LCGA 9/

Conventional Genetic Algorithm for Job Shop Problems

Ryohei Nakano
Takeshi Yamada
Comm. and Info. Proc. Labs, NTT
1-2356 Take, Yokosuka, 238-03, Japan

Abstract

The job shop problem (JSP) is NP-
hard, much harder than the travel-
ing salesman problem. This paper
shows how a conventional Genetic
Algorithm (GA) can efficiently solve
the JSP. We introduce unique ideas
in representation, evaluation, and
survival. A solution is succinctly
represented as a binary genotype
even though the JSP is an order-
ing problem. Mostly a genotype g
produced by conventional crossover
is illegal, i.e., represents no feasi-
ble schedule. Therefore an evalua-
tion function first finds a legal geno-
type g’ as similar to g as possi-
ble, and then evaluates g’ to de-
termine the fitness of g. The fit-
ness of g is evaluated as the to-
tal elapsed time of the correspond-
ing schedule. - In survival of geno-
types, we introduce a new treat-
ment, called forcing, that replaces
the genotype g with g’ when g is se-
lected as the survivor. Forcing both
quickens convergence of GAs and
drastically improves solution qual-
ity. A conventional GA using the
three ideas is applied to three well-
known JSP benchmarks. The so-
lution quality approaches those ob-
tained by branch and bound meth-
ods.

1 Introduction

The job shop problem (JSP) is among the hard-
est combinatorial problems. Not only is it NP-
complete [Garey and Johnson, 1979], but it
is one of the worst NP-complete class mem-
bers. The flow shop problem (FSP), a re-

¥/«

stricted version of JSP, can be reduced to the
traveling salesman problem (TSP) [Reddi and
Ramamoorthy, 1972]; hence, the JSP is much
harder than the TSP,

Research on the JSP has been the subject of
much significant literature [Muth and Thomp-
son, 1963; Balas, 1969; McMahon and Flo-
rian, 1975; Barker and McMahon, 1985; Carlier
and Pinson, 1989]. The primary algorithms to
solve JSP’s are the branch and bound meth-'
ods. The performance of existing algorithms
has been evaluated through the widely known
JSP benchmarks [Muth and Thompson, 1963].
The main historical progress in solution quality
will be shown later together with our results.

Research on the application of Genetic AL
orithms (GAs) to JSP’s is relatively recent
?Davis, 1985; Liepins and Hilliard, 1987; Cleve-
land and Smith, 1989; Whitley et al., 1989].
Moreover, all investigated the FSP, although
some discussed a more realistic problem than
the FSP defined in the next section. Anyway
the problems investigated so far are rather sim-
ple versions of the JSP.

This paper is organized as follows. Section 2 de-
fines the JSP addressed and Section 3 describes
a binary representation of a solution genotype.
Section 4 presents how to evaluate a genotype
8; & is mostly illegal, i.e., represents no feasible
schedule. When g is illegal, an evaluation func-
tion finds a legal genotype g’ as similar to g
as possible, and then evaluates g’ to assess the
fitness of g. The fitness of g is equal to the to-
tal elapsed time of the corresponding schedule.
Section 5 discusses the forcing which means the
replacement of the genotype g with g’, when g
is a survivor. Section 6 shows the results of ex.
periments conducted on three well-known JSP
benchmarks.

machinel: 111 44444333333333 66666666662222222222555
machine2:2222222244444666111111555 3
machine3:333331 2222255555556544444 6
machine4: 3333 666 4441111111 22225
machineb: 2222222222 555553333333444444446666111111
machine6: 33333333 66666666622222222226655111444444444
(a) Schedule (total elapsed time = 55)
machinet : 1 4 3 6 2 b jobl < job2 : 110100
machine2 : 2 4 6 1 5 3 jobl < job3 : 011000
machine3 : 3.1 2-5 4 6 jobl < job4 : 110010
machine4 : 3 6 4 1 2 5 jobl < jobs : 111100
machines : 2 5 3 4 6 1 jobi < job6 : 110000
machine6 : 3 6 2 5 1 4 job2 < job3 : 101000
' job2 < job4 : 111100
(b) Symbolic representation job2 < jobs : 111111
job2 < job6 : 111000
jobl 3 1 2 4 6 5 job3 < job4 : 111001
job2 2 3 5 6 1 4 job3 < jobs : 111100
job3 3 4 6 1 2 5 job3 < jobé : 111101
"~ job4 2 1 3 4 5 6 job4 < jobs : 110100
jobb 3 2 5 6 1 4 job4 < jobé : 111010
jobé 2 4 6 1 5 3 jobs < job6 : 101000

