
Discovery of Relevant Weights

by Minimizing Cross-validation Error

Kazumi Saito1 and Ryohei Nakano2

1 NTT Communication Science Laboratories
2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japan

saito@cslab.kecl.ntt.co.jp
2 Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan
nakano@ics.nitech.ac.jp

Abstract. In order to discover relevant weights of neural networks, this
paper proposes a novel method to learn a distinct squared penalty factor
for each weight as a minimization problem over the cross-validation error.
Experiments showed that the proposed method works well in discovering
a polynomial-type law even from data containing irrelevant variables and
a small amount of noise.

1 Introduction

Neural networks can be utilized as a core technique in some KDD (Knowledge
Discovery and Data mining) applications such as scientific discovery [2, 1]. One
important research subject of neural networks is to improve the generalization
performance. Here the generalization means the performance on new data. It is
widely known that adding some penalty term to a standard training error term
can lead to significant improvements in network generalization. As for squared
penalty, a single penalty factor is often conveniently used. If we can develop
a method that automatically adjusts a distinct penalty factor for each weight,
several advantages can be expected, i.e., the generalization performance will be
still more improved; the readability of discovered laws will be improved; such
a squared penalty term is consistent with any linear scaling of variables; and
suitable penalty factors can be determined without inaccurate estimation.

2 Optimal Penalty Factor Calculation

Let (x1, · · · , xK , y) be a vector of variables describing each example, where xk

is a numeric or nominal explanatory variable and y is a numeric target vari-
able. Here we assume that each nominal explanatory variable is described as a
dummy variable. As a class of numeric formula y(x; Θ), we consider a generalized
polynomial expressed by

y(x; Θ) = w0 +
J∑

j=1

wj

K∏
k=1

x
wjk

k = w0 +
J∑

j=1

wj exp

(
K∑

k=1

wjk ln xk

)
, (1)



where each parameter wj or wjk is an unknown real number, and J is an un-
known integer corresponding to the number of terms. Θ is an M -dimensional
parameter vector constructed by arranging parameters wj , j = 0, · · · , J , and
wjk, j = 1, · · · , J, k = 1, · · · , K. Let D = {(xµ, yµ), µ = 1, · · · , N} be a set of
training examples, where N is the number of examples. Here we assume that
each training example (xµ, yµ) is independent and identically distributed. Now,
our ultimate goal of the law discovery is defined as a problem of minimizing the
generalization error, that is, to find the optimal estimator Θ∗ that minimizes

G(Θ∗) = EDET (yν − y(xν ; Θ∗(D)))2 , (2)

where T = (xν , yν) denotes test data independent of the training data D. The
least-squares estimate of Θ∗, denoted by Θ̂, minimizes the error sum of squares

E1(Θ) =
1
2

N∑
µ=1

(yµ − y(xµ; Θ))2 . (3)

However, this estimation is likely to over-fit to the training data; thus, we cannot
usually obtain good results in terms of the generalization performance.

As we have already mentioned, it is widely known that adding some penalty
term to Eq. (3) can lead to significant improvements in network generalization.
Here a simple penalized target function using a single factor is given as below.

E2(Θ) = E1(Θ) +
1
2

exp(λ)
M∑

m=1

θ2
m, (4)

where exp(λ) is a penalty factor and θm ∈ Θ. Here since the penalty factor must
be non-negative, we adopted exp(λ), instead of a standard parameterization λ.

To improve both the generalization performance and the readability, we con-
sider a distinct penalty factor for each weight. Let λ be an M -dimensional vector
(λ1, · · · , λM )T , and Λ be an M -dimensional diagonal matrix whose diagonal el-
ements are defined by Λmm = exp(λm) for m = 1, · · · , M , where aT denotes a
transposed vector of a. Then, the discovery of laws subject to Eq. (1) can be de-
fined as the following learning problem in neural networks. That is, the problem
is to find the Θ that minimizes the following objective function for weights

E(Θ) = E1(Θ) +
1
2
ΘT ΛΘ. (5)

Now, we introduce an objective function for penalty factors derived from the
procedure of cross-validation, and propose MCV (Minimum Cross-Validation)
regularizer. The procedure of cross-validation divides the data D at random into
S distinct segments (Gs, s = 1, · · · , S), and uses S−1 segments for training, and
uses the remaining one for the test. This process is repeated S times by changing
the remaining segment, and the generalization performance is evaluated by using
the following MSE (mean squared error) over all S test results.

MSECV =
1
N

S∑
s=1

∑
ν∈Gs

(
yν − y(xν ; Θ̂s)

)2

. (6)



Here Θ̂s denotes the optimal weights obtained by minimizing the following ob-
jective function for weights

Es(Θs) =
1
2

∑
µ�∈Gs

(yµ − y(xµ; Θs))2 +
1
2
ΘT

s ΛΘs. (7)

The extreme case of S = N is known as the leave-one-out method, which is
often used for a small size of data. Note that Eq. (6) is regarded as a reasonable
approximation to Eq. (2) for a given data set D. According to the implicit
function theorem, since Θ̂s can be regarded as a vector consisting of implicit
functions of λ, Eq. (6) can be defined as the objective function for penalty
factors. Thus, we can calculate λ̂ which minimizes Eq. (6). Then, by using λ̂,
we can calculate Θ̂ which minimizes Eq. (5). Finally, Θ̂ is adopted as the final
weight vector of the discovered law.

