an unknown standard devi-
ation of σ, finding an adequate number of hidden units
is formalized as a model selection problem of the max-
imum likelihood estimation problem. Thus, we adopt
the MDL (Minimum Description Length) criterion [Ris-
sanen, 1989] for this purpose. The MDL fitness value is
defined by

MDL = 0.5m log(MSE) + 0.5N log(m), (4)

where MSE represents the value of the mean squared
error defined by

MSE =
1

m

m∑
t=1

(yt − z(xt; Φ̂))
2. (5)

Here, Φ̂ is a set of weights which minimizes Eq. (3), N
is the number of parameters in Φ, and m is the number
of examples. Hereafter, our discovery method employ-
ing the connectionist problem formalization, the BPQ
algorithm and the MDL criterion, is called RF5 (Rule
extraction from Facts version 5).

5 Evaluation by Experiments

5.1 Artificial data

The rule discovery method, RF5, was evaluated by using
an artificial problem proposed by Sutton and Matheus
[Sutton and Matheus, 1991] and our modified version.
The original problem is to restore a law described as

y = 2 + 3x1x2 + 4x3x4x5, (6)

while a law for the modified problem is described as

y = 2 + 3x−1
1 x3

2 + 4x3x
1/2
4 x

−1/3
5 . (7)

Each example is generated as follows: each value of vari-
ables x1, · · · , x5 is randomly generated in the range of
[0, 1], and the corresponding value of y is calculated us-
ing Eq. (6) or (7). In these problem, the total num-
ber of variables is 9 (n = 9); each value of irrelevant
variables x6, · · · , x9 is also randomly generated in the
range of [0, 1], and the number of examples is set to 200
(m = 200).
In the experiments, the initial values for the weights

between the input and hidden units were independently
generated according to a normal distribution with a
mean of 0 and a standard deviation of 1; the initial val-
ues for the weights between the hidden and output units
were set to 0, but the bias value at the output unit was
initially set to the average output value of all training
examples. The iteration was terminated when any of
the following three conditions was met: the MSE value
was sufficiently small, i.e.,

1

m

m∑
t=1

(yt − z(xt;Φ))
2 < 10−8, (8)

the gradient vector was sufficiently small, i.e.,

1

N
‖∇f(Φ)‖2 < 10−8, (9)

or the total processing time exceeded 100 seconds.



Table 1: Learning statistics (artificial data)

hidden MSE value MDL value iteration time
unit best avg. s.d. best avg. s.d. avg. s.d. avg. s.d.
h = 1 0.126 0.130 0.000 -177.9 -178 0.0 71 1.0 0.32 0.01

original problem h = 2 0.000 0.000 0.000 -1786.4 -1786 0.0 81 8.4 0.68 0.07
h = 3 0.000 0.000 0.000 -1759.9 -1717 64 130 29 1.65 0.36
h = 1 1.317 1.321 0.000 56.7 57 0.0 70 5 0.32 0.02

modified problem h = 2 0.000 0.033 0.172 -1786.4 -1731 314 116 27 0.97 0.23
h = 3 0.000 0.000 0.000 -1760.0 -1727 47 240 104 3.02 1.31

Table 2: Learning statistics (noisy artificial data)

hidden MSE value MDL value iteration time
unit best avg. s.d. best avg. s.d. avg. s.d. avg. s.d.
h = 1 0.160 0.160 0.000 -154.0 -154.0 0.0 68 4 0.31 0.02

original problem h = 2 0.009 0.009 0.000 -416.0 -416.0 0.0 93 9 0.77 0.07
h = 3 0.008 0.008 0.000 -405.5 -405.3 0.8 784 82 9.80 1.02
h = 1 2.326 2.326 0.000 113.6 113.6 0.0 90 12 0.41 0.05

modified problem h = 2 0.010 0.031 0.207 -403.9 -398.6 53 228 134 1.90 1.11
h = 3 0.009 0.009 0.000 -388.9 -384.9 1.2 753 127 9.41 1.58

In the experiments, we changed the number of hidden
units from 1 to 3 (h = 1, 2, 3) and performed 100 tri-
als for each of them. Table 1 shows the basic statistics
of MSE values, MDL values, iterations, and processing
times (sec.).1 This table shows that the correct number
of hidden units, h = 2, was successfully found because
the best MDL value was minimized. When h = 2, all 100
trials converged to the global minimum for the original
problem; however, a few of the 100 trials converged to
undesirable local minima for the modified problem. The
original and modified laws discovered by RF5 were

y = 2.00 + 3.00x1.00
1 x1.00

2 + 4.00x1.00
3 x1.00

4 x1.00
5

y = 2.00 + 3.00x−1.00
1 x3.00

2 + 4.00x1.00
3 x0.50

4 x−0.33
5

where the weight values were rounded off to the sec-
ond decimal place. Namely, the laws discovered by RF5
were almost perfect to Eq. (6) or (7). Note that without
preparing some appropriate prototype functions, exist-
ing numeric discovery methods cannot find such laws as
described in Eq. (7). This point is an important advan-
tage of RF5 over existing methods.
To evaluate RF5’s noise tolerance, we corrupted each

value of y calculated from Eq. (6) or (7) by adding
noise generated according to a normal distribution with
a mean of 0 and a standard deviation of 0.1. The other
experimental conditions were exactly the same as be-
fore. Table 2 shows the results. The best MSE values
were minimized when h = 3, while the best MDL values