(d) Machine sequences (given)

P

2 Job Shop Problem

The job shop problem (JSP) to be solved has
N jobs to be processed on M machines and as-

“sumes the following:

e A machine can process only one job at a
time.

e The processing of a job on a machine is
called an operation. -

e An operation cannot be interrupted.

e A job consists of at most M operations.

e An operation sequence within a job, called

machine sequence, and processing times
for operations are given.

e An operation sequence on a machine,
called job sequence, is unknown. The full
set of job sequences is called a symbolic
representation.

o A feasible symbolic representation is
called a schedule.

The JSP is to find a schedule which minimizes
the total elapsed time.

The flow shop problem (FSP) is a restricted
JSP, where machine sequences are identical for
all jobs.

@r¢

(c) Binary representation

Figure 1: Representations of Schedule for 6 x 6 Problem

3 Representation

There are at least two ways of representing a so-
lution: symbolic and binary. As is true in the
case of the TSP [Goldberg and Lingle, 1985;
Grefenstette et al., 1985; Oliver et al, 1987],
symbolic representation is also more straight-
forward in the JSP [Liepins and Hilliard, 1987;
Cleveland and Smith, 1989; Whitley et al.,
1989]. Conventional GAs [Holland, 1975; Gold-
berg, 1986], however, are less suited to sym-
bolic representation. For example, conventional
crossover or mutation cannot be applied to
symbolic representation. Hence binary repre-
sentation is utilized below.

We focus our attention on a job pair [jk].
Let the machine sequences within j and k be
[0j1, 052, - 0jm] and [0k1,0k2, -y Ok M) TESPEC-
tively. Consider the following function assum-
ing operations ol and o2 are executed on the
same machine: prior(ol,02) = 1if operation ol
is executed prior to 02, otherwise prior(ol1,02)
= (. Then we can get a bit vector for the job

pair {j k]:
[prior(o;1, Ok), -, PTIOT(05 01, ok)]-

Note that opérations 0;j; and op. are executed

LU Lie same macnine. For IN jobs, there exist
N(N-1)/2 job pairs. Hence for N jobs and M
machines, total MN(N-1)/2 bits are required to
represent a solution; for example, 90 bits for
N=M=6, 450 bits for N=M=10, and 950 bits
for N=20, M=5. ‘

Figure 1 shows symbolic and binary represen-
tations of a schedule for the 6 x 6 (N=6 jobs,

M=6 machines) problem [Muth and Thompson, -

1963]. In the binary matrix B, the rows repre-
sent the 15 job pairs and the columns represent
the bit vectors. For example, B(1,1)=1 means
job 1 be executed prior to job 2 on machine
3, and B(1,3)=0 means job 2 be prior to job 1
on machine 2. In the symbolic matrix, the i-th
row represents the job sequence to be executed
on machine i. For example, the first row indi-
cates that on machine 1, operations are to be
executed in the sequence: jobl —s job4d — job3
—r...

Note that the above schedule in Figure 1 is an
optimal schedule. The binary representation
shows that bits have a tendency to continue
within a machine. That is, the results confirm
the heuristic that says a good schedule tends to
keep the processing priority for each job pair.
We can make use of the heuristic in both geno-
type initialization and conventional crossover.
Note also that, in a binary representation, each
bit has its own meaning, as seen in nature.

4 Evaluation

As stated above, a symbolic representation can
be represented in a binary form. The in-
verse, however, does not hold. This means
that the space of binary representation prop-
erly includes the space of symbolic represen-
tation. In fact, for the 6 x 6 problem, the
number of elements of the former amounts to
2% ~ 1027, while that of the latter amounts to
(6))° =~ 10'7. Hereafter, a binary representa-
tion is interchangeably called a genotype. Any
evaluation of a genotype should take its wider
space into consideration.

