Learning to Generate Naturalistic Utterances Using Reviews in Spoken Dialogue Systems

1

Ryuichiro Higashinaka (NTT) Rashmi Prasad (Univ. of Pennsylvania) Marilyn Walker (Univ. of Sheffield)

Overview

- A new method for automatically acquiring a generation dictionary in spoken dialogue systems
- Uses user reviews on the web
- Uses ratings to map a sentence to its semantic representation with high precision

Objective

- Reduce the cost involved with hand-crafting a spoken language generation module
- Benefits:
 - Facilitate development of a spoken dialogue system
 - Achieve more natural system utterances using attested language examples from the web

NLG in Spoken Dialogue Systems

Semantic Representations

Assert-food_quality(Babbo, superb)

Assert-décor(Babbo, superb)

Mappings between semantic representations and realizations

Assert-food_quality(X, superb) ⇔ X has superb food. Assert-décor(X, superb) ⇔ X has superb décor.

Utterances Babbo has superb food.

Babbo has superb décor.

Problem

- Mappings are created by hand
 It is very costly
- Quality may be left unchecked

 Utterances can be unnatural

We need an automatic method for acquiring mappings that generate naturalistic utterances

Related Work

- Create mappings from tagged corpora (Barzilay et al., 2002)
 - Requires an hand-annotated corpus
- Find expressions from reviews
 - Adjectives for products (Hu and Liu, 2005)
 - Product features and adjectives with polarity (Popescu and Etzioni, 2005)
 Do not focus on creating mapping
 - Do not focus on creating mappings

Approach

Automatically acquire mappings from user reviews on the web

→ user reviews are widely available

- Uses ratings to derive accurate semantic representations for sentences
- A mapping is a triple consisting of
 - \mathcal{U} (Utterance), \mathcal{R} (Semantic representation), and \mathcal{S} (Syntactic structure)
 - Having syntactic structures is useful for full-NLG systems to perform syntactic transformation

7

Procedures

- 1. Collect user reviews on the web \rightarrow create a population of \mathcal{U}
- 2. For each \mathcal{U} ,

Derive semantic representation \mathcal{R} Derive syntactic structure S

- 3. Filter inappropriate mappings
- 4. Add remaining mappings to dictionary

Collecting user reviews on the web

- Select review websites with individual ratings for review entities
- Collect review comments and ratings
- Collect tabular data *Ratings Food, Service, Value, Atmosphere, Overall*

Tabular Data Name, Food Type, Location

Ratings Atmosphere=5, Overall=5

Review Comment 11 Food=5, Service=5, Value=5, The best Spanish food in New York. I am from Spain and I had my 28th birthday there and we all had a great time. Salud!

Review Sentence (\mathcal{U}) The best Spanish food in New York.

NE-tagged Review Sentence The best {NE=Foodtype, string=Spanish} {NE=Food, string=food, rating=5} in {NE=Location, string=New York}.

Semantic Representation (\mathcal{R}) RESTAURANT has FOODTYPE RESTAURANT has foodquality=5 RESTAURANT has LOCATION

(Rating-related relation has the same scalar value of that rating)

Filtering inappropriate mappings

- 6 Filters to guarantee the quality of mappings
- No Relations Filter, Other Relations Filter
 Check whether a mapping has just the relations expressed in the ontology
- Contextual Filter

 \rightarrow Checks whether \mathcal{U} can be uttered independently of the context

 Unknown Words Filter (typos, etc.), Parsing Filter, Duplicates Filter

Filtering Example

Ratings Atmosphere=5, Overall=5

Review Comment

Food=5, Service=5, Value=5, The best Spanish food in New York. I am from Spain and I had my 28th birthday there and we all had a great time. Salud!

13

Experiment

- Obtaining mappings in the restaurant domain
- Reviews collected from we8there.com
 - 3,004 user reviews on 1,810 restaurants
 - 18,466 sentences
 - Obtained **451** mappings after filtering
- Objective and subjective evaluations

Objective Evaluation

Domain coverage

- Check how many of the relations in the domain ontology can be expressed by the obtained mappings
- Linguistic variation
 - Check the expressiveness of the mappings
- Generativity
 - Check whether the mappings can be incorporated in conventional generation engines

Domain Coverage

Distribution of mappings containing a single relation

Rating Relation	1	2	3	4	5	Total
food	5	8	6	18	57	94
service	15	3	6	17	56	97
atmosphere	0	3	3	8	31	45
value	0	0	1	8	12	21
overall	3	2	5	15	45	70
Total	23	15	21	64	201	327

Domain Coverage is almost complete.

Linguistic Variation

- 137 syntactic patterns, 275 distinct lexemes, 2-15 lexemes per DSyntS (mean 4.63)
- Adjectival phrases
 - food=1 → awful, bad, cold, burnt
 - service=1 → silly and inattentive
 - atmosphere=5 → *comfortable*, *mellow*

The mappings show good variation of language

Example mappings

[RESTAURANT has foodquality=1]

[1] Food was cold or burnt.
[2] The food was awful.
[3] The food was very ordinary.
[4] The food has gone downhill.
[5] Bad food.

[RESTAURANT has foodquality=2]

- [1] Bad food.
- [2] The food was very bland.
- [3] Not enough food.
- [4] The food is very bland.
- [5] Food was not very good.
- [6] Very bland flavored food. etc.

[RESTAURANT has foodquality=5]

- [1] The food was excellent.
- [2] The food is delicious.
- [3] Keep up the great food.
- [4] The food is delicious but simple.
- [5] Great food.
- [6] The food was very good.
- [7] The food was exquisite.
- [8] Food is wonderful.
- [9] The food was simply inspired.
- [10] The food was absolutely great.
- [11] Food was excellent.
- [12] The food was great.
- [13] The food was superb.
- [14] All the food is terrific.
- [15] The food was fantastic. etc.

Generativity

- Incorporating the learned mappings into SPaRKy generator (Walker et al., 2003)
 SPaRKy: Babbo has the best overall quality among the selected restaurants with excellent decor, excellent service and superb food quality.
 - With learned mappings: Babbo has the best overall quality among the selected restaurants because atmosphere is exceptionally nice, food is excellent and the service is superb.

Successfully incorporated into a conventional generation engine

Subjective Evaluation

- 10 native English speakers evaluated baseline vs. learned mappings
 - Baseline: 27 hand-crafted mappings (taken from SPaRKy generator)
 - Learned: 451 learned mappings
- Evaluation criteria:
 - Consistency between semantic representations and realizations
 - Naturalness of realizations
 - 1-5 Likert scale

Results

Conclusion

- A new method for automatically acquiring a generation dictionary in spoken dialogue systems
 - Uses user reviews on the web
 - Uses ratings to obtain accurate semantic representations for sentences
- Experimental results showed the effectiveness of our approach