1Our experiments were done on HP/9000/735 computer.

were minimized when h = 2: this indicates the correct
number of hidden units was found again for the both
problems. The original and modified laws discovered by
RF5 were

y = 1.97 + 3.03x1.00
1 x0.97

2 x−0.01
4 x−0.01

5 x0.01
7 x−0.01

8

+3.88x−0.03
1 x−0.01

2 x1.03
3 x1.00

4 x1.05
5 x−0.01

6 x−0.02
7

y = 2.01 + 3.00x−1.00
1 x3.00

2

+3.98x1.02
3 x0.50

4 x−0.33
5 x−0.01

6 x−0.01
9 .

When the weight values were rounded off to the first
decimal place, these laws become

y = 2.0 + 3.0x1.0
1 x1.0

2 + 3.9x1.0
3 x1.0

4 x1.0
5

y = 2.0 + 3.0x−1.0
1 x3.0

2 + 4.0x1.0
3 x0.5

4 x−0.3
5 .

Although some weight values were slightly different, laws
almost equivalent to the true ones were found. This
shows that RF5 is robust and noise tolerant to some
degree.

5.2 Real data

For real data, we used three data sets supporting Hagen-
Rubens’ law, Kepler’s third law, and Boyle’s law.2 In
this experiment, since the number of examples for each
data set was small, the number of hidden units was fixed
at 1. Note that since we consider a constant term c0,
the problem cannot be reduced to a simple regression

2We obtained the sets of Kepler’s data and Boyle’s data
from the UCI repository of machine learning databases.



problem. The trials were performed 10 times for each
data set, and the weight values in the discovered laws
were rounded off to the second decimal place. The other
experimental conditions were exactly the same as before.
Hagen-Rubens’ law is a relation among the frequency

ν of incident light, the electrical conductivity σ of metal,
and the reflectance R. The original law is described as

R = 1− 2
(ν
σ

) 1
2

.

The law discovered by RF5 is

R = 1.00− 2.08ν0.57σ−0.57.

Although the data has some outstanding outlier exam-
ples, the discovered law is very similar to the reference
relation.
Kepler’s third law is a relation between the distance

r to the sun and the revolution period T of five planets.
The original law is described as

T = 0.41r1.5.

The law discovered by RF5 is

T = 0.41r1.50 + 0.19.

An undesired constant term appeared here, but the law
is very similar to the reference relation. The value of
the constant term is small in the discovered law; as such
we can perform another trial using the model where the
constant term is omitted.
Boyle’s law is a relation between the pressure p and

volume V of a quantity of enclosed air. The original law
is described as

V = 29.30/p.

The law discovered by RF5 is

V = 29.05p−1.08 − 0.61.

5.3 Time series data

If time series data {x1, · · · , xt, · · ·} are generated accord-
ing to a nonlinear difference equation such as kxt =
xt−1(1− xt−1) (k is a constant and x0 ∈ [0, 1]), then, it
is known that we can observe a chaotic behavior. Since
our target law defined by Eq. (1) is a generalized polyno-
mial function, it is expected that the law of chaotic time
series can be identified by RF5. Hereafter, a nonlinear
autoregressive function defined by

xt = z(xt−1, · · · , xt−τ ;Φ), (10)

is considered, where z(·) denotes the right hand-side of
Eq. (2) and τ is the length of delayed inputs. For real
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Figure 1: learning results

time series data, we used a data set recorded from a
Far-Infrared-Laser in a chaotic state [Weigend and Ger-
shenfeld, 1994] 3, where we used a series of 1,000 training
points (Data Set A) and τ was set to 8.

In the experiments, we changed the number of hidden
units from 1 to 7 and performed 10 trials for each of
them. The other experimental conditions were exactly
the same as before. Figure 1 shows the best MSE values
and MDL values. This indicates the best MDL values
were minimized when h = 6. In this experiments, the
law discovered by RF5 was not able to outperform the
best result reported in the competition [Weigend and
Gershenfeld, 1994], and we must go further to improve
our preliminary result. Actually, for the successive 100
test points, the prediction performance of the discovered
law was the 9th position among the 14 results submitted
to the competition. However, the discovered law shows a
good short-term prediction performance for the unknown
data. Figure 2 shows a part of the predictions by the
discovered law, where only first 8 points were given to
the law. We can see that the predicted points are very
close to the true ones.