The idea behind our evaluation is as follows. In
general, a genotype g produced either initially
or by conventional crossover is illegal, i.e., rep-
resents no schedule. Therefore, our evaluation
function first finds a legal genotype g’ as sim-
ilar to g as possible, and then evaluates g’ to
determine the fitness of g. The fitness of g is
evaluated as the total elapsed time of the cor-
responding schedule.

The procedure that creates a legal genotype g’
from an illegal genotype g is called the harmo-

74

nization algorithm. The Hamming distance is
used to assess the similarity of g’ to g. The har-
monization algorithm goes through two phases:
local harmonization and global harmonization.
The former creates a symbolic representation
from g, removing local inconsistency within
each machine. The symbolic representation
may contain global inconsistencies between ma-
chines. By removing all global inconsistencies,
the latter creates a schedule from the symbolic
representation. The legal genotype g’ repre-
sents the schedule.

sum
jobt: * 0 0 1 1 0 2
job2: 1 * 0 0 1 1 3
job3: 1 1 x 1 1 o 4
jobd: 0 1 0 * 0 0 i
jobs: 0 0 0 1 x 1 2
job6: 1 0 1 1 o0 x 3

(a) Original priority

sum
jobl: * 0 o0 1 1) 2
job2: 1 x 0 0 1 1 3
job3: 1 1 % 1 1 5
job4: 0 1 0 * 0 O 1
jobs: 0 0 0 1 * 1 2
job6: 1 0[0]1 o0 * 2

(b) After selecting job 3

sum
jobl: * 0 0 1 1 o0 9
job2: 1 * o 1 1 4
job3: 1 1 * 1 1 1 s
job4: 0 E] 0O * 0 0 o
job5: 0 0 0 1 x 1 2
job6: 1 0 0 1 0 % 2

(c) After selecting job 2

m

su
jobi: * 0 o0 1 1 3
job2: 1 * 0 1 1 1 4
job3: 1 1 x 1 1 1 s
job4: 0 0 0 * 0 0 o0
jobs: 0 0 0 1 *x 1 2
jobé: [0]0 0 1 0 * 1

(d) Final priority

Figure 2 : Local Harmonization Algorithm

The local harmonization algorithm works for

each machine separately; hence, the following
" description addresses just one machine. The
algorithm determines a job sequence, making
use of an illegal genotype g. Since g states
the priority by indicating which operation is to
be executed prior to the other for all operation
pairs on all machines, from g we can directly
get a priority matrix for each machine. Figure
2 (a) shows a priority matrix for one machine
directly gained from some illegal genotype. The
element (2,1) = 1 indicates that job 2 is to be
executed prior to job 1 on the machine. The al-
gorithm searches for the operation having the
highest priority, and finds the job 3 operation.
When there is more than one such operation,
one of them is selected. After selecting the op-
eration having the highest priority, priority in-
consistency is removed, as shown in (b). By
repeating the above, the algorithm next selects
the job 2 operation, resulting in (c). Thus re-
peating the process, the algorithm finally gets
the consistent priority matrix, as shown in (d).
It states the job sequence should be job3 —
job2 — jobl — jobd — job6 — job4. On the
whole, the algorithm changed three bits of the
genotype.

It is rather easy to see that the local harmo-
nization algorithm can find a valid job sequence
while changing the minimum number of bits in
~ a genotype. The algorithm goes halfway to get
a legal genotype g’ from an illegal genotype g.

The global harmonization algorithm is embed- -
ded in a simple scheduling algorithm. First, we
describe the scheduling algorithm. The follow-
ing notation is introduced:

next operation to be executed
within job j,
jnext(j).machine :

machine to execute jnezt(s),
mnezt(m) : next operation to be executed
on machine m.

jnext(j) :

The simple scheduling algorithm inputs a sym-
bolic representation and given conditions, i.e.
machine sequences and processing time. It polls
jobs checking if any job can be scheduled, and
stops when no job can be scheduled. The job j
can be scheduled if the following holds:
jnext(j) = mnezt(jnext(f).machine).