3 Evaluation by Experiments

We consider an artificial law (function) described by

y = 2 + 3x+1
1 x−0.02

2 + 4x−1
3 x+0.02

4 (8)

where we have 9 numeric explanatory variables. Clearly, variables x5, · · · , x9 are
irrelevant to Eq. (8). Each example is generated as follows: each value of numeric
variables x1, · · · , x9 is randomly generated in the range of (0, 1), and we get the
corresponding value of y by calculating Eq. (8) and adding Gaussian noise with a
mean of 0 and a standard deviation of 0.1. The number of examples is set to 200
(N = 200). Before the analysis, the following scaling was applied to the variables:
ỹ = (y − mean(y))/std(y), and ln x̃k = ln xk − mean(ln xk), k = 1, · · · , 9.

In the experiments, the initial values for the weights wjk were indepen-
dently generated according to a normal distribution with a mean of 0 and a
standard deviation of 1; the initial values for the weights wj were set to 0.
The initial values for the penalty factors λ were set to 0, i.e., Λ was set to
the identical matrix. The iteration was terminated when the gradient vector
was sufficiently small, i.e., maxm{‖∂/∂θm E(Θ)‖} < 10−6 for learning over Θ;
maxm{‖∂/∂λm MSECV (λ)‖} < 10−6 for learning over λ.

MCV regularizer was compared with two conventional methods, no-penalty
method and single-factor method, where the objective functions of these con-
ventional methods are Eq. (3) and Eq. (4), respectively. Figure 1(a) shows the
learning results of these three methods, where the RMSE (root mean squared
error) was used for evaluation; the number of hidden units J was fixed at the
correct number 2; the cross-validation error was calculated by using the leave-
one-out method, i.e., S = N ; and the generalization performance was measured
by using a set of noise-free 10, 000 test examples generated independently to the
training examples. This figure shows that the RMSE for the training data was
almost the same for each method; both the RMSE for the cross-validation and



0
0.02
0.04
0.06

0.08

0.1
0.12

no penalty single factor MCV regularizer

RMSE (Root Mean Squared Error)

trainig
error

cross-
validation
error

test
error

(a) performance of three methods (b) learning result of penalty factors

1

4
10

2
10

Hidden unit 1 Hidden unit 2

−2
10

−4
10

penalty factor

Fig. 1. Experimental results of artificial data

the RMSE for the test data were clearly decreased by using MCV regularizer;
and the performance of the single factor method was almost comparable to those
of the no penalty method.

An example of the laws discovered by the no penalty method was as follows:

y = 2.0306
+2.9791x+1.0024

1 x−0.0203
2 x+0.0035

3 x−0.0029
4 x+0.0073

5 x+0.0056
6 x+0.0010

7 x+0.0022
8 x−0.0036

9

+3.9993x+0.0008
1 x+0.0004

2 x−1.0003
3 x+0.0201

4 x−0.0005
5 x−0.0011

6 x−0.0002
7 x−0.0002

8 x+0.0011
9

where the weight values were rounded off to the fourth decimal place. Note that
these weight values were transformed so as to correspond to the original scale
of variables. Although a law almost equivalent to the true one was found, it is
difficult to select only the relevant weights from this result. While an example
of the laws discovered by MCV regularizer was as follows:

y = 2.0118
+2.9792x+0.9941

1 x−0.0190
2 x−0.0000

3 x−0.0000
4 x+0.0019

5 x+0.0007
6 x+0.0000

7 x+0.0000
8 x+0.0000

9

+3.9987x+0.0000
1 x+0.0001

2 x−0.9999
3 x+0.0197

4 x−0.0000
5 x−0.0006

6 x−0.0000
7 x−0.0000

8 x+0.0003
9

Clearly, the irrelevant weight values were greatly suppressed.
Figure 1(b) shows the learning result of the penalty factors. This figure indi-

cates that only the penalty factors for the relevant weights became small enough,
i.e., we can easily select only the relevant weights. Therefore, it was shown that
the MCV regularizer simultaneously improves the generalization performance
and readability, without care of variable scaling and a candidate determination
for the penalty factors.

References

1. R. Nakano and K. Saito. Discovery of a set of nominally conditioned polynomials.
In Proc. 2nd Int. Conf. on Discovery Science, LNAI 1721, pages 287–298, 1999.

2. K. Saito and R. Nakano. Law discovery using neural networks. In Proc. 15th Int.
Joint Conf. on Artificial Intelligence, pages 1078–1083, 1997.