6 Conclusion

To discover an underlying law from a set of numeric data,
we have proposed a new connectionist method called
RF5. After employing the connectionist problem formal-
ization, RF5 adopts a second-order learning algorithm
BPQ for training and the MDL criterion for model se-
lection. Experiments showed that RF5 successfully dis-
covered underlying laws whose power values are not re-
stricted to integers, even if the data contained irrelevant
variables or a small amount of noise. In the future, we
plan to do further experiments to evaluate the proposed
method using a wider variety of problems.

3This data set was used in the Santa Fe Institute Time
Series Prediction and Analysis Competition.



1200 1300

100

predictied valuetrue value

0

200

1400

Figure 2: prediction by discovered law

References

[Battiti, 1992] R. Battiti. First- and second-order meth-
ods for learning between steepest descent and new-
ton’s method. Neural Computation, 4(2):141–166,
1992.

[Durbin and Rumelhart, 1989] R. Durbin and D.
Rumelhart. Product units: a computationally power-
ful and biologically plausible extension. Neural Com-
putation, 1(1):133–142, 1989.

[Falkenhainer and Michalski, 1990] B. Falkenhainer and
R. Michalski. Integrating quantitative and qualita-
tive discovery in the abacus system. In Y. Kodratoff
and R. Michalski, editors, Machine learning: an artifi-
cial intelligence approach, Volume III, pages 153–190.
Morgan Kaufmann, San Mateo, CA, 1990.

[Gill et al., 1981] P. Gill, W. Murray, and M. Wrigh.
Practical optimization. Academic Press, London,
1981.

[Langley and Zytkow, 1989] P. Langley and J. Zytkow.
Data-driven approaches to empirical discovery. Arti-
ficial Intelligence, 40:283–312, 1989.

[Langley and Zytkow, 1990] P. Langley and J. Zytkow.
A robust approach to numeric discovery. In Proc.
seventh International Machine Learning Conference,
pages 411–418, Austin, Texas, 1990.

[Langley et al., 1987] P. Langley, H. Simon, G. Brad-
shaw, and J. Zytkow. Scientific discovery: computa-
tional explorations of the creative process. MIT Press,
Cambridge, MA, 1987.

[Langley, 1978] P. Langley. Bacon.1: a general discovery
system. In Proeeedings of the Seeond National Confer-
enee of the Canadian Soeiety for Computational Stud-
ies of Intelligenee, pages 173–180, 1978.

[Leerink et al., 1995] L. Leerink, C. Giles, B. Horne, and
M. Jabri. Learning with product units. In G. Tesauro,
D.S. Touretzky, and T.K. Lee, editors, Advances in
Neural Information Processing Systems 7. MIT Press,
Cambridge, MA, 1995.

[Luenberger, 1984] D. Luenberger. Linear and nonlinear
programming. Addison-Wesley, Reading, MA, 1984.

[Møller, 1993] M. Møller. Supervised learning on large
redundant training sets. International Journal of Neu-
ral Systems, 4(1):15–25, 1993.

[Rissanen, 1989] J. Rissanen. Stochastic complexity in
statistical inquiry. World Scientific, Singapore, 1989.

[Rumelhart et al., 1986] D. Rumelhart, G. Hinton, and
R. Williams. Learning internal representations by er-
ror propagation. In D.E. Rumelhart and J.L. McClel-
land, editors, Parallel Distributed Processing, pages
318–362. MIT Press, Cambridge, MA, 1986.

[Saito and Nakano, 1997] K. Saito and R. Nakano. Par-
tial BFGS update and efficient step-length calculation
for three-layer neural networks. Neural Computation,
9(1):239–257, 1997.

[Sanger, 1991] T. Sanger. Basis-function trees as a gen-
eralization of local variable selection method for func-
tion approximation. In D.S. Touretzky, editor, Neu-
ral Information Processing Systems 3, pages 707–713.
Morgan Kaufmann, San Mateo, CA, 1991.

[Schaffer, 1993] C. Schaffer. Bivariate scientific func-
tion finding in a sampled, real-data testbed. Machine
Learning, 12(1/2/3):167–183, 1993.

[Sutton and Matheus, 1991] R. Sutton and C. Matheus.
Learning polynomial functions by feature construc-
tion. In Proceedings of the Eighth International Ma-
chine Learning Workshop, pages 208–212, Evanston,
IL, 1991.

[Weigend and Gershenfeld, 1994] A. Weigend and
N. Gershenfeld. Time series prediction: Forecasting
the futire and undestanding past. Addison-Wesley,
Reading, MA, 1994.