The algorithm unconditionally schedules a job
that can be scheduled. If a symbolic representa-
tion is a schedule, the algorithm always creates
the schedule. Otherwise, it terminates when
it meets a deadlock. Now the scheduling algo-

rithm is modified to call the global harmoniza-
tion algorithm whenever it meets a deadlock.

«77

The global harmonization algorithm works
as follows. Each job is checked to de-
termine how far it is between jnext(j) and
mnext(jnext(j).machine) in the job sequence
list. The job with the minimum distance d is
selected, and the job sequence is permuted to
make mnext(jnext(j).machine) jnext(j). In the
permutation, d operations are shifted right by
one position each, resulting in d bits of change
in the genotype. The global harmonization al-
gorithm returns control to the scheduling algo-
rithm, which in turn continues scheduling.

Thus the simple scheduling algorithm creates a
schedule in cooperation with the global harmo-
nization algorithm. It is not always guaranteed
that the input (symbolic representation) yields
the output (schedule) with the minimum num-
ber of shifts. We can expect, however, they are
reasonably close.

On the whole, the harmonization algorithm
creates a legal g’ as similar to g as possible
in the sense of Hamming distance. Develop-
ing optimal solutions for large problems suffers
from computational explosion, and should be .
avoided since the evaluation will be repeated so
many times. Note that usually the total num-
ber of bits of change is less than the sum of
changes incurred by local harmonization and

- global harmonization. |

5 Forcing

The framework of the conventional GA [Hol-
land, 1975; Goldberg, 1986] is pursued. That is,
conventional crossover and mutation are used.
An unusual treatment called forcing, however,
is introduced in this paper. Forcing means the
replacement of an illegal genotype g with a
quite similar legal genotype g’.

An original illegal genotype can be considered
as an inherited character, while a refined le-
gal genotype can be considered as an acquired
one. Forcing can be considered as the inheri-
tance of an acquired character, although it is
not widely believed that an acquired character
is inherited in nature. Since too much forcing
may destroy the whole ecology and cause pre-
mature convergence, it is limited to the cases
when g is selected as the survivor.

Forcing brings about at least two merits for
GAs. One is to help them converge quickly.
The other is to greatly improve the solution
quality. The two advantages are demonstrated
in the next section.

Table 1 : Main Results for Job Shop Probiems

Papers | Algorithm [6 x 6 prob. { 10 x 107prob. T 20 x 5 prob.
Balas1969 BAB 55 1177 1231
McMahon1975 BAB 55 972 1165
Barker1985 BAB 55 960 1303
Carlier1989 BAB 55 930 1165
Nakano1991 GA 55 965 1215
2400
2200 [}
2000
"
g 1800
2 : :
§‘ “}hout forci
]
g 1600
S
1400
Ljur\. il ®
1200 / _\\\: TR
with forcing
800
0 50 100 150
Generations

Figure 3 : Convergence of GAs for 10 x 10 problem

6 Experiments

This section shows the results of experiments

conducted using three well-known JSP bench- -

marks [Muth and Thompson, 1963]:

® 6 x 6 (6 jobs, 6 machines) problem

* 10 x 10 (10 jobs, 10 machines) problem

® 20 x 5 (20 jobs, 5 machines) problem
Our best results (total elapsed time) are shown

in Table 1 together with the historical progress
in branch and bound methods.

The solution quality obtained in this pa-
per is almost comparable with those obtained
through more than 20 years of research into
branch and bound methods. A population size
of 1,000 is frequently used and this size is large
enough to ensure a reasonably good solution for
these problems.

Figure 3 shows convergence of GAs for the 10
x 10 problem. Convergence with and with-
out forcing is displayed. The figure clearly
shows that forcing both quickens convergence
and drastically improves solution quality. -

74

COoNVeNtioNal WsCICUL MuUgUsstessas ava jom —ccny

7 Conclusion

This paper shows how a conventional GA can

effectively solve a tough combinatorial problem,

the job shop problem. Three unique ideas are
introduced in representation, evaluation, and
survival. A binary representation pursued here
makes it possible to apply conventional GAs.
Even though a genotype produced by conven-
tional crossover is usually illegal, the evalua-
tion method presented here can evaluate it by

finding a similar legal genotype. Forcing, the

replacement of an illegal genotype with a le-
gal one, improves convergence rates and so-
lution quality. Experiments using well-known
JSP benchmarks showed the solutions gener-
ated by the present approach were as good as
those obtained by branch and bound methods.

Future work will include investigation of the
complexity of this approach. The ideas pre-
sented in this paper can be .used in symbolic
representation, and such symbolic approach is
also worth investigating. :

Acknowledgments

The authors wish to thank Dr.Fumio Kanaya
for discussion about theoretical issues, Yasuhiro
 Inooka for helpful information about the job
shop problem, and Dr.Stephen I. Gallant for
helpful comments.

References

[Balas, 1969] E. Balas. Machine sequencing vié
disjunctive ‘graphs: an implicit enumeration
algorithm. Oper. Res., 17:941-957, 1969.

[Barker and McMahon, 1985] J.R. Barker and
G.B. McMahon. Scheduling the general job-
shop. Manage. Sci., 31(5):594-598, 1985.

[Carlier and Pinson, 1989]
J Carlier and E. Pinson. An algorithm for
solving the job-shop problem. Manage. Sci.,
35(2):164-176, 1989.

[Cleveland and Smith, 1989] G.A. Cleveland

and S.F. Smith. Using genetic algorithms
to schedule flow shop releases. In Proc. 3rd
Int. Conf. on Genetic Algorithms and their
Applications (Arlington, Va.), pages 160-169,
1989. -

[Davis, 1985} L. Davis. Job shop scheduling
with genetic algorithms. In Proc. Ist Int.
Conf. on Genetic Algorithms and their Ap-
plications (Pitisburgh,PA), pages 136-140,
1985.

¢77

- [Garey and Johnson, 1979] M.R. Garey and

D.S. Johnson. Computers and Intractability -
A Guide to the Theory of NP-Completeness.
Freeman and Company, New York, 1979.
[Goldberg and Lingle, 1985] D.E. Goldberg
and R.Jr. Lingle. Alleles, loci, and the travel-
ing salesman problem. In Proc. 1st Int. Conf.

on Genetic Algorithms and their Applica-
tions (Pittsburgh,PA), pages 154-159, 1985.

[Goldberg, 1986] D.E. Goldberg. Genetic Al-
gorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley, Read-
ing,Mass., 1986.
[Grefenstette et al., 1985] J. Grefenstette,

R. Gopal, B. Rosmaita, and D.V. Gucht.
Genetic algorithms for the traveling sales-
man problem. In Proc. Ist Int. Conf. on

Genetic Algorithms and their Applications
. (Pittsburgh, PA), pages 160-168, 1985.

[Holland, 1975] J.H. Holland. Adaptation in
Natural and Artificial Systems. Unuv. of
Michigan Press, 1975.

[Liepins and Hilliard, 1987] G.E. Liepins and .

M.R. Hilliard. Greedy genetics. In Proc. 2nd
Int. Conf. on Genetic Algorithms and their
Applications (Cambridge, MA), pages 90-99,
1987. '

[McMahon and Florian, 1975] G. McMahon
and M. Florian. On scheduling with ready
times and due dates to minimize maximum
lateness. Oper. Res., 23(3):475-482, 1975.

[Muth and Thompson, 1963] J.F. Muth and
G.L. Thompson. Industrial Scheduling.
Prentice-Hall, Englewood Cliffs, N.J., 1963.

[Oliver et al., 1987] I.M. Oliver, D.J. Smith,
and J.R.C. Holland. A study of permutation
crossover operators on the traveling sales-
man problem. In Proc. 2nd Int. Conf. on
Genetic Algorithms and their Applications
(Cambridge, MA), pages 224-230, 1987.

[Reddi and Ramamoorthy, 1972]
S.S. Reddi and C.V. Ramamoorthy. On the
flow-shop sequencing problem with no wait
in process. Operational Research Quarterly,
23(3):323-331, 1972.

[Whitley et al., 1989] D. Whitley, T. Stark-
weather, and' D. Fuquay. Scheduling prob-
lems and traveling salesman: The genetic
edge recombination operator. In Proc. 3rd
Int. Conf. on Genetic Algorithms and their
Applications (Arlington, Va.), pages 133-140,
1989.